Global Sensitivity Analysis for Studies with Intermittent Missing Data and Death

Chenguang Wang cwang68@jhmi.edu

November 30, 2015

Objectives

Part I: Review

To review issues and common analysis methods for death-truncated data

Part II: Method

To learn about a composite endpoint based approach

Part III: Software

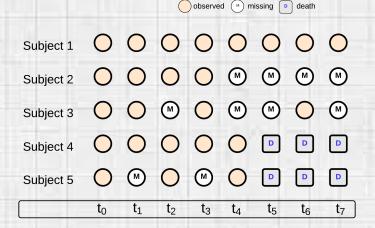
To introduce a software that implements the proposed method

PART I: REVIEW

General setting

- Consider a two-armed randomized clinical study
- The goal is to evaluate the efficacy of a treatment
- Outcomes scheduled to be measured at pre-specified post-randomization time points
- Subjects at (high) risk of death
- Outcomes unobserved due to loss to follow-up, withdrawal of consent, out-of-window visits, death, etc.

Scenarios of unobserved outcomes



Notation

- T = 0, 1: treatment assignment
- Y₀: baseline measure at t₀
- Y_1, \ldots, Y_K : functional outcomes at t_1, \ldots, t_K
- $Z = g(Y_0, ..., Y_K)$: primary functional endpoint
 - e.g. $Z = Y_K, Z = Y_K Y_0$
 - only defined when $\Delta_K = 1$
- L: survival time
- $\Delta_k = I(L > t_k)$: survival status at t_k
- For survivors ($\Delta_{K} = 1$)
 - τ_k : missingness indicator of Y_k (1: observed, 0: missing)
 - $S = (\tau_1, \ldots, \tau_K)$: missing pattern
 - $Y_{obs} = \{Y_k : \tau_k = 1, k \ge 1\}$: observed functional outcome
 - $Y_{mis} = \{Y_k : \tau_k = 0, k \ge 1\}$: missing functional outcome
- X: baseline covariates
- \overline{Y}_k : (Y_0, \ldots, Y_k)

Data truncated by death

- Distinction exists between missing data and data truncated by death
- Missing data: exist but not collected
- Data truncated by death: does not exist and undefined
- Missing data imputation methods generally not applicable for data truncated by death

Common analysis methods

- Evaluate treatment effects conditional on survival
- Joint modeling survival and functional outcomes
- Evaluate causal treatment effects for principal stratum
- Composite endpoint combining survival and functional outcomes

B. F. Kurland, L. L. Johnson, B. L. Egleston, and P. H. Diehr. Longitudinal data with follow-up truncated by death: match the analysis method to research aims. *Statistical Science*, 24(2):211–222, 2009

Conditional model

Unconditional models not appropriate

 $E(Y_k) = E(Y_k | \Delta_k = 1) P(\Delta_k = 1) + \underbrace{E(Y_k | \Delta_k = 0)} P(\Delta_k = 0)$

undefined

- Conditional models evaluate treatment effects at a specific time t_k
 - fully conditioning on survival time L
 - or partially conditioning on survival status Δ_k
- Issue: Selection bias introduced in treatment effect estimation since survival is a post-randomization covariate

M. Shardell and R. R. Miller. Weighted estimating equations for longitudinal studies with death and non-monotone missing time-dependent covariates and outcomes. Statistics in Medicine, 27:1008–1025, 2008

Joint model

- Comprised of two linked sub-models
 - survival process
 - longitudinal outcome process
- Introduce a set of common latent random effects shared by the two sub-models
- the survival process serves as informative censoring for the longitudinal process
- the longitudinal measures can inform the underlying process for survival

A Lawrence Gould, Mark Ernest Boye, Michael J Crowther, Joseph G Ibrahim, George Quartey, Sandrine Micallef, and Frederic Y Bois. Joint modeling of survival and longitudinal non-survival data: current methods and issues. report of the dia bayesian joint modeling working group. *Statistics in medicine*, 2014

Joint model

- Allows trajectories of longitudinal outcome after death, not scientifically meaningful
- assumptions are made regarding the distributions as well as the interrelationships between the longitudinal and event-time data
- the models may be most useful as sensitivity analyses, germane exploratory analyses, or informative secondary analyses

Dionne L Price and Yan Wang. Commentary on joint modeling of survival and longitudinal non-survival data: current methods and issues. Statistics in medicine, 34(14):2200–2201, 2015

