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S

We study the combined impact that all-or-none compliance and subsequent missing
outcomes can have on the estimation of the intention-to-treat effect of assignment in
randomised studies. In this setting, a standard analysis, which drops subjects with missing
outcomes and ignores compliance information, can be biased for the intention-to-treat
effect. To address all-or-none compliance that is followed by missing outcomes, we con-
struct a new estimation procedure for the intention-to-treat effect that maintains good
randomisation-based properties under more plausible, nonignorable noncompliance and
nonignorable missing-outcome conditions: the ‘compound exclusion restriction’ on the
effect of assignment and the ‘latent ignorability’ of the missing data mechanism. We present
both theoretical results and a simulation study. Moreover, we show how the two key
concepts of compound exclusion and latent ignorability are relevant in more complicated
settings, such as right censoring of a time-to-event outcome.

Some key words: Compound exclusion restriction; Intention-to-treat; Latent ignorability; Noncompliance;
Nonignorability; Rubin causal model.

1. I

Randomised experiments with human subjects often suffer from two major compli-
cations, namely noncompliance to treatment assignment and missing outcomes. In general,
noncompliance is selective (The Coronary Drug Project Research Group, 1980) in the
sense that noncompliers and compliers generally differ in background characteristics.
Moreover, missing outcomes, often caused by refusal or loss to follow-up, may also be
selective in the analogous sense (Farwell et al., 1990). These complications are rarely fully
within the experimenter’s control, and there is currently substantial awareness among
researchers that such complications in a study compromise the ability to draw clear
conclusions.

We assume a simple two-arm randomised experiment comparing a new versus a stan-
dard treatment, with access to the new, experimental treatment only in the new treatment
arm and all-or-none compliance. A special case is the Zelen randomised single-consent
design (Zelen, 1979, 1990a), where those assigned standard treatment cannot receive the
new treatment, and those assigned the new treatment either receive it or the standard
treatment.
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For any subject whose outcome at the end of the study is known, we will say there is
a response and refer to the subject as a respondent, whereas if the outcome is missing we
will say there is nonresponse and that the subject is a nonrespondent.

The bias of using the actual treatment received as if it had been randomly assigned,
‘as-treated’ analysis, has been well documented in related settings (The Coronary Drug
Project Research Group, 1980; Mark & Robins, 1993; Robins & Greenland, 1994; Sheiner
& Rubin, 1995). For this reason, the standard approach to randomised trials with noncom-
pliance has been intention-to-treat analysis, which compares the originally randomised
treatment assignment arms, thereby ignoring the observed actual treatment received. When
the outcomes of study are observed for each subject, intention-to-treat analysis is valid
for estimating the intention-to-treat treatment effect Y91−Y90 , that is, the effect of assignment
on the population averages of the outcome Y. Commonly, though, observed outcomes are
not available for all subjects. Even then, a standard analysis is a respondent-based inten-
tion-to-treat analysis, that is, an analysis that is based on the respondents and ignores
compliance data, e.g. Farwell et al. (1990), Reuben et al. (1995). As we show, however,
the practice of discarding compliance data in the presence of subsequent nonresponse can
create a bias even when Y91−Y90 is zero. Other issues that arise with intention-to-treat
analyses are discussed by Little & Yau (1996) and Kleinman, Ibrahim & Laird (1998).

We provide a framework that explicitly allows both nonignorable (Rubin, 1976, 1978)
noncompliance to the treatment assignment and nonignorable nonresponse on the out-
come of study, and offer a new estimation procedure for Y91−Y90 that maintains good
randomisation-based properties more generally than respondent-based intention-to-treat
analysis.

Our framework is developed in § 2, where we posit two assumptions, namely ‘latent
ignorability’ and ‘compound exclusion restriction’. Under our assumptions, we show that
respondent-based intention-to-treat analysis, although commonly used to estimate Y91−Y9 0 ,
for example Lee et al. (1991), can be biased for Y91−Y90 , and that the bias can be reduced
by using compliance data. In § 3, we discuss identifiability and construct our estimator
for Y91−Y9 0 , which is consistent when respondent-based intention-to-treat analysis is con-
sistent and also when respondent-based intention-to-treat analysis is inconsistent under
our nonignorable conditions. In § 4, we present simulation results to illustrate some
operating characteristics of our new procedure. In § 5 we apply these new ideas to the
problem of identifiability in right censoring of a time-to-event outcome, a survival time,
following all-or-none compliance. For the case of discrete-time survival, a related approach
is independently considered by Baker (1998). Our final section gives concluding remarks.
The Appendix provides technical details of our results.

2. F

2·1. T he data

In order to address better the different sources of missing information in this problem,
we first define potential outcomes separately from a sampling scheme or probabilistic
assignment mechanism, an approach dating back to Neyman (1923) in the context of
perfect randomised trials, formalised and extended to nonrandomised studies in Rubin
(1974, 1978), and referred to as the Rubin causal model (Holland, 1986). Consider a large
population of individuals {v}, each of which can potentially participate in a study and
be assigned a treatment z, with z=1 for new, 0 for standard. For each individual v, let
D(v, z) be the actual treatment received, 1 for new, 0 for standard, if that individual is
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assigned treatment z. Also let Y (v, z) and R(v, z) be, respectively, the outcome and indi-
cator for response, equal to 1 for response, 0 for nonresponse, on outcome Y, if individual
v is assigned treatment z.

