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Levels: An Analysis of Daily Time-Series for the 20 Largest US Cities
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Numerous studies have shown a positive association between daily mortality and particulate air pollution,
even at concentrations below regulatory limits. These findings have motivated interest in the shape of the
exposure-response relation. The authors have developed flexible modeling strategies for time-series data that
include spline and threshold exposure-response models; they apply these models to daily time-series data for
the 20 largest US cities for 1987–1994, using the concentration of particulate matter <10 µm in aerodynamic
diameter (PM10) as the exposure measure. The spline model showed a linear relation without indication of
threshold for PM10 and relative risk of death for all causes and cardiorespiratory causes; by contrast, for other
causes, the risk did not increase until approximately 50 µg/m3 PM10. For all-cause mortality, a linear model
without threshold was preferred to the threshold model and to the spline model, using the Akaike information
criterion (AIC). The findings were similar for cardiovascular and respiratory deaths combined. By contrast, for
causes other than cardiovascular and respiratory, a threshold model was more competitive with a threshold
value estimated at 65 µg/m3. These findings indicate that linear models without a threshold are appropriate for
assessing the effect of particulate air pollution on daily mortality even at current levels. Am J Epidemiol 2000;
152:397–406.
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In spite of improvements in air quality in many developed
countries, adverse health effects of particulate air pollution
remain a regulatory and public health concern. This contin-
ued concern is motivated largely by recent epidemiologic
studies that have examined both acute and longer-term
effects of exposure to particulate air pollution in different
cities in the United States and elsewhere in the world (1–5).

Many of these studies have shown positive associations
between levels of particulate air pollution and daily mortal-
ity and morbidity rates, and some of these studies suggest
that morbidity and mortality from respiratory and cardio-
vascular diseases are increased at levels of particulate air
pollution below the current US National Ambient Air
Quality Standard (150-µg/m3 24-hour average) (6, 7) for
particulate matter <10 µm in aerodynamic diameter (PM10).

Together, the epidemiologic evidence and the legislative
mandate have motivated substantial interest in the shape of
the exposure-response relation of PM10 with risk for adverse
health effects. In this paper we introduce flexible modeling
strategies to describe the form of the relation of PM10 with
mortality and then apply these models to daily time-series
data for air pollution and mortality for the largest 20 US cities.
We consider and compare three plausible models for the rela-
tion between log mortality and PM10 concentrations, each
having potentially different regulatory implications: model 1,
a linear model without a threshold; model 2, a spline dose-
response model in which log mortality is a smooth function of
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PM10 concentration; and model 3, a threshold model that
assumes no relation between PM10 and log mortality up to a
threshold and a linear relation after the threshold. Under this
spectrum of models our goals are the following: 1) to pool
information from the 20 cities to more precisely determine the
shape of the average dose-response curve; 2) to test the
hypothesis that the air pollution-mortality association is
approximately linear; and 3) to identify possible threshold
pollution concentrations below which an effect of air pollu-
tion on daily mortality cannot be detected.

MATERIALS AND METHODS

These analyses use a database developed for a larger pro-
ject, the National Morbidity, Mortality, and Air Pollution
Study. Full details of database development are given else-
where (8).

Data

The analysis database included mortality, weather, and air
pollution data for the 20 largest metropolitan areas in the
United States for the 7-year period 1987–1994 (figure 1; table
1) (8). The air pollution data were obtained from the
Aerometric Information Retrieval System database main-
tained by the US Environmental Protection Agency. The
Aerometric Information Retrieval System is a computer-based
repository of information about air pollution in the United
States and various other countries (http://www.epa.gov/airs/
airs.html). In some locations, a high percentage of days had
missing values for PM10 because measurements have been
required only every 6 days since 1987 by the Environmental
Protection Agency. Daily cause-specific mortality data, aggre-
gated at the level of county, were obtained from the National
Center for Health Statistics. After excluding deaths from
external causes and in nonresidents of the county, we classi-
fied the deaths (9) by age group (<65, 65–74, and ≥75 years)
and by cause according to the International Classification of
Diseases, Ninth Revision: cardiac (codes 390–448); respira-
tory, including chronic obstructive pulmonary disease and
related disorders (codes 490–496), influenza (code 487), and
pneumonia (codes 480–486, 507); and other remaining dis-
eases. The hourly temperature and dew point data for each site
were obtained from the EarthInfo CD-ROM database
(http://www.sni.net/earthinfo). After extensive preliminary
analyses that considered various daily summaries of tempera-
ture and dew point as predictors, such as daily average, max-
imum, and 8-hour maximum, we used the 24-hour mean for
each day (8, 10, 11). If a city had more than one weather sta-
tion, we took the average of the measurements from all avail-
able stations. The PM10 data were also averaged over all mon-
itors in each county. To protect against outliers, a 10 percent
trimmed mean was used to average across monitors, after cor-
rection for yearly averages for each monitor. This yearly cor-
rection is appropriate since long-term trends in mortality are
also controlled for in the log-linear regressions. See the
reports by Kelsall et al. (12), Dominici et al. (13), and Samet
et al. (14) for further details.

Models

In this section, we summarize the log-linear models used
to estimate the air pollution/mortality relative rate separately
for each location, while accounting for age-specific longer-
term trends, weather, and