Principal stratification

 Focused on the cohort of subjects who would have survived under either treatment arm, i.e. the principle stratification with respect to survival

 $\{\Delta_k(1) = \Delta_k(0) = 1\}$

- Assess survivor average causal effect (SACE) defined as $SACE_k = E(Y_k(1) - Y_k(0)|\Delta_k(1) = \Delta_k(0) = 1)$
- Useful for understanding the mechanistic effect of treatment on clinical outcomes
- Issue: whether a subject belongs to the "survivor" stratum unknown

C. E. Frangakis and D. B. Rubin. Principal stratification in causal inference. Biometrics, 58(1):21–29, 2002

Composite endpoint

- A composite endpoint consists of multiple single endpoints
- For death truncated data, mix both the survival *L* and the functional outcome *Z*
- Simple and useful if
 - the goal is to evaluate the treatment effect on both the functional outcome and survival
 - the composite endpoint can be ordered in a meaningful way
- Issue: effects of treatment on survival and on the functional outcome cannot be easily separated

P. Diehr, D. L. Patrick, S. Hedrick, M. Rothman, D. Grembowski, T. E. Raghunathan, and S. Beresford. Including deaths when measuring health status over time. *Medical Care*. 33:AS164 – AS172, 1995

PART II: METHOD

Outline

- Goal
- Ranking
- Treatment effect
- Benchmark missing data assumptions
- Sensitivity analysis
- Bivariate case (example)
- Imputation
- Case study
- Summary

Goal

To propose a composite endpoint approach that handles both deaths and intermittent missing data among subjects alive at the assessment times

Outline

- Goal
- Ranking
- Treatment effect
- Benchmark missing data assumptions
- Sensitivity analysis
- Bivariate case (example)
- Imputation
- Case study
- Summary

Ranking

- Assume no missing data at this time
- Assume that higher values of Z denote better outcomes

Ranking

- Consider two subjects *i* and *j*
- Subject *i* ranked better than *j* if
 - both alive at $t_{\mathcal{K}}$ ($\Delta_{i,\mathcal{K}} = \Delta_{j,\mathcal{K}} = 1$) and $Z_i > Z_j$
 - both dead at $t_{\mathcal{K}}$ ($\Delta_{i,\mathcal{K}} = \Delta_{j,\mathcal{K}} = 0$) and $L_i > L_j$
 - subject *i* alive at *t_K* and subject *j* dead at *t_K*

Subject *i* ranked the same as *j* if

- both alive at $t_{\mathcal{K}}$ ($\Delta_{i,\mathcal{K}} = \Delta_{j,\mathcal{K}} = 1$) and $Z_i = Z_j$
- both dead at t_{K} ($\Delta_{i,K} = \Delta_{j,K} = 0$) and $L_i = L_j$

Outline

- Goal
- Ranking
- Treatment effect
- Benchmark missing data assumptions
- Sensitivity analysis
- Bivariate case (example)
- Imputation
- Case study
- Summary

Treatment effect

Treatment effect is measured by the probability that the rank for a random individual with T = 0 is less than the rank of a random individual with T = 1 minus the probability that the rank for a random individual with T = 0 is greater than the rank of a random individual with T = 1

Treatment effect

- R: rank of a subject among all the study participants
- $R^{(0)}$: rank for a random subject on T = 0
- $R^{(1)}$: rank for a random subject on T = 1
- The treatment effect is measured by

 $\theta = P(R^{(1)} > R^{(0)}) - P(R^{(1)} < R^{(0)})$

Treatment effect

- Why not $\theta^* = P(R^{(1)} > R^{(0)})$?
- Let δ be the probability that two subjects are ranked the same
- Then, $\theta = 2\theta^* 1 + \delta$
- Under the null hypothesis of no treatment effect
 - $\theta = 0$ regardless of η
 - $\theta^* = (1 \eta)/2$
- The definition of θ handles ties