A simple random sample of n subjects from {v}, v1 , . . . , v
n
, say, comprises the partici-

pants in the study. Each subject is then randomly assigned treatment arm Z
i
, 1 for new,

0 for standard, where for simplicity Z
i
(i=1, . . . , n) are essentially independent, identically

distributed Bernoulli variables. Then the observable vectors

(Z
i
, D(v

i
, Z

i
), Y (v

i
, Z

i
), R(v

i
, Z

i
))

(i=1, . . . , n) are essentially independent and identically distributed replicates with respect
to the random sampling–random assignment mechanism, and will be denoted by
(Z
i
, D

i
, Y

i
, R

i
).

We assume that the observed data from the study include
(i) the treatment assignments {Z

i
};

(ii ) the actual treatments received {D
i
}, where by assumption D

i
=0 if Z

i
=0; and

(iii ) the indicators for whether or not outcomes are observed, {R
i
}, where outcome Y

i
is observed if R

i
=1 and missing if R

i
=0.

Hence, the observed data are

{(Z
i
, D

i
, R

i
) : i=1, . . . , n} {Y

i
: R

i
=1}. (2·1)

Let Y9 z)E{Y (v
i
, z)} be the expected outcome when all units are assigned z, for z=0, 1,

where the probability measure is the one induced by the random sampling from {v}. We
focus on estimating the intention-to-treat treatment effect on the means of Y in {v}, given
by

Y9 1−Y90 . (2·2)

A more specific question is whether or not the intention-to-treat null hypothesis of no
effect of assignment on the outcomes, H0 : Y91−Y90=0, is plausible.

The methods that we will discuss can formally be applied within the levels of other
pretreatment covariates, but, to focus on conceptual issues, we assume that no covariate
is recorded, or that we are already within a cell defined by such covariates.

2·2. Role of treatment-noncompliance with missing outcomes

Let U(v))D(v, 1) be the received treatment for individual v when assigned the new
treatment, where U

i
)U(v

i
) for the ith study individual v

i
. Since U

i
=1 if person v

i
would comply under both treatment assignments, we refer to such a person as a ‘complier’,
and, because U

i
=0 if person v

i
would never take the new treatment, no matter what the

assignment, we refer to such a person as a ‘never-taker’; see the Harvard Institute of
Economic Research Discussion paper #1676 by G. W. Imbens and D. B. Rubin ‘Causal
inference with instrumental variables’. By definition, the quantity U(v) is fixed for individ-
ual v, and therefore it is a covariate, the true compliance status covariate (Angrist, Imbens
& Rubin, 1996; Rubin, 1998), though it is only partially observed in the sample; U

i
=D

i
when Z

i
=1, but U

i
is unobserved when Z

i
=0. Despite being missing in the standard

treatment arm, by randomisation, the covariate U
i
has the same distribution in the stan-

dard treatment arm as in the new treatment arm in the study; see Fig. 1. The observed,
post-treatment compliance behaviour, D

i
, is completely determined by the values of the

covariate U
i
and the treatment assignment Z

i
. Naive attempts to condition on D

i
, the
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observed treatment received, generally lead to biased conclusions because D
i
is not a true

covariate.
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Fig. 1. The study and the unobserved, comparable compliance groups.
Dashed lines represent unobserved information. Here, U9 is the proportion
of compliers. To each of the four combinations of assignment arm by

compliance covariate corresponds a rectangular array {(Y
i
, R

i
)}.

In the presence of subsequent missingness of the outcome Y
i
, indicated by R

i
=0, a

strict intention-to-treat analysis cannot be done and the role of the compliance covariate
U
i
is critical. To describe this role, consider for the moment an investigator who, hypotheti-

cally, knows the compliance covariate values U
i
for all subjects, that is, whether each

subject would comply with the new treatment, a complier, or not, a never-taker, under
assignment to take it. Researchers have expressed the desire to have known this infor-
mation, e.g. Schechtman & Gordon (1988), and consideration of this case suggests how
to analyse the data without such information.

With U
i
fully observed, the investigator would have a covariate, U

i
, and therefore would

have the following main options.

Approach 1. Ignore the fully observed covariate, and compare respondents between
randomised arms. In order for this approach to be correct, response R

i
should be indepen-

dent of outcomes Y
i

before conditioning on the covariates U
i
, as when the missing Y

values are missing completely at random (Little & Rubin, 1987, Ch. 1).

Approach 2. Do separate analyses for compliers, U
i
=1, and for never-takers, U

i
=0.

Then, combine these analyses, weighted by the proportions of compliers and never-takers
since the goal is the overall intention-to-treat effect. This approach allows for response R

i
to be ignorable (Rubin, 1976) or, essentially here, independent of outcome Y

i
after, but

not necessarily before, conditioning on the compliance covariates U
i
.

In practice it may be that neither of the above two approaches is correct, but this is
not testable. To avoid confounding, it is general practice when confronted with missing
outcomes first to condition on important covariates before assuming independent non-
response. For example, we assume we are already within a cell defined by all other observed
covariates, because such conditioning is standard. The clinical trials literature typically
regards the latent compliance covariate U

i
to be important in the sense of being associated

with both (i) background characteristics of health related to the outcome Y
i
, as well as

(ii) response R
i
; see for example The Coronary Drug Project Research Group (1980),

Schechtman & Gordon (1988), Farwell et al. (1990), Gordon & Schechtman (1990) and
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Zelen (1990b). Therefore, the investigator with knowledge of all values of U
i
should regard

Approach 2 as more reliable than Approach 1, because Approach 2 conditions on a
potentially important covariate whereas Approach 1 does not.

