BIO 656 2007

656 Lab: Growth Curve Modeling (from pages 78-87 and 91-94 of the
textbook)

Data: Weight gain in Asian children in Britian.

Variables
¢ id: child identifier
* weight: weight in Kg
® age: age in years
e gender: gender (1: male, 2: female)

Goal: Compare xtmixed and g11lamm for modeling quadratic growth curve trajectories.

. use http://www.stata-press.com/data/mlmus/asian, clear
label def g 1 "boy" 2 "girl"
label values gender g

Exploratory Data Analysis

What does the data look like? First, we will find out how many children we have in the
study and how often they had their weight measured. Note that we have to generate a
time variable because in order to use the xtdes command, STATA needs the time
variable to be an integer and age is reported in (non-integer) years.

by id: gen time=_n
. tsset id time

. xtdes
id: 45, 258, ..., 4975 n = 68
time: 1, 2, ..., 5 T = 5
Delta(time) = 1; (5-1)+1 = 5
(id*time uniquely identifies each observation)
Distribution of T_1i: min 5% 25% 50% 75% 95% max
1 1 2 3 4 5
Freq Percent Cum. | Pattern
___________________________ I,
27 39.71 39.71 | 111
19 27.94 67.65 | 11.
15 22.06 89.71 | 1111
4 5.88 95.59 | 1...
3 4.41 100.00 | 11111
,,,,,,,,,,,,,,,,,,,,,,,,,,, [P,
68 100.00 | XXXXX

We have 68 children, with a maximum of 5 observations per child (3 children) and
minimum of 1 observation per child (4 children). The most common number of
observations per child (the mode) is 3, since 27 children have 3 observations. Note that
missing observations always occur as the child ages and we have no ‘gaps’ in our
observations on weight.

sum age
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Variable Obs Mean Std. Dev. Min Max
,,,,,,,,,,,,, o
age 198 1.080552 .787069 .1149897 2.546201
hist age, xtitle(age (years))
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Weights are generally measured on children at ages 6 weeks, and at 8, 12 and 27 months

Now let’s take a look how weight changes over time for each child.

sort id age

. graph twoway
xtitle (Age in years)

connect (ascending)),

(line weight age,
ytitle (Weight in Kg)

by (gender)
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The childrens’ growth appears to be non-linear in relation to time. Since the relationship
between weight and age is non-linear, we will include a quadratic term in our model.
Note also that at the first weight measurement, it appears that each child has his or her
own starting weight and that we could consider these starting weights to be an
approximately normally distributed random variable. We will build a random intercept

into our initial model.

xtmixed

Quadratic growth with random intercept model where U, ;is the random intercept

for child j:
weight, = B +,32agel.j +,B3age; U, +¢€;

** quadratic growth with random intercept **
gen agez2 = age”2

|| id:, mle

xtmixed weight age age?2

Performing EM optimization:

Performing gradient-based optimization:

Iteration O: log likelihood = -276.83266

Iteration 1: log likelihood = -276.83266

Computing standard errors:

Mixed-effects ML regression Number of obs

Group variable: id Number of groups

198
68
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Obs per group: min = 1
avg = 2.9
max = 5
Wald chi2(2) = 2623.63
Log likelihood = -276.83266 Prob > chiz2 = 0.0000
weight | Coef std. Err P>|z| [95% Conf. Interval]
+

age | 7.817918 .2896529 26.99 0.000 7.250209 8.385627
age2 | -1.705599 .1085984 -15.71 0.000 -1.918448 -1.49275
cons | 3.432859 .1810702 18.96 0.000 3.077968 3.78775
Random-effects Parameters | Estimate std. Err. [95% Conf. Interval]

+

id: Identity |
sd(_cons) | .9182256 .0973788 .7458965 1.130369

+
sd (Residual) | .7347063 .0452564 .6511507 .8289837
LR test vs. linear regression: chibar2(01) 78.07 Prob >= chibar2 = 0.0000

The estimated standard deviation of the random intercept is 0.918.