Estimation of θ

In the absence of missing data, estimate θ by

 $\widehat{\theta} = \frac{1}{n_0 n_1} \sum_{i: T_i = 0} \sum_{j: T_j = 1} \{ I(R_i < R_j) - I(R_i > R_j) \}$

where $n_0 = \sum_i (1 - T_i)$ and $n_1 = \sum_i T_i$

Variance of $\hat{\theta}$

 $Var(\hat{\theta})$ $= \left(\frac{1}{n_0 n_1}\right)^2 \left(\sum_{i=1}^{n_0} \sum_{i=1}^{n_1} \{ I(R_i < R_j) + I(R_j < R_i) \}$ $+\frac{n_0-1}{n_0}\sum_{i=1}^{n_0}\sum_{i'=1, i\neq i'}^{n_0}\sum_{i=1}^{n_1}\{\mathsf{I}(R_i < R_j, R_{i'} < R_j) + \mathsf{I}(R_i > R_j, R_{i'} > R_j)$ $-I(R_i < R_i, R_{i'} > R_i) - I(R_i > R_i, R_{i'} < R_i)$ $+\frac{n_1-1}{n_1}\sum_{i=1}^{n_0}\sum_{j=1}^{n_1}\sum_{i'=1,i\neq i'}^{n_1}\{\mathsf{I}(R_i < R_j, R_i < R_{j'}) + \mathsf{I}(R_i > R_j, R_i > R_{j'})\}$ $-I(R_i < R_i, R_i > R_{i'}) - I(R_i > R_i, R_i < R_{i'})\}$ $\left. + \frac{(n_0 - 1)(n_1 - 1)}{n_0 n_1} \sum_{i=1}^{n_0} \sum_{j=1}^{n_1} \sum_{i=1, i \neq i'}^{n_0} \sum_{j=1, j \neq i'}^{n_1} \{\mathsf{I}(R_i < R_j) - \mathsf{I}(R_j < R_i)\}^2 \right) - \widehat{\theta}^2$

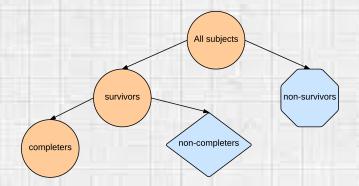
Quantiles

- Quantiles (e.g. median) of the composite endpoint, (L, Δ_KZ), may further quantify the treatment effect
- More straight forward for interpretation
- Necessary supplement to the primary rank analysis

Outline

- Goal
- Ranking
- Treatment effect
- Benchmark missing data assumptions
- Sensitivity analysis
- Bivariate case (example)
- Imputation
- Case study
- Summary

Missingness



To determine ranks, need to impute Ymis for non-completers

[Proposal] Benchmark missing data assumptions

Benchmark assumptions

 $f(Y_{mis}|\Delta_{K} = 1, Y_{obs}, Y_{0}, X, T, S = s)$ = $f(Y_{mis}|\Delta_{K} = 1, Y_{obs}, Y_{0}, X, T, S = 1) \quad \forall s \neq 1$

- 1: a K dimensional vector of 1's
- S = 1: "completers"
- Complete case missing value (CCMV) restrictions applied to the missing data patterns for patients alive at t_{κ}

Roderick JA Little. Pattern-mixture models for multivariate incomplete data. *Journal of the American Statistical Association*, 88(421):125–134, 1993

CCMV vs MAR

	j = 1	j = 2	j = 3	j = 4
S = 1	$p_1(y_1)$	$p_1(y_2 y_1)$	$p_1(y_3 y_1,y_2)$	$p_1(y_4 y_1, y_2, y_3)$
S=2	$p_2(y_1)$	$p_{\geq 2}(y_2 y_1)$	$p_2(y_3 y_1,y_2)$	$p_2(y_4 y_1, y_2, y_3)$
S=3	$p_3(y_1)$	$p_{\geq 2}(y_2 y_1)$	$p_{\geq 3}(y_3 y_1, y_2)$	$p_3(y_4 y_1, y_2, y_3)$
S = 4	$p_4(y_1)$	$p_{\geq 2}(y_2 y_1)$	$p_{\geq 3}(y_3 y_1,y_2)$	$p_4(y_4 y_1, y_2, y_3)$

[Proposal] Benchmark missing data assumptions

Data transformation

- For imputation, it is important to utilize an approach that respects bounds on the functional outcomes
- Failure to do so can result in non-sensical imputations
- May consider a data tranformation

$$Y_k^{\dagger} = \phi(y_k) = \log\left\{\frac{y_k - B_L}{B_U - y_k}
ight\}$$

where (B_L, B_U) denote the lower and upper bound of Y
There is a one-to-one mapping

$$(\overline{Y}_{K}|\Delta_{K} = 1, Y_{0}, X, T, S = \mathbf{1}) = h(\overline{Y}_{K}^{\dagger}|\Delta_{K} = 1, Y_{0}, X, T, S = \mathbf{1}) \left| \prod_{k=1}^{K} \frac{d\phi(Y_{k})}{dY_{k}} \right|$$