Hence, to formalise this conclusion, we assume that, if U
i
were fully observed, we would

accept ignorability of the missing data mechanism for Y
i
only after conditioning on U

i
.

That is, we would accept Assumption 1.

Assumption 1: L atent ignorability. Potential outcomes and associated potential non-
response indicators are independent within each level of the latent compliance covariate:

(a) when assigned new treatment,

pr{Y (v
i
, 1) |U(v

i
), R(v

i
, 1)}=pr{Y (v

i
, 1) |U(v

i
)};

(b) when assigned standard treatment,

pr{Y (v
i
, 0) |U(v

i
), R(v

i
, 0)}=pr{Y (v

i
, 0) |U(v

i
)}.

Assumption 1 is related to missing-data mechanisms discussed by Baker (1994) in the
context of incomplete covariates.

In the randomised trial, Assumption 1 implies that

pr (Y
i
, R

i
|U

i
, Z

i
)=pr(Y

i
|U

i
, Z

i
) pr (R

i
|U

i
, Z

i
),

where, here and in the sequel, the probability measure is the one induced by the random
sampling and random assignment mechanism of the trial.

To address complications because the true compliance covariate is missing, we also
make Assumption 2.

Assumption 2: Compound exclusion restriction for never-takers. If, for individual v,
U(v)=0, then

CY (v, 0)

R(v, 0)D=CY (v, 1)

R(v, 1)D .

Since for the never-takers the treatment actually received would be the same no matter
what their treatment assignment, the intervention of assignment within the study is argu-
ably of little relevance to them. Consequently, Assumption 2 asserts that, for the never-
takers, who are defined by the covariate U(v)=0, there is no effect of assignment on
either their outcomes Y (v, z) or their response behaviours R(v, z). Although Assumption 2
may not be true, it is expected to hold approximately in double-blind trials or often when
the outcome is measured long after final exposure to the new treatment for the never-
takers has occurred. Assumption 2 is closely related to ‘exclusion restriction’ assumptions
in the traditional instrumental variables approach (Durbin, 1954; Goldberger, 1972;
Angrist et al., 1996), also used in biomedical applications, e.g. Baker & Lindeman (1994)
and Sommer & Zeger (1991), and which apply to outcomes, Y. Our use of ‘compound’
implies that the exclusion restriction applies to both the values of Y and the missingness
of Y.

An immediate consequence of Assumption 2 is that, in the randomised trial,

prqAY
i

R
i
BKUi

=0, Z
i
=0r=prqAY

i
R
i
BKUi

=0, Z
i
=1r .

Under Assumptions 1 and 2, the outcomes Y
i
and response indicators R

i
are generally
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correlated in the standard treatment arm because no U
i
is observed there. That is, for

those units assigned standard treatment, there is no set of observed data on which to
condition to make nonresponse independent of outcome. In the terminology of Rubin
(1976), the missing outcomes {Y

i
: R

i
=0} are generally not missing at random, and so the

nonresponse is nonignorable.
Under Assumptions 1 and 2, we next show that the respondent-based intention-to-treat

estimator for Y91−Y90 is generally biased even under H0 . Consistent estimation for Y91−Y90
under Assumptions 1 and 2 will be discussed in § 3.

2·3. Bias of respondent-based intention-to-treat estimator for intention-to-treat eVect

From the observed data (2·1), standard respondent-based intention-to-treat analysis
disregards the actual treatment data {D

i
} and constructs an estimator for Y91−Y90 based

on the respondents within each assignment arm using

YB obs
1

−YB obs
0

, (2·3)

the difference in sample average outcomes among respondents at each assignment arm:

YB obs
z

) ∑
n

i=1
Y
i
R
i
I(Z

i
=z)N ∑

n

i=1
R
i
I(Z

i
=z),

where I(. ) is the indicator function. For technical reasons, assume E(Y 2
i
) is finite, and let

Y9 obsz
)E(Y

i
|R

i
=1, Z

i
=z), the probability limit of YB obs

z
for z=0, 1.

Under Assumptions 1 and 2, however, estimator (2·3) is biased in our setting because,
generally, Y9 obs1

−Y9 obs0
NY91−Y9 0 even under H0 . To show this, let

Y9 u,z)E(Y
i
|U

i
=u, Z

i
=z), R9 u,z)E(R

i
|U

i
=u, Z

i
=z),

the mean outcomes and response probabilities, respectively, within levels of the true com-
pliance covariate and assignment arms, and let U9 )E(U

i
), the proportion of compliers.

Finally, let R9 z)E(R
i
|Z

i
=z), the marginal response rates within assignment arms. We

then have the following result.

R 1. Under Assumptions 1, 2, and H0 ,

Y9 obs1
−Y9 obs0

=
U9 (1−U9 )R9 0,1

R9 1R9 0
(R9 1,1−R9 1,0 )(Y9 1,1−Y90,1 ).