Quadratic growth with random intercept U, and random slope U, ; for child j:

. 2
weight,; = B, + B,age,; + Biage,; +U,, +U, age, + &,

By including a random slope, we allow children to have different rates of growth.

. ** quadratic growth with random intercept and random slope **

. xtmixed weight age age2

Performing EM optimization:

|| id: age, cov(unstr) mle

Performing gradient-based optimization:

Iteration 0: log likelihood = -258.13527
Iteration 1: log likelihood = -258.0782
Iteration 2: log likelihood = -258.07784
Iteration 3: log likelihood = -258.07784
Computing standard errors:
Mixed-effects ML regression Number of obs 198
Group variable: id Number of groups = 68
Obs per group: min = 1
avg = 2.9
max = 5
Wald chi2(2) = 1978.20
Log likelihood = -258.07784 Prob > chi2 0.0000
weight | Coef std. Err. P>|z| [95% Conf. Interval]
_____________ e
age | 7.703998 .2394082 32.18 0.000 7.234767 8.173229
age2 | -1.660465 .0885229 -18.76 0.000 -1.833967 -1.486963
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_cons | 3.494512 .1372636 25.46 0.000 3.22548 3.763544

Random-effects Parameters | Estimate std. Err. [95% Conf. Interval]
_____________________________ o
id: Unstructured |

sd(age) | .5040802 .0879337 .358107 .7095558
sd(_cons) | .6359558 .1293523 .4268684 .9474578
corr (age,_cons) | .2747814 .3309063 -.3965135 .7546038
+
sd(Residual) | .5757751 .0505985 .4846745 .6839993
LR test vs. linear regression: chi2 (3) = 115.58 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference

Quadratic growth with random intercept U, and random slope U, ; for childj that
includes a child-level covariate, an indicator of gender:
weight,; = B+ ,Bzageij +ﬂ3age§ +,B4girlj +U,; +U,age; +¢&;

** including a child-level covariate **

. gen girl = gender - 1

. xtmixed weight age age2 girl || id: age , cov(unstr) mle

Performing EM optimization:

Performing gradient-based optimization:

Iteration 0: log likelihood = -253.91218
Iteration 1: log likelihood = -253.86704
Iteration 2: log likelihood = -253.86692
Iteration 3: log likelihood = -253.86692

Computing standard errors:

Mixed-effects ML regression Number of obs = 198
Group variable: id Number of groups = 68
Obs per group: min = 1
avg = 2.9
max = 5
Wald chi2(3) = 1975.44
Log likelihood = -253.86692 Prob > chiz2 = 0.0000
weight | Coef. std. Err. z P>|z| [95% Conf. Interval]
+

age | 7.697967 .2382121 32.32 0.000 7.23108 8.164855
age2 | -1.657843 .0880529 -18.83 0.000 -1.830423 -1.485262
girl | -.5960093 .1963689 -3.04 0.002 -.9808853 -.2111332
cons | 3.794769 .1655053 22.93 0.000 3.470385 4.119153
Random-effects Parameters | Estimate std. Err. [95% Conf. Interval]
_____________________________ e

id: Unstructured |
sd(age) | .5097089 .0871791 .3645317 .7127039
sd(_cons) | .594731 .1289891 .3887823 .9097762
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corr (age,_cons) | .1571086 .3240801 -.4564674 .6694143
_____________________________ e
sd (Residual) | .5723301 .0496274 .4828786 .6783521

LR test vs. linear regression: chi2 (3) = 104.17 Prob > chi2 = 0.0000

Note: LR test 1is conservative and provided only for reference

gllamm

When modeling random effects beyond a random intercept in gllamm, we need to use the
eq command to specify the equation for the variable multiplying each random effect and
include the name of each equation in the eqgs option of gllamm.