Modeling strategy

Sequential factorization

$$f(Y_{K}|\Delta_{K} = 1, Y_{0}, X, T, S = \mathbf{1})$$
$$= \prod_{k=1}^{K} f(Y_{k}|\Delta_{K} = 1, \overline{Y}_{k-1}, X, T, S = \mathbf{1})$$

Specify

 $Y_k | \overline{Y}_{k-1}, Y_0, X, T = t, S = 1$

 $= \mu_{k,t}(\overline{\mathbf{Y}}_{k-1}, \mathbf{X}; \boldsymbol{\alpha}_{k,t}) + \epsilon_{k,t}$

μ_{k,t}: mean function, e.g.

 $\mu_{k,t}(\overline{\mathbf{Y}}_{k-1}, X; \boldsymbol{\alpha}_{k,t}) = \alpha_{k,t,0} + \alpha_{k,t,1} \overline{\mathbf{Y}}_{k-1} + \alpha_{k,t,2} \mathbf{Y}_0 + \alpha_{k,t,3} \mathbf{X}$

• $\epsilon_{k,t}$: residuals

Estimation

α_{k,t}: estimated using least square estimator

$$\widehat{\alpha}_{k,t} = \operatorname{argmin}\left\{\sum_{i=1}^{n} I(T_i = t) \Delta_{K,i} \left(\prod_{k=1}^{K} \tau_{k,i}\right) \epsilon_{k,t,i}^2\right\}$$

• $\epsilon_{k,t} \sim F_{k,t}$

F_{k,t} = *N*(0, σ²_{k,t}) under normality assumption
 F_{k,t} estimated by kernel density estimator, e.g.

$$\widehat{f}_{k,t}(x) \propto \sum_{i=1}^{n} I(T_i = t) \Delta_{K,i} \left(\prod_{k=1}^{K} \tau_{k,i}\right) \phi\left(\frac{x - \epsilon_{k,t,i}}{h}\right)$$

where *h* is the bandwidth

Outline

- Goal
- Ranking
- Treatment effect
- Benchmark missing data assumptions
- Sensitivity analysis
- Bivariate case (example)
- Imputation
- Case study
- Summary

Sensitivity analysis

- Benchmark assumptions (CCMV) untestable
- Sensitivity analysis essential to evaluate the robustness of inferences to deviations from benchmark assumptions

Panel on Handling Missing Data in Clinical Trials; National Research Council. The Prevention and Treatment of Missing Data in Clinical Trials. The National Academies Press, 2010. ISBN 9780309158145. URL http://www.nab.edu/openbook.php?record id=12955

[Proposal] Sensitivity analysis

Exponential tilting

Exponential tilting model

 $f'(y) \propto e^{\beta y} f(y)$

Constructs a neighborhood of distributions f'(y)

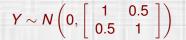
- centered around benchmark distribution f(y)
- indexed by (sensitivity) parameter β

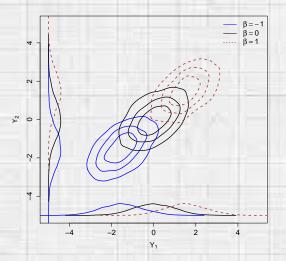
 Closed form can be derived for (multivariate) normal distribution

• $Y \sim N(\mu, \Sigma)$

• $Y' \sim N(\mu + \Sigma\beta, \Sigma)$

Example: Exponential tilting





Dimension of sensitivity parameters

Recall: benchmark assumptions

 $f(Y_{mis}|\Delta_{K} = 1, Y_{obs}, Y_{0}, X, T = t, S = s) = f(Y_{mis}|\Delta_{K} = 1, Y_{obs}, Y_{0}, X, T = t, S = 1)$

Sensitivity parameters typically introduced as follows:

 $f(Y_{mis}|\Delta_{K} = 1, Y_{obs}, Y_{0}, X, T = t, S = s)$ $\propto \exp\{\beta_{t,s}Y_{mis}\}f(Y_{mis}|\Delta_{K} = 1, Y_{obs}, Y_{0}, X, T = t, S = \mathbf{1})$