Proof. Under Assumption 2, the compound exclusion restriction, there is no effect of
assignment for the never-takers, (Y9 0,0 , R9 0,0)= (Y90,1 , R9 0,1), and so we will denote by
(Y9 0,1 , R9 0,1) the never-taker average outcome and response probability for both treatment
assignment arms. Under Assumption 1, latent ignorability, then

Y9 obsz
=E{E(Y

i
|R

i
=1, Z

i
=z, U

i
) |R

i
=1, Z

i
=z}

=pr (U
i
=1 |R

i
=1, Z

i
=z)Y91,z+pr (U

i
=0 |R

i
=1, Z

i
=z)Y9 0,1 . (2·4)

From Bayes’ theorem, we have

pr (U
i
=1 |R

i
=1, Z

i
=z)=

R9 1,z
R9 z

U9 , pr (U
i
=0 |R

i
=1, Z

i
=z)=

R9 0,1
R9 z

(1−U9 ). (2·5)

With U9 >0 we now assume that H0 is true or, equivalently, Y91,1=Y91,0 , by the com-
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pound exclusion restriction. If we use (2·5) in (2·4), and with the mixture R9 z=
U9 R9 1,z+ (1−U9 )R9 0,1 , Result 1 follows after some algebra. %

In Result 1, Y9 obs1
−Y9 obs0

is not zero unless either the response rates for compliers, R9 1,1
and R9 1,0 , are the same, or the mean outcomes between compliers and never-takers, Y91,1
and Y90,1 , are the same, or R9 0,1=0 so that all never-takers are nonrespondents.
Consequently, under Assumptions 1 and 2 and the null hypothesis H0 , the respondent-
based intention-to-treat estimator (2·3) is generally biased for the intention-to-treat effect.
Although intention-to-treat analysis is generally promoted, in contrast to naive and biased
‘as-treated’ and ‘per-protocol’ analyses, to avoid the heterogeneity of differential character-
istics between compliers and never-takers, it is this same heterogeneity that may render
the missing outcomes nonignorable and hence respondent-based intention-to-treat analy-
sis incorrect. Better procedures, however, do exist. In § 3 we construct an estimator that
is randomisation-based consistent for Y91−Y9 0 under Assumptions 1 and 2.

3. E      

Each assignment arm comprises a mixture of never-takers and compliers, so

Y9 1= (1−U9 )Y9 0,1+U9 Y91,1 , Y90=(1−U9 )Y90,0+U9 Y9 1,0 .

Under the compound exclusion restriction, Y9 0,1=Y90,0 , and therefore (2·2) can be written
as

Y91−Y9 0=U9 (Y91,1−Y91,0 ), (3·1)

where Y9 1,1−Y91,0 is the effect of assignment on the compliers; see also Angrist et al. (1996).
In the new treatment arm, all true compliance covariates U

i
are observed and equal in

value to D
i
. By virtue of the latent ignorability assumption, the stratified estimator

YB
1,1

)W Y
i
R
i
D
i
Z
i
/WR

i
D
i
Z
i
is then consistent for Y9 1,1 by the law of large numbers. The

estimation of U9 and Y91,0 in (3·1) requires only easily estimable quantities.
The key idea in estimation is to realise first that, by randomisation, the mixing pro-

portions of never-takers, U
i
=0, and compliers, U

i
=1, are directly estimable from the

new treatment assignment arm where the covariates U
i

are fully observed. Moreover,
because of the compound exclusion restriction, for never-takers response R

i
is identical

under both assignment arms. Hence, in the new treatment arm, Z
i
=1, the units can be

partitioned into the following: compliers with Z
i
=1, U

i
=1; responding never-takers with

Z
i
=1, U

i
=0 and R

i
=1; and nonresponding never-takers with Z

i
=1, U

i
=0 and R

i
=0.

Thus the proportions of these three types in the population are directly estimable from
observed data in the new treatment arm. Moreover, the mean outcomes for responding
never-takers, assigned new or standard treatment, Y9 obs0,1

, are directly estimable in the new
treatment arm. Including latent ignorability implies that Y9 obs0,1

=Y9 0,1 . Latent ignorability
analogously would allow direct estimation of the compliers’ mean outcome Y9 1,0 when
assigned standard treatment if the covariates U

i
were observed in that arm. Although this

specific information is not available, the mixing proportions of compliers, responding
never-takers and nonresponding never-takers along with Y90,1 and the observed Y9 obs0

are
enough to identify the compliers’ mean outcome Y91,0 .

The following lemma, proved in the Appendix, allows a method of moments estimator
to be constructed for Y91,0 that can be considered an extension of the econometric instru-
mental variables estimator (Angrist et al., 1996).
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L 1. Under Assumptions 1, 2, and with U9 >0,

Y9 1,0=
Y9 obs0

R9 0−Y90,1R9 0,1 (1−U9 )
R9 0−R9 0,1(1−U9 )

. (3·2)

The estimator YB
1,0

we consider for Y91,0 is obtained by using the sample analogues for
the quantities in the right-hand side of (3·2). Specifically, define UB )WD

i
Z
i
/WZ

i
and

RB 0,1)
WR

i
(1−D

i
)Z

i
W (1−D

i
)Z

i
, YB0,1)

W Y
i
R
i
(1−D

i
)Z

i
WR

i
(1−D

i
)Z

i
,

RB 0)
WR

i
(1−Z

i
)

W (1−Z
i
)

, YB1,0)
YB obs
0

RB 0−YB0,1RB 0,1 (1−UB )
RB 0−RB 0,1(1−UB )

.

(3·3)

Also define V
u,z
)var (Y

i
|U

i
=u, Z

i
=z), for z and u in {0, 1}, and

V obs0 )var (Y
i
|R

i
=1, Z

i
=0).

