Lecture 4
 Linear random coefficients models

Rats example

- 30 young rats, weights measured weekly for five weeks
- Dependent variable $\left(Y_{i j}\right)$ is weight for rat "i" at week "j"
- Data:

	Weights $Y_{i j}$ of rat i on day x_{j}				
	$x_{j}=8$	15	22	29	36
Rat 1	151	199	246	283	320
Rat 2	145	199	249	293	354
$\ldots . .$.					
Rat 30	153	200	244	286	324

- Multilevel: weights (observations) within rats (clusters)

Individual \& population growth

- Rat "i" has its own expected growth line:
$E\left[Y_{i j} \mid b_{0 i}, b_{1 i}\right]=b_{0 i}+b_{1 i} x_{j}$
- There is also an overall, average population growth line:

$$
E\left[Y_{i j}\right]=\beta_{0}+\beta_{1} X_{j}
$$

Improving individual-level estimates

- Possible Analyses

1. Each rat (cluster) has its own line:
intercept $=b_{i 0}$, slope $=b_{i 1}$
2. All rats follow the same line:

$$
b_{i 0}=\beta_{0}, \quad b_{i 1}=\beta_{1}
$$

3. A compromise between these two:

Each rat has its own line, BUT... the lines come from an assumed distribution

$$
E\left(Y_{i j} \mid b_{i 0}, b_{i 1}\right)=b_{i 0}+b_{i 1} X_{j}
$$

"Random Effects" $\left\{\begin{array}{l}b_{i 0} \sim N\left(\beta_{0}, \tau_{0}{ }^{2}\right) \\ b_{i 1} \sim N\left(\beta_{1}, \tau_{1}{ }^{2}\right)\end{array}\right.$

A compromise:

Each rat has its own line, but information is borrowed across rats to tell us about individual

Study Day (centered)

Inner-London School data:

How effective are the different schools? (gcse.dat,Chap 3)

- Outcome: score exam at age 16 (gcse)
- Data are clustered within schools
- Covariate: reading test score at age 11 prior enrolling in the school (lrt)
- Goal: to examine the relationship between the score exam at age 16 and the score at age 11 and to investigate how this association varies across schools

Fig 3.1: Scatterplot of gcse vs Irt for school 1 with regression line)

Figne 3.1: Siatiorjolot of gese versins Irt for school] with regression line

Linear regression model with random intercept and random slope

$$
Y_{i j}=b_{0 j}+b_{1 j} x_{i j}^{\text {centered }}+\varepsilon_{i j}
$$

$b_{0 j} \sim N\left(\beta_{0}, \tau_{1}^{2}\right)$
$b_{1 j} \sim N\left(\beta_{1}, \tau_{2}^{2}\right)$
$\operatorname{cov}\left(b_{0 j}, b_{1 j}\right)=\tau_{12}$

Alternative Representation

Linear regression model with random
intercept and random slope
$Y_{i j}=b_{0 j}+\beta_{0}+\left(b_{1 j}+\beta_{1}\right) x_{i j}+\varepsilon_{i j}$
$b_{0 j} \sim N\left(0, \tau_{1}^{2}\right)$
$b_{1 j} \sim N\left(0, \tau_{2}^{2}\right)$
$\operatorname{cov}\left(b_{0 j}, b_{1 j}\right)=\tau_{12}$

Fig 3.3: Scatterplot of intercepts and slopes for all schools with at least 5 students

Figure 3.3: Scatterplot of intercepts and slopes for all schools with at least 5 students

Linear regression model with random intercept and random slope

$$
\begin{aligned}
& Y_{i j}=\left(b_{0 j}+\beta_{0}\right)+\left(b_{1 j}+\beta_{1}\right) x_{i j}+\varepsilon_{i j} \\
& Y_{i j}=\left(\beta_{0}+\beta_{1} x_{i j}\right)+\left(b_{0 j}+b_{1 j} x_{i j}\right)+\varepsilon_{i j} \\
& \xi_{i j}=\left(b_{0 j}+b_{1 j} x_{i j}\right)+\varepsilon_{i j} \\
& \operatorname{var}\left(\xi_{i j}\right)=\tau_{1}^{2}+2 \tau_{12} x_{i j}+\tau_{2}^{2} x_{i j}^{2}+\sigma^{2}
\end{aligned}
$$

The total residual variance is said to be heteroskedastic because depends on x

$$
\begin{aligned}
& \tau_{2}^{2}=\tau_{12}=0 \quad \text { Model with random intercept only } \\
& \operatorname{var}\left(\xi_{i j}\right)=\tau_{1}^{2}+\sigma^{2}
\end{aligned}
$$

Empirical Bayes Prediction (xtmixed reff ${ }^{*}$,reffects)

In stata we can calculate:
$\left(\tilde{b}_{0 j}, \tilde{b}_{1 j}\right) \quad$ EB: borrow strength across schools
$\left(\hat{b}_{0 j}, \hat{b}_{1 j}\right) \quad \begin{aligned} & \text { MLE: DO NOT borrow strength across } \\ & \text { Schools }\end{aligned}$

Fig 3.9: Scatter plot of EB versus ML estimates

The resulting graphs are shown in figure 3.9.