** quadratic growth with random intercept **

. gen cons =1

. eq inter: cons

. gllamm weight age age2, 1i(id) egs(inter) adapt

Running adaptive quadrature
Iteration 0: log likelihood = -303.31828

Iteration 1: log likelihood = -279.21855
Iteration 2: log likelihood = -276.88181
Iteration 3: log likelihood = -276.83266
Iteration 4: log likelihood = -276.83266

Adaptive quadrature has converged, running Newton-Raphson

Iteration O: log likelihood = -276.83266
Iteration 1: log likelihood = -276.83266
number of level 1 units = 198

number of level 2 units 68
Condition Number = 14.785391

gllamm model

log likelihood = -276.83266

weight | Coef. std. Err. z P>|z| [95% Conf. Intervall]
_____________ e
age | 7.817871 .2899873 26.96 0.000 7.249507 8.386236

age2 | -1.705589 .1086957 -15.69 0.000 -1.918629 -1.49255

cons | 3.432893 .1811779 18.95 0.000 3.07779 3.787995

Variance at level 1

.53966034 (.06647545)

Variances and covariances of random effects

***level 2 (id)

var (1): .84334423 (.17887769)
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** quadratic growth with random intercept and random slope **

By defining this matrix, we are storing the parameter estimates from the previous model,

which we will use as starting values for the parameter estimates in the next model.
matrix a = e(b)

eq slope: age

The option nr£ (2) specifies that we now have two random effects (intercept and slope).
The ip(m) nip(15) specifies that we are using a spherical integration rule of degree 15
(don’t need to worry about this — just know that it speeds up the estimation).

gllamm weight age age2, i(id) nrf(2) egs(inter slope) ip(m) nip(l5) from(a)
adapt

Running adaptive quadrature

Iteration O: log likelihood = -276.83266
Iteration 1: log likelihood = -264.70282
Iteration 2: log likelihood = -258.46797
Iteration 3: log likelihood = -258.40577
Iteration 4: log likelihood = -258.08334
Iteration 5: log likelihood = -258.07834
Iteration 6: log likelihood = -258.07802
Iteration 7: log likelihood = -258.078

Adaptive quadrature has converged, running Newton-Raphson

Iteration O: log likelihood = -258.078

Iteration 1: log likelihood = -258.078 (backed up)
Iteration 2: log likelihood = -258.07784

Iteration 3: log likelihood = -258.07784

number of level 1 units = 198

number of level 2 units 68
Condition Number = 8.938685

gllamm model

log likelihood = -258.07784
weight | Coef. Std. Err. Z P>|z| [95% Conf. Interval]
_____________ o
age | 7.703998 .24026 32.07 0.000 7.233097 8.174899
age2 | -1.660465 .0890109 -18.65 0.000 -1.834923 -1.486007
cons | 3.494512 .1376254 25.39 0.000 3.224771 3.764253

.33151691 (.05826674)

Variances and covariances of random effects
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***level 2 (id)

var(l): .4044401 (.16452478)
cov(2,1): .08808734 (.08802551) cor(2,1): .27478094
var (2): .25409703 (.08865128)

Look at Table 3.2 in the textbook (page 82) that compares the results from xtmixed to
those from gllamm. The results from xtmixed and gllamm are identical for the coefficient
estimates and standard errors of the betas (the fixed part of the model) however, the
estimates of the random parts of the models vary according to the stata procedure.

Predicting trajectories for each child
* xtmixed
Get the empirical Bayes estimates of the random intercepts and random slopes

* re-run the xtmixed including the child-level covariate
xtmixed weight age age2 girl || id: age , cov(unstr) mle

predict traj, fitted
sort id age
graph twoway (line traj age, connect (ascending)) (line weight age,

connect (ascending) clpatt(dash)), by(gender) xtitle(Age in years)
ytitle (Weight in Kg) legend(order (1l "Predicted" 2 "Observed"))
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The model appears to fit the data adequately based on a comparison of the fitted
trajectories to the observed trajectories.

® gllamm
Get the empirical Bayes estimates of the random intercepts and random slopes

* re-run the gllamm including the child-level covariate
gllamm weight age age2, i(id) nrf(2) egs(inter slope) ip(m) nip(l5)

from(a) adapt
gllapred traj, linpred
graph twoway (line traj age, connect(ascending)) (line weight age,

connect (ascending) clpatt(dash)), by(gender) xtitle(Age in years)
ytitle (Weight in Kg) legend(order (1l "Predicted" 2 "Observed"))

This will produce the same graph as before.