The following result, proved in the Appendix using the delta method, forms a basis for
inference about Y91−Y90 .

R 2. Under Assumptions 1, 2 and with U9 >0,

nD (YB1,0−Y91,0)�N A0, ∑
5

k=1
v
k
d2
kB ,

in distribution as n�2, where

v=CU9 (1−U9 )
pr (Z

i
=1)

,
V0,1

pr{Z
i
R
i
(1−D

i
)=1}

,
R9 0,1(1−R9 0,1)

pr{Z
i
(1−D

i
)=1}

,

R9 0(1−R9 0 )
pr (Z

i
=0)

,
V obs0

pr{R
i
(1−Z

i
)=1}D∞,

d=[−R9 0R9 0,1 (Y9 obs0
−Y90,1 )w2, −R9 0,1(1−U9 )w,

R9 0(Y9 obs0
−Y9 0,1)(1−U9 )w2, −R9 0,1 (Y9 obs0

−Y90,1 )(1−U9 )w2, R9 0w]∞,

w={R9 0−R9 0,1(1−U9 )}−1.
By standard results, nD (YB

1,1
−Y91,1 )�N(0, q) in distribution as n�2, where q=

V1,1/pr(Z
i
D
i
R
i
=1). Furthermore, it can be shown that the two standardised estimators

of interest, nD (YB
1,0

−Y91,0) and nD (YB
1,1

−Y91,1 ), are asymptotically independent, by a Taylor
series expansion and Slutsky’s theorem. By defining VB

0,1
, VB

1,1
and VB obs0 to be the usual

sample estimates for V0,1 , V1,1 , and V obs0 respectively, and with dA , vA and qA the resulting
sample analogues of d, v and q, it is a direct consequence of Result 2 and Slutsky’s theorem
that

nD{(YB1,1−YB1,0)−(Y91,1−Y9 1,0 )} AqA+ ∑
5

k=1
vAkd
A 2
kB−D�N(0, 1)

in distribution as n�2. Finally, if we let YB
1
−YB

0
)UB (YB

1,1
−YB

1,0
), it can be easily shown

using the Taylor expansion in the Appendix that

nD{(YB 1−YB0 )−(Y91−Y90)}qUB 2qA+vA1(YB1,1−YB1,0−UB dA1 )2+UB 2 ∑
5

k=2
vAkd
A 2
kr−D�N(0, 1)

(3·4)
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in distribution as n�2. Therefore, if we use the estimator YB
1
−YB

0
, confidence intervals

for the intention-to-treat estimand, Y91−Y90 , can be constructed based on the normal
approximation (3·4). In the following section we examine some finite sample properties
of this estimator, and compare it with the standard intention-to-treat estimator (2·3) under
various conditions. Although under our assumptions the estimator (2·3) is theoretically
inconsistent for Y91−Y9 0 , we investigate the extent of this problem in finite samples, first
under hypothetical conditions that follow Assumptions 1 and 2 in § 4·1, and under certain
deviations from Assumption 1 in § 4·2.

4. S 

4·1. Numerical results under both latent ignorability and compound exclusion

In each of the 12 conditions of Table 1, n=500 individuals are randomised to either
the standard or the new treatment arm with pr(Z

i
=1)=0·5 and, independently, com-

pliance covariates U
i
are simulated as Bernoulli random variables with probability U9 .

Outcomes Y
i
are simulated from normal distributions with standard deviation equal to

two, conditionally on covariates U
i
and treatment assignment arms Z

i
. The parameters

that, for simplicity, we fix across experimental conditions are
(i ) the average outcomes for never-takers and compliers at the standard treatment

arm, Y9 0,0=0, which equals Y90,1 by Assumption 2, and Y9 1,0=3 respectively, and
(ii) their response probabilities at the new treatment arm R9 0,1=R9 1,1=0·5, for sim-

plicity.
The parameters that we vary are

(iii ) the proportion of never-takers, that is 1−U9 ;
(iv) the average outcome effect for compliers, that is Y91,1−Y9 1,0=0 or 1;
(v) the response probability for the compliers at the standard treatment arm; that is

R9 1,0=0·5 gives ignorable nonresponse, i.e. missing at random, or R9 1,0=0·8, which
gives nonignorable nonresponse, i.e. not missing at random.

In each case we report the induced value, Y91−Y9 0 , and the ratio of expected observable
outcome to true, marginal expected outcome in the standard treatment arm, Y9 obs0 /Y9 0 , as
a measure of overall deviation from ignorability within arm z=0.

Table 1 reports coverage rates of nominal 95% confidence intervals for Y9 1−Y90 , and
mean squared errors for estimators calculated using (i) the new procedure based on the
normal approximation (3·4), labelled IV because it uses a generalisation of the instru-
mental variables procedure as derived by Angrist et al. (1996), and (ii) the respondent-
based intention-to-treat statistic (2·3) with a two-sample t confidence interval, labelled
obs. For the special case where the treatment effect is zero within both never-takers and
compliers, coverage rates for the null value are also reported using the following: ‘as-
treated’, which compares respondents based on treatment actually received, {Y

i
: D

i
R
i
=1}

versus {Y
i
: (1−D

i
)R

i
=1}, using a two-sample t confidence interval; and ‘per-protocol’,

which only considers respondents who adhered to protocol in the study and compares
them based on treatment received, {Y

i
: D

i
R
i
=1} versus {Y

i
: (1−Z

i
)R

i
=1}, using a two-

sample t confidence interval. Simulations reported in Table 1 are calculated over 10 000
datasets for each experimental condition, to ensure a standard error for the coverage rates
no larger than 0·5%.