Sensitivity parameters β_{t,s}

- depends on treatment and missing pattern
- dimension too high
- difficult to set sensitivity analysis scenarios
- difficult to interpret and summarize results

Sensitivity analysis assumption

 $f(Y_{mis}|\Delta_{K} = 1, Y_{obs}, Y_{0}, X, T = t, S = s)$ $\propto \exp\{\beta_{t}Z\}f(Y_{mis}|\Delta_{K} = 1, Y_{obs}, Y_{0}, X, T = t, S = \mathbf{1})$

- Z: primary endpoint, clinical interest
- β_t : treatment specific, dimension 2 regardless of K
- $\beta_t = 0$: benchmark assumptions
- |β_t|: distance (in the units of Z) from benchmark assumptions

Outline

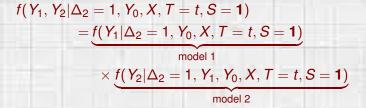
- Goal
- Ranking
- Treatment effect
- Benchmark missing data assumptions
- Sensitivity analysis
- Bivariate case (example)
- Imputation
- Case study
- Summary

Benchmark assumptions

Assumptions:

 $f(Y_2, Y_1 | \Delta_2 = 1, Y_0, X, T, S = (0, 0))$ = $f(Y_2, Y_1 | \Delta_2 = 1, Y_0, X, T, S = 1)$ $f(Y_1 | \Delta_2 = 1, Y_2, Y_0, X, T, S = (0, 1))$ = $f(Y_1 | \Delta_2 = 1, Y_2, Y_0, X, T, S = 1)$ $f(Y_2 | \Delta_2 = 1, Y_1, Y_0, X, T, S = (1, 0))$ = $f(Y_2 | \Delta_2 = 1, Y_1, Y_0, X, T, S = 1)$

Modeling



[Proposal] Bivariate case (example)

Sensitivity analysis assumptions

- Let $Z = Y_1 + Y_2$
- Assumptions

 $\begin{aligned} f(Y_2, Y_1 | \Delta_2 &= 1, Y_0, X, T = t, S = (0, 0)) \\ &\propto \exp\{\beta_t(Y_1 + Y_2)\}f(Y_2, Y_1 | \Delta_2 = 1, Y_0, X, T, S = 1) \\ f(Y_1 | \Delta_2 &= 1, Y_2, Y_0, X, T, S = (0, 1)) \\ &\propto \exp\{\beta_t Y_1\}f(Y_1 | \Delta_2 = 1, Y_2, Y_0, X, T, S = 1) \\ f(Y_2 | \Delta_2 &= 1, Y_1, Y_0, X, T, S = (1, 0)) \\ &\propto \exp\{\beta_t Y_2\}f(Y_2 | \Delta_2 = 1, Y_1, Y_0, X, T, S = 1) \end{aligned}$

Outline

- Goal
- Ranking
- Treatment effect
- Benchmark missing data assumptions
- Sensitivity analysis
- Bivariate case (example)
- Imputation
- Case study
- Summary

Numerical sampling

• Goal: to draw samples of Y_{mis} for each individual with $\Delta_K = 1$ and $S \neq 1$ from

$$\begin{split} f(Y_{mis}|\Delta_{K} = 1, Y_{obs}, Y_{0}, X, T, S = s) \\ \propto \exp(\beta_{T}Z) f(Y_{mis}|\Delta_{K} = 1, Y_{obs}, Y_{0}, X, T, S = \mathbf{1}) \end{split}$$

Close form only available when

- $\mu_{k,t}$: linear
- $\epsilon_{k,t}$: normally distributed
- $Z = g(Y_0, \ldots, Y_K)$: linear
- Numerical sampling necessary in general
- Propose to apply a random-walk Metroplis-Hastings algorithm

Sampling steps

- 1. Set j = 0. Choose arbitrary initial values for Y_{mis} , denoted by $Y_{mis}^{(0)}$. Let $Z^{(0)}$ be the primary functional endpoint with data $(Y_{obs}, Y_{mis}^{(0)})$
- 2. Set j = j + 1
- 3. Generate Y'_{mis} from a (multivariate) Gaussian distribution with mean $Y^{(j-1)}_{mis}$ and variance Σ

