
Sample Size / Power Considerations 
 

Today we will briefly discuss sample size and power calculations for your studies.  First we will 
review the basic sample size and power estimation procedures and then think about how to extend 
these to regression settings.  
 
We will use data provided by Alex Krist to illustrate our calculations.  The study is looking at 
outcomes relating to Prevnar, a vaccine recommended for infants and toddlers which guards against 
some pneumococcal bacteria that can cause life-threatening meningitis and blood infections.  We will 
consider as the outcome of interest an indicator of whether children receive the recommended 3 
vaccinations of Prevnar at any age (prevany: 1 if received all three vaccinations, 0 otherwise).  The 
available predictors are:  
 

- Aprvn1:  age in months of the child at the first Prevnar vaccination 
 

- AlwaysPCV: an indicator of whether the medical office had the vaccine available at the 
time the child presented for vaccine (1 if Prevnar was present at all office visits, 0 if there 
was at least one visit with no Prevnar) 

 
How you determine your sample size will depend on the goal of your analysis: 
 

1. The purpose of the study is to estimate the prevalence of children receiving the recommended 3 
vaccinations of Prevnar to within some specified percentage of the true prevalence with 95% 
confidence (i.e. to within 5 percent of the true prevalence). 

 
2. The purpose of the study is to compare(test) the difference in the prevalence of children 

receiving the recommended 3 vaccinations of Prevnar among children who had access to the 
vaccine at all visits verses those who did not. 

 
3. The purpose of the study is to compare(test) the difference in the prevalence of children 

receiving the recommended 3 vaccinations of Prevnar among children who had access to the 
vaccine at all visits verses those who did not after adjusting for the age in months at the first 
Prevnar vaccination. 

 
 
Sample Size Based on ESTIMATION: 
 
We assume that the prevalence estimate is approximately normally distributed and we use the standard 
formula for a 95% confidence interval to solve for the required sample size: 
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We then specify m and solve for n:  2
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For instance the following table provides the required sample size to estimate the true prevalence to 
within m with 95% confidence for a variety of guesses for p. 
 

Margin of Error (m) Guess of true 
prevalence 2 percent 5 percent 10 percent 

0.10 865 139 35 
0.20 1537 246 62 
0.30 2017 323 81 
0.40 2305 369 93 
0.50 2401 385 96 

 
Sample size based on TESTING THE DIFFERENCE IN TWO PREVALENCES: 
 
Now we assume that the two estimates of the prevalence are approximately normally distributed.  The 
null hypothesis is H0:  p1 = p1 and the alternative is that H1: p1 ≠ p2. 
So what do we need to specify to calculate our sample size? 
 

1. The significance level of your test (α) 
2. The power that you would like to achieve to detect the difference of interest (1-β) 
3. The clinically important difference in p1 – p2 = ∆ that you’d like to be able to detect 
4. Initial guesses for p1 and p2. 

 
Then the sample size required to detect a difference of ∆ in the two prevalences at the α-level with 
power 1-β is determined by: 
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The table below presents required sample sizes to detect a difference of ∆ in the two prevalences at the 
0.05 level with 80% power, assuming a variety of prevalence values for the children who had access to 
Prevnar at all vaccination visits. 
 



Scientifically Significant Difference (∆) Prevalence among children with 
access to the vaccine at all visits 0.05 0.10 0.15 

0.25 1134 270 113 
0.30 1291 313 134 
0.35 1417 349 151 
0.40 1511 376 165 

 
 
Sample size based on TESTING THE DIFFERENCE IN TWO PREVALENCES after adjusting for 
additional covariates: 
 
Now, to the more realistic problem where you want to compare the odds of completing all three 
vaccinations for children with access to the vaccine at all visits vs. those who did not have access to the 
vaccine at all visits, after adjusting for the age a first vaccination.  In this case, our analysis involves 
building a logistic regression model: 
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where the coefficient of interest is which is the log odds ratio of completing all three vaccinations 
comparing children with access at all vaccine visits to those who did not have full access to the 
vaccine, after adjusting for the age a first vaccination. 

1β

 
To determine a sample size for this problem is difficult since the sample size will depend on the 

variability of which is a function of the sample size but also the distribution of the other 
covariates.   

1β

 
I will present a method for determining the sample size (or power) using a simulation study.  I will 
illustrate this method using the Prevnar data provided by Alex.  First I will fit the model to the data to 

determine the actual value of . 1β
 
. logistic prevany aprvn1 alwaysPCV 
 
Logistic regression                               Number of obs   =        107 
                                                  LR chi2(2)      =      13.23 
                                                  Prob > chi2     =     0.0013 
Log likelihood = -67.321306                       Pseudo R2       =     0.0895 
 
------------------------------------------------------------------------------ 
     prevany | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
      aprvn1 |   .7960748   .0599193    -3.03   0.002     .6868869    .9226192 
   alwaysPCV |   1.145634   .5064119     0.31   0.758     .4817077    2.724632 
------------------------------------------------------------------------------ 
 
 



After adjusting for the age of the child at the first vaccination, we estimate that the odds of complete 
vaccination among children with full access to the vaccine are approximately 15% greater than the 
odds for children without full access to the vaccine.  This difference in the odds is not statistically 
significant, but may be clinically important.  We would like to design a larger study that has power to 
detect this finding.  