The as-treated procedure grossly undercovers the true null values, and the per protocol
procedure is nearly as dreadful.

In the special case where the outcomes are missing at random, both IV and obs
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Table 1. Inference for Y91−Y9 0 under latent ignorability and compound exclusion restriction:
coverage of nominal 95% intervals and mean squared error

R9 1,0=0·5 () R9 1,0=0·8 ()

Y9 1,1−Y91,0=0 Y91,1−Y91,0=1 Y91,1−Y91,0=0 Y91,1−Y91,0=1

1−U9 0·2 0·3 0·4 0·2 0·3 0·4 0·2 0·3 0·4 0·2 0·3 0·4
Y91−Y90 0·0 0·0 0·0 0·8 0·7 0·6 0·0 0·0 0·0 0·8 0·7 0·6
Y9 obs0

/Y90 1·00 1·00 1·00 1·00 1·00 1·00 1·08 1·13 1·18 1·08 1·13 1·18

Coverage

as treated 6·1 0·0 0·0 — — — 22·1 3·1 0·0 — — —
per protocol 46·3 16·8 4·7 — — — 66·6 37·3 15·7 — — —
obs 94·6 94·4 95·2 95·1 94·4 95·1 88·5 83·8 80·7 89·1 85·5 82·6

IV 94·9 95·1 95·8 95·1 95·1 95·7 95·3 95·0 95·0 95·0 95·2 95·4


obs 0·06 0·06 0·06 0·06 0·07 0·07 0·07 0·10 0·12 0·08 0·10 0·12

IV 0·06 0·07 0·07 0·06 0·07 0·08 0·04 0·04 0·04 0·04 0·04 0·04

Asymptotically, the properties of the procedures are not exactly invariant in location shifts of Y91,1−Y91,0 .
, missing at random; , not missing at random

give good coverage. Also, since in this case noncompliance is not critically important, the
efficiency that can be gained by capitalising on the compound exclusion restriction with
our procedure trades off against the uncertainty about the various additional components
that the new procedure estimates, as the mean squared errors indicate.

When, however, the missing outcome mechanism, induced by latent ignorability, is not
ignorable, obs considerably undercovers the intention-to-treat effect, even when it is
zero, with decreasing coverage as the proportion of never-takers (1−U9 ) increases, and is
inaccurate even with 80% compliance. In contrast, IV maintains adequate coverage in
this case. Moreover, as suggested by the mean squared errors in these settings, IV can
have substantially better overall accuracy relative to obs under nonignorability.

4·2. Numerical results with deviations from Assumption 1

In Table 2 we compare IV to obs with certain deviations from the latent ignorability
of Assumption 1. We only simulate results here under the null hypothesis and under
compound exclusion, so we first generate treatment assignments Z

i
, compliance covariates

U
i
and outcomes Y

i
conditional on Z

i
and U

i
, as in the conditions of Table 1 for the null

hypothesis. Then, response indicators R
i
are generated as in the six conditions of H0 of

Table 1, for each combination of U
i

and Z
i
, except for the group of compliers in the

standard treatment arm. For this group, we create deviations from Assumption 1 by
generating response indicators R

i
independently of outcomes Y

i
conditionally on a covari-

ate G
i
imperfectly correlated with U

i
. Note that Y

i
(0) is a covariate in the sense that it

does not change with assignment, and so, for simplicity, we choose G
i
to be the indicator

for whether or not Y
i
(0) exceeds the population average outcome for compliers at z=0,

Y91,0 . We generate R
i
independently of Y

i
conditionally on G

i
and with probabilities

pr (R
i
=1 |U

i
=1, Z

i
=0, G

i
=k)=p

k
(k=0, 1).

The odds ratio r)p
1
(1−p0 )/{p0 (1−p1 )} is a simple measure of deviation from

Assumption 1. The values of r and R9 1,0 , the marginal response rate for compliers at z=0,
determine the probabilities p1 and p0 by a simple relation. We take the parameters in
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Table 2. Inference for Y9 1−Y90 under the deviations from Assumption 1 described in § 4·2:
coverage of nominal 95% intervals and mean squared error

1−U9 =0·2 1−U9 =0·3 1−U9 =0·4

Odds ratio r Odds ratio r Odds ratio r
1
2

3
4

4
3

2 1
2

3
4

4
3

2 1
2

3
4

4
3

2

R9 1,0=0·5

Coverage
obs 88·3 93·8 93·7 88·7 90·1 94·0 94·4 90·5 92·0 94·4 93·9 91·3
IV 87·8 93·8 94·2 90·2 89·7 93·9 95·3 92·5 91·3 94·3 95·6 94·3


obs 0·08 0·06 0·06 0·06 0·08 0·06 0·06 0·08 0·08 0·07 0·07 0·08
IV 0·08 0·06 0·07 0·07 0·08 0·07 0·07 0·09 0·08 0·07 0·08 0·10

R9 1,0=0·8
Coverage

obs 93·5 91·0 85·0 80·9 90·3 87·4 80·3 75·9 86·5 83·8 78·2 72·6
IV 93·3 94·7 94·7 93·4 93·5 94·7 94·5 94·1 94·5 94·8 95·1 94·5



obs 0·05 0·06 0·08 0·10 0·07 0·08 0·11 0·13 0·09 0·10 0·13 0·15
IV 0·04 0·04 0·04 0·04 0·04 0·04 0·04 0·04 0·04 0·04 0·04 0·04

Assumption 1 holds when r=1; see Table 1.