Figure 3.9: Scatterplot of EB predictions versus ML estimates of school-specific intercepts (left) and slopes (right) with equality shown as reference lines

Fig 3.10: EB predictions of school-specific lines

Figure 3.10: Empirical Bayes predictions of school-specific regression lines for the random-intercept model (left) and the random-intercept and random-slope model (right)

Random Intercept EB estimates and ranking (Fig 3.11)

Figure 3.11: Random-intercept predictions and approximate 95% confidence intervals versus ranking (school identifiers shown on top of confidence intervals)

Growth-curve modelling (asian.dta)

-Measurements of weight were recorded for children up to 4 occasions at 6 weeks, and then at 8,12 , and 27 months

- Goal: We want to investigate the growth trajectories of children's weights as they get older
-Both shape of the trajectories and the degree of variability are of interest

Fig 3.12: Observed growth trajectories for boys and girls

Graphs by pender

What we see in Fig 3.12?

- Growth trajectories are not linear
- We will model this by including a quadratic term for age
- Some children are consistent heavier than others, so a random intercept appears to be warranted

Quadratic growth model with random intercept and random slope

Random effects are multivariate normal with means 0 , standard deviations tau_11 and tau_22 and covariance tau_12

Results for Quadratic Growth Random Effects Model

Random intercept standard deviation

Level-1 residual standard deviation

	Random Intercept		Random Intercept and Slope	
	Est	SE	Est	SE
_cons	3.43	0.18	3.49	0.14
Age	7.82	0.29	7.70	0.24
Age^2	-1.71	0.11	-1.66	0.09
Random				
Tau_11	0.92	0.10	0.64	0.13
Tau_22			0.50	09.09
Rho_21			0.27	0.33
Sigma	0.73	0.05	0.58	0.05

Correlation between baseline and linear random effects....

Two-stage model formulation

$y_{i j}=\eta_{1 j}+\eta_{2 j} x_{i j}+\beta_{3} x_{i j}^{2}+\varepsilon_{i j} \quad$ Stage 1
$\eta_{1 j}=\gamma_{11}+\gamma_{12}$ Girl $_{j}+\varsigma_{1 j}$
$\eta_{2 j}=\gamma_{21}+\gamma_{22}$ Girl $_{j}+\varsigma_{2 j}$
Stage 2
$y_{i j}=\gamma_{11}+\gamma_{12}$ Girl $_{j}+\varsigma_{1 j}+\gamma_{21} x_{i j}+\gamma_{22}$ Girl $_{j} x_{i j}+\varsigma_{2 j} x_{i j}+\beta_{3} x_{i j}^{2}+\varepsilon_{i j}$
$y_{i j}=\gamma_{11}+\gamma_{21} x_{i j}+\beta_{3} x_{i j}^{2}+\gamma_{12}$ Girl $_{j}+\gamma_{22}$ Girl $_{j} x_{i j}+\varsigma_{1 j}+\varsigma_{2 j} x_{i j}+\varepsilon_{i j}$
$y_{i j}=\beta_{0}+\beta_{1} x_{i j}+\beta_{2} x_{i j}^{2}+\beta_{3} \operatorname{Girl}_{j}+\beta_{4} \operatorname{Girl}_{j} x_{i j}+\varsigma_{1 j}+\varsigma_{2 j} x_{i j}+\varepsilon_{i j}$

Fixed Effects

Random Effects

Results from Random intercept and slope model with and without inclusion of gender effect

	Random Intercept and Slope		Random Intercept and Slope	
	Est	SE	Est	SE
_cons	3.49	0.14	3.75	0.17
Age	7.70	0.24	7.81	0.25
Age^2	-1.66	0.09	-1.66	0.09
Girl			-0.54	0.21
Girl*Age			-0.23	0.17
Random		0.13	0.59	0.13
Tau_11	0.64	09.09	0.50	0.09
Tau_22	0.50	0.33	0.19	0.34
Rho_21	0.27	0.05	0.57	0.05
Sigma	0.58			

More on interpreting results

- See handout!