Sampling steps

4. Calculate the acceptance ratio as

 $a = \frac{\exp\{\beta_T Z'\} f(Y'_{mis} | \Delta_K = 1, Y_{obs}, Y_0, X, T, S = 1)}{\exp\{\beta_T Z^{(j-1)}\} f(Y'_{mis} | \Delta_K = 1, Y_{obs}, Y_0, X, T, S = 1)}$ $= \frac{\exp\{\beta_T Z'\} f(Y'_{mis}, Y_{obs} | \Delta_K = 1, Y_0, X, T, S = 1)}{\exp\{\beta_T Z^{(j-1)}\} f(Y'_{mis} | Y_{obs} | \Delta_K = 1, Y_0, X, T, S = 1)}$

where Z' and $Z^{(j-1)}$ are the primary functional endpoints with data (Y_{obs}, Y'_{mis}) and $(Y_{obs}, Y^{(j-1)}_{mis})$, respectively

Sampling steps

- 5. Accept $Y_{mis}^{(j)} = Y'_{mis}$ with probability min(1, *a*) and $Y_{mis}^{(j)} = Y_{mis}^{(j-1)}$ with probability $1 \min(1, a)$
- 6. Repeat Steps 2-5 until the Markov chain converges
- 7. Draw random samples from the set $\{Y_{mis}^{(j_0)}, Y_{mis}^{(j_0+1)}, ...\}$ as the imputed missing values, where j_0 corresponds to the number of burn-in

Multiple imputation

- Draw *M* copies Y_{mis} for each individual with $\Delta_{\mathcal{K}} = 1$ and $S \neq 1$
- Create M complete datasets
- For each complete dataset *m*, estimate θ by $\hat{\theta}_m$
- Overall estimator of θ

$$\tilde{\theta} = \frac{1}{M} \sum_{m=1}^{M} \widehat{\theta}_m$$

 Confidence intervals constructed by non-parametric bootstrap

Outline

- Goal
- Ranking
- Treatment effect
- Benchmark missing data assumptions
- Sensitivity analysis
- Bivariate case (example)
- Imputation
- Case study
- Summary

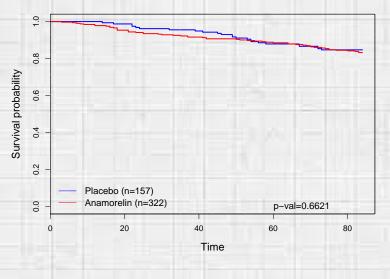
HT-ANAM 302 study

- Randomized, double-blind, placebo-controlled Phase III study
- Intent-to-treat population: advanced non-small cell lung cancer subjects
- To evaluate the efficacy of drug anamorelin
- Functional outcome lean body mass (LBM) scheduled to be measured at baseline (Y₀), 6 weeks (Y₁) and 12 weeks (Y₂)
- Primary functional endpoint: $Z = \frac{(Y_2 + Y_1)}{2} Y_0$

Death and missingness

	Placebo	Anamorelin
	<i>n</i> = 157	<i>n</i> = 322
Died Prior to Wk 12	24 (15.3%)	54 (16.8%)
Survivors with complete data	93 (59.2%)	185 (57.5%)
Survivors missing only Wk 6	3 (1.9%)	17 (5.3%)
Survivors missing only Wk 12	17 (10.8%)	31 (9.6%)
Survivors missing both Wks 6, 12	20 (12.7%)	35 (10.9%)

Survival



Baseline covariates

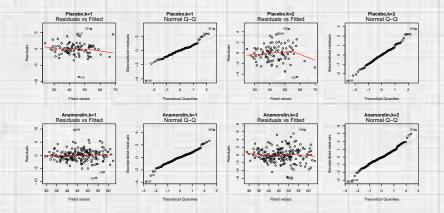
Covariates	Levels
ECOG	0:{0,1}, 1:{2}
AGE	0:≤ 65, 1:> 65
GENDER	0:M, 1:F
BMI	0:≤ 18.5, 1:> 18.5
WEIGHT LOSS ¹	0:≤ 10%, 1:> 10%
Y0	Continuous

¹in prior 6 months

Specify $\mu_{k,t}(\overline{Y}_{k-1}, X; \alpha_{k,t})$ as follows:

 $\mu_{1,t,i} = \alpha_{1,t,1} + \alpha_{1,t,2} Y_{0,i} + \alpha_{1,t,3} ECOG_i + \alpha_{1,t,4} AGE_i$ $+ \alpha_{1,t,5}G_i + \alpha_{1,t,6} BMI_i + \alpha_{1,t,7} WL_i$ $\mu_{2,t,i} = \alpha_{2,t,1} + \alpha_{2,t,2} Y_{0,i} + \alpha_{2,t,3} ECOG_i + \alpha_{2,t,4} AGE_i$ $+ \alpha_{2,t,5}G_i + \alpha_{2,t,6} BMI_i + \alpha_{2,t,7} WL_i$ $+ \alpha_{2,t,8} Y_{1,i}$

Model fitting diagnosis



Analysis under benchmark assumptions

- 10 imputed datasets generated
- 200 bootstrap samples

Table: Hypothesis testing

 $\hat{\theta}$ (95% CI)
 p-value

 HT-ANAM 302 Study
 0.30(0.19,0.40)
 < 0.0001</td>

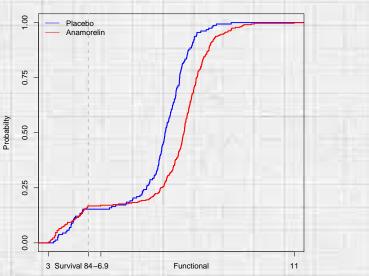
Table: Median

 \$\hotar{p}_{50}\$ (95% CI)

 HT-ANAM 302 Study
 Anamorelin
 0.67(0.45, 0.89)

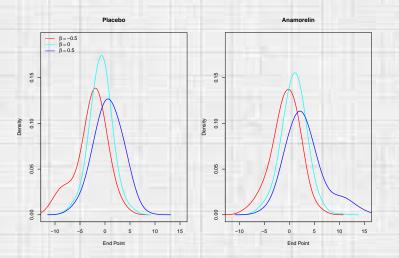
 Placebo
 -0.92(-1.43,-0.28)

Cumulative plot



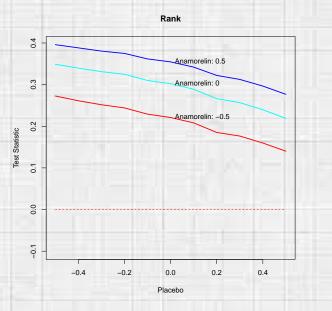
Composite Endpoint

Choice of sensitivity parameters

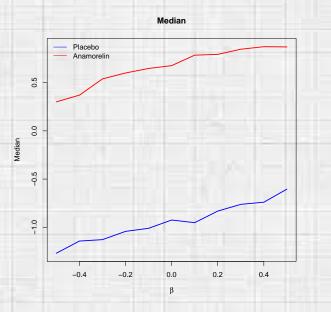


Change in *E*(*Z*) about 1.5 lb at β_T = 0.5 and β_T = -0.5
Set β_T = {-0.5, -0.4, ..., 0, ..., 0.5}

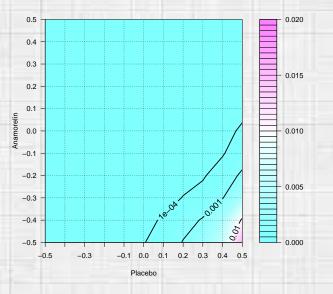
Sensitivity analysis: Rank



Sensitivity analysis: Median



Sensitivity analysis: Contour of p-values



[[]Proposal] Case study

Conclusion

There is a significant difference between the Placebo and the Anamorelin arms in their composite endpoints of survival and average LBM change. The difference favors the Anamorelin arm

Outline

- Goal
- Ranking
- Treatment effect
- Benchmark missing data assumptions
- Sensitivity analysis
- Bivariate case (example)
- Imputation
- Case study
- Summary

Summary

- Propose a composite endpoint approach for evaluating treatment effects in randomized clinical trials with death and missingness
- Apply complete case missing-variable restrictions (CCMV) for handling missing data in survivors
- Apply exponential tilting model for sensitivity analysis
- Introduce a parsimonious way of introducing sensitivity parameters

PART III: SOFTWARE

Web application

- Currently available at http://sow.familyds.com/shiny/composite/
- Major components
 - upload study data
 - graphical data presentation
 - generate imputed dataset
 - bootstrap analysis

Recapitulation

- Issues and common analysis methods for death-truncated data
- Proposal: a composite endpoint based approach
- Web-application

THE END