For this purpose, power is defined to be: Pr(rejecting H0: =0 | = log(1.15)).   1β 1β
 

So if we can generate datasets where = log(1.15), then we can fit the regression model and test 

H0: =0, and our estimate of the power is the percentage of the datasets where we reject.   

1β

1β
 

How do we generate datasets where = log(1.15)?  We can use the available pilot data for this 

purpose since we know that in the pilot data = log(1.15).  We will take random samples (with 
replacement, also known as bootstrap samples) of various sizes larger than the pilot sample size and 
estimate the power for those sample sizes. 

1β

1β

 
First, lets demonstrate the idea of the bootstrap sampling and power calculation using a sample size of 
100 (just under the sample size of 107 for the pilot study).  The “bootstrap” command in Stata will take 
500 random samples with replacement (“rep(500)”) from the data and for each sample Stata will 
perform the specified analysis (“logistic prevany aprvn1 alwaysPCV”).  You then request the 
quantities that you want to save from the analysis, I have requested to save the regression coefficient of 
interest (“b = _b[alwaysPCV]”) and corresponding standard error (“se = _se[alwaysPCV]”).  These 
will be written to a new dataset so that in the end you will have 500 values of b and se that correspond 
to each bootstrap sample. 
  
. bootstrap "logistic prevany aprvn1 alwaysPCV" b = _b[alwaysPCV] se = _se[alw 
> aysPCV], rep(500) size(100) saving(sam100) 
 
command:      logistic prevany aprvn1 alwaysPCV 
statistics:   or         = _b[alwaysPCV] 
              se         = _se[alwaysPCV] 
 
Bootstrap statistics                              Number of obs    =       107 
                                                  Replications     =       500 
 
------------------------------------------------------------------------------ 
Variable     |  Reps  Observed      Bias  Std. Err. [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
           b |   500  .1359579 -.0072825  .4748829  -.7970584   1.068974   (N) 
             |                                       -.790884   1.010838   (P) 
             |                                      -.7683083    1.03025  (BC) 
          se |   500  .4420365  .0313302  .0288445   .3853647   .4987082   (N) 
             |                                       .4300197   .5389925   (P) 
             |                                       .4126742   .4589331  (BC) 
------------------------------------------------------------------------------ 
Note:  N   = normal 
       P   = percentile 
       BC  = bias-corrected 
 



 
The estimated power is calculated as follows: 
 
. use "C:\DATA\sam100.dta", clear 
(bootstrap: logistic prevany aprvn1 alwaysPCV) 
 
. gen z = b/se 
 
. gen reject = 1 if abs(z) > 2 
(471 missing values generated) 
 
. tab reject 
 
     reject |      Freq.     Percent        Cum. 
------------+----------------------------------- 
          1 |         29      100.00      100.00 
------------+----------------------------------- 
      Total |         29      100.00 
 
The estimated power to detect the odds ratio of 1.15 in a sample of 100 children is 29/500 = 5.8%. 
 
Now, we’d like to increase that power, so we will need to consider larger sample sizes.  Unfortunately, 
Stata does not perform bootstrap samples of sizes greater than the original sample size, so the data will 
be imported into R (another statistical package, which is FREE!) and the power analysis will be 
performed there.  The R commands are provided below if you are interested…. 
 
data = read.table("c:/Elizabeth/Regression Course/Materials 2004/power.csv",sep=",",header=T) 
dim(data) 
[1] 168   3 
names(data) 
[1] "aprvn1"    "prevany"   "alwaysPCV" 
 
# Create a program to perform the simulation: 
power = function(DD=data,reps=500,size=150,ss=743) { 
 set.seed(ss) 
 out=NULL 
 for(i in 1:reps) { 
  junk.data = DD[sample(x=seq(1:length(data[,1])),size=size,replace=T),] 
  junk = glm(prevany ~ alwaysPCV + aprvn1,data=junk.data,family=binomial) 
  out = c(out,summary(junk)$coeff[2,4]) 
 } 
 count = ifelse(out<0.05,1,0) 
 return(sum(count)/reps) 
}   
  
power(size=150) 
power(size=500) 
power(size=1000) 
 
 



We don’t have much luck in this dataset (great variability and small effect size), but the estimated 
powers for the sample sizes are listed below: 
 
Sample Size  Estimated Power (Percent) 
 100     5.8 
 150     7.0 
 500     9.0 
1000    10.2 
 
Although this example didn’t work out very well, you can use these ideas and apply them to your 
studies.  
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