Global Sensitivity Analysis of Randomized Trials with Missing Data: From the Software Development Trenches

Daniel Scharfstein
Johns Hopkins University
dscharf@jhu.edu

November 13, 2015

Sensitivity Analysis

- Interested in comparing treatment groups with respect to the mean outcome at the last scheduled study visit.
- Some patients prematurely drop out of the study.
- The set of possible assumptions about the drop out mechanism is very large and cannot be fully explored.
- Sensitivity analysis:
 - Ad-hoc
 - Local
 - Global "Tipping point"

Global Sensitivity Analysis

- Inference requires two types of assumptions:
 - (i) unverifiable assumptions about the distribution of outcomes among those who dropped out and
 - (ii) additional testable assumptions that serve to increase the efficiency of estimation.

Global Sensitivity Analysis

Restrictions on Distribution of Observed Data

Notation

- K scheduled post-baseline assessments.
- There are (K + 1) patterns representing each of the visits an individual might last be seen, i.e., $0, \ldots, K$.
- The $(K+1)^{st}$ pattern represents individuals who complete the study.
- Let Y_k be the outcome scheduled to be measured at visit k, with visit 0 denoting the baseline measure (assumed to be observed).
- Let $Y_k^- = (Y_0, \ldots, Y_k)$

Notation

- Let R_k be the indicator of being on study at visit k
- $R_0 = 1$; $R_k = 1$ implies that $R_{k-1} = 1$.
- Let C be the last visit that the patient is on-study.
- We focus inference separately for each treatment arm.
- The observed data for an individual is $O = (C, Y_C^-)$.
- We want to estimate $\mu^* = E[Y_K]$.

Model

logit
$$P[R_{k+1} = 0 | R_k = 1, Y_{k+1}^-, Y_K] = h_{k+1}(Y_k^-) + \alpha r(Y_{k+1})$$

where

$$\begin{array}{lcl} h_{k+1}\big(Y_k^-\big) & = & \text{logit } P[R_{k+1} = 0 | R_k = 1, Y_k^-] - \\ & & \text{log}\{E[\exp\{\alpha r(Y_{k+1})\} | R_{k+1} = 1, Y_k^-]\} \end{array}$$

- $r(Y_{k+1})$ is a specified function of Y_{k+1}
- ullet α is a sensitivity analysis parameter
- Each α is type (i) assumption.

Inference

- Inference will rely on models for either
 - $f(Y_{k+1}|R_{k+1}=1,Y_k^-)$ • $P(R_{k+1}=0|R_k=1,Y_k^-)$
- Impose first-order Markov assumption (Type (ii) assumption)
- Non-parametric smoothing using cross-validation
- Corrected plug-in estimator using efficient influence function
- Confidence intervals using t-based bootstrap

DAG - MAR

DAG - NMAR

Alternative Model

logit
$$P[R_{k+1} = 0 | R_k = 1, Y_k^-, Y_K] = I_{k+1}(Y_k^-) + \alpha q(Y_K)$$

where

$$\begin{array}{lcl} I_{k+1}(Y_k^-) & = & \text{logit } P[R_{k+1} = 0 | R_k = 1, Y_k^-] - \\ & & \text{log}\{E[\exp\{\alpha r(Y_K)\} | R_{k+1} = 1, Y_k^-]\} \end{array}$$

- $q(Y_K)$ is a specified function of Y_K
- ullet α is a sensitivity analysis parameter
- Each α is type (i) assumption.

DAG - NMAR

Major Challenges

- Wald confidence intervals with influence function-based standard errors perform poorly in sample sizes seen in registration trials.
 - Is it our simulation procedure?
- Intermittent missing data
 - Impute to a monotone structure?

More Information

Software, Papers, Presentations

www.missingdatamatters.org

Funded by FDA and PCORI