Table 2 as in the null hypothesis of Table 1 for U9 , R9 u,z and Y9 u,z , but with r=1
2
, 3
4
, 4
3

and 2,
to represent deviations ranging from half to twice the odds for response for above average
versus below average compliers at standard treatment. Sample sizes and number of repli-
cations for each condition are as in Table 1.

For conditions with R9 1,0=0·5, as with Table 1, IV and obs are practically compar-
able to each other, although they both experience some bias for the situations with most
extreme deviations from Assumption 1, r=1

2
and r=2.

When the compliance covariate is associated with missingness, represented by the con-
ditions with R9 1,0=0·8, we have two cases. First, values of r<1 generate here deviations
in the direction opposite to the bias that is apparent to an investigator who has knowledge
of the compliance covariates U

i
but not of G

i
. Secondly, values of r>1 generate deviations

in the same direction as the bias generated by U
i
alone. Under the small deviations of the

first type, r<1, in Table 2, IV is relatively robust, and there is some cancellation of the
bias of obs relative to Table 1. Under the deviations of the second type, r>1, the obs
procedure performs notably poorly, whereas IV performs quite well.

These observations also partly indicate what is expected when small deviations from
Assumption 1 exist in more than one cell defined by (U, Z). If these deviations are mostly
in one direction, the performances of IV and obs will either become more comparable
or will further favour IV, relative to analogous cases where Assumption 1 holds. In
more likely cases, where small deviations from Assumption 1 can be in different directions
for different cells defined by (U, Z), then generally there will be a smaller overall component
of additional bias either to cancel or further increase the bias that is due to U

i
alone. In

these cases, the comparisons between IV and obs are expected to be more analogous
to those under Assumption 1.

More generally, in practice, the comparison between IV and obs depends on the
unknown, underlying parameter values. In a given study, such a simulation can be con-
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ducted around plausible underlying parameters so that the comparison between the two
procedures can be more specific to the investigation in question.

5. A   

Often incomplete outcomes arise from censoring of a time-to-event, a survival time. In
this section we show how the ideas of § 2 can be applied to identify the survival distri-
butions under our framework of all-or-none compliance. For the case of discrete-time
survival, Baker (1998) considers a related and independently developed approach.

Let Z
i
and D(v

i
, z) be as before. Now let

Y (v
i
, z), R(v

i
, z), X(v

i
, z))min{Y (v

i
, z), R(v

i
, z)}, D(v

i
, z))I{Y (v

i
, z)<R(v

i
, z)}

be, respectively, the survival and censoring times, their minimum and the indicator for
censoring if individual v

i
is assigned treatment z. Now the observed data are

{Z
i
, D

i
, X

i
, D

i
: i=1, . . . , n}, where X

i
=X(v

i
, Z

i
) and D

i
=D(v

i
, Z

i
).

We focus on identifying the intention-to-treat survival curves S
z
(y))pr(Y

i
>y |Z

i
=z),

for times y>0 and assignment arms z=0, 1. In this setting, intention-to-treat analysis
based on the Kaplan–Meier estimator (Kaplan & Meier, 1958) assumes independence
between censoring and survival times, e.g. Lee et al. (1991). If we argue as in §§ 2·2–2·3,
when censoring can be created by loss to follow-up or other potentially selective reasons,
it is more plausible if independent censoring is assumed only conditionally on the
compliance covariates U

i
, as with latent ignorability, rather than unconditionally. This

assumption, however, renders the intention-to-treat Kaplan–Meier estimator generally
inconsistent for the survival curves. Nevertheless, under the compound exclusion restric-
tion, the survival curves S

z
(y) are identifiable.

Let S
u,z

(y))pr(Y
i
>y |U

i
=u, Z

i
=z). Under latent ignorability, we have that S0,0 (y)=

S0,1(y) and

S0(y)= (1−U9 )S0,1(y)+U9 S1,0(y), S1 (y)=(1−U9 )S0,1 (y)+U9 S1,1(y). (5·1)

Assuming that all S
u,z

(y) are absolutely continuous, the corresponding net hazard functions
l
u,z

(y) exist. By virtue of latent ignorability, after stratification on the observed covariates
U
i
within the z=1 arm, the Kaplan–Meier estimators for S0,1(y) and S1,1 (y) are consistent.

Estimating the remaining curve of interest, S1,0(y), is more subtle because it requires
indirect conditioning on the missing covariates U

i
within the z=0 arm. To proceed, we

express the associated hazard function, l1,0(y), in terms of easily estimable quantities:

F
u,z

(y))pr (X
i
∏y, D

i
=1 |U

i
=u, Z

i
=z), F

z
(y))pr (X

i
∏y, D

i
=1 |Z

i
=z),

H
u,z

(y))pr(X
i
�y |U

i
=u, Z

i
=z), H

z
(y))pr (X

i
�y |Z

i
=z),

for u, zµ{0, 1}. Using the law of total probability and the compound exclusion restriction,
we have

F0(y)= (1−U9 )F0,1 (y)+U9 F1,0(y), H0 (y)=(1−U9 )H0,1(y)+U9H1,0(y).

By standard results, the hazard function sought, l1,0 (y), is

l1,0 (y)=
dF1,0(y)

dy
{H1,0 (y)}−1

=qdF0(y)
dy

− (1−U9 )
dF0,1(y)

dy r {H0 (y)−(1−U9 )H0,1 (y)}−1. (5·2)
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We may now use empirical estimates for the right-hand side of (5·2) to estimate the
survival curve S1,0(y). Define the stochastic processes

N
i
(y)) I(X

i
∏y,D

i
=1), Q

i
(y))I(X

i
�y) (i=1, . . . , n)

and

N0,1(y))∑
i

N
i
(y)I(U

i
=0)I(Z

i
=1), Q0,1(y))∑

i
Q
i
(y)I(U

i
=0)I(Z

i
=1),

Nobs0 (y))∑
i

N
i
(y)I(Z

i
=0), Q0(y))∑

i
Q
i
(y)I(Z

i
=0).

Under a mild regularity condition, a uniformly consistent estimator for S1,0 (y) is

SC1,0(y)=expC− P y
0

dNobs0 (u)/n0−dN0,1 (u)/n1
Q0 (u)/n0−Q0,1(u)/n1 D , (5·3)

where n0 , n1 are the numbers of individuals randomised to standard and new treatment
arm respectively. An outline of the proof is given in the Appendix. This result establishes
identifiability of the intention-to-treat survival curves (5·1) under latent ignorability and
compound exclusion even in situations where the intention-to-treat Kaplan–Meier esti-
mators are inconsistent.

6. F 

An alternative approach to the analytical methods discussed here could be to construct
bounds for the treatment effect (Robins, 1989; Manski, 1990; Balke & Pearl, 1997). The
least favourable bounds are not generally very informative, e.g. Imbens & Rubin (1997),
and some additional subject-matter constraints typically are needed to interpret the data
from such a study using this approach, e.g. Robins & Greenland (1996). A more general
approach is to study sensitivity of the results to deviations from the posited assumptions,
e.g. Rosenbaum & Rubin (1983), where the extreme results correspond to bounds.

Our methods, discussed for binary observed compliance for each subject in the new
treatment arm, can be directly extended to allow for such compliance behaviour in the
standard treatment arm as well, simply by extending Assumptions 1 and 2. For situations
where all-or-none observed compliance is not realistic, some further assumptions will be
required to address this problem. Barnard et al. (1998) describe a template for applying
the ideas presented here to a large social science dataset.
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A

Proofs

Proof of L emma 1. Using (2·5) to solve (2·4) for Y9 1,z , we obtain for z=0

Y9 1,0=
Y9 obs0

R9 0−Y90,1R9 0,1 (1−U9 )
R9 1,0U9

.
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If we use R9 0=R9 1,0U9 +R9 0,1 (1−U9 ) to replace R9 1,0U9 , Lemma 1 follows. %

Proof of Result 2. Using the expressions in (3·2) for Y9 1,0 and YB
1,0

, respectively, to expand
nD (YB

1,0
−Y9 1,0 ) in a Taylor series, we obtain

nD (YB1,0−Y9 1,0)=d1nD (UB −U9 )+d2nD (YB 0,1−Y9 0,1 )+d3nD (RB 0,1−R9 0,1 )

+d4nD (RB 0−R9 0 )+d5nD (YB obs0
−Y9 obs0

)+o
p
(1), (A·1)

where d= (d1 , d2 , d3 , d4 , d5 )∞ are as defined in Result 2. Under the definitions in §2·3 and the
expressions in (3·3), it is not difficult to show that, marginally, all of

nD(UB −U9 ), nD (YB0,1−Y9 0,1 ), nD (RB 0,1−R9 0,1 ), nD (RB 0−R9 0 ), nD (YB obs
0

−Y9 obs0
),

in (A·1), are asymptotically normal with mean 0 and variances v= (v1 , v2 , v3 , v4 , v5 )∞, respectively,
as defined in Result 2. Also, it can be shown that the five quantities in the last expression are
asymptotically independent, by further expanding the denominators of their defining expressions,
see § 3, in Taylor series and using Slutsky’s theorem. Result 2 then follows from (A·1). %

Outline of proof of consistency of SC 1,0 (y) for S1,0 (y). We define the empirical estimates

FC0 (y)=
Nobs0 (y)

n0
, FC0,1 (y)=

N0,1 (y)
(1−U9 )n1

, HC 0 (y)=
Q0 (y)

n0
, HC 0,1 (y)=

Q0,1 (y)
(1−U9 )n1

. (A·2)

Using S1,0 (y)=exp{−∆y
0

l1,0 (u) du}, and expressions (5·2) and (A·2), we obtain the estimator SC 1,0 (y)
of (5·3). By standard results, HC 0 (y) and HC 0,1 (y) are uniformly consistent for H0 (y) and H0,1 (y)
respectively. Then, provided there exists a fixed time y

m
such that the curves S

u,z
(y) and

pr(R
i
>y |U

i
=u, Z

i
=z) are bounded away from 0 for all y in [0, y

m
] and u, zµ{0, 1}, uniform

consistency of SC1,0 (y) for S1,0 (y) in [0, y
m
] follows from Theorem 2.4.2 of Gill (1986), i.e. Lenglart’s

inequality, and a triangle inequality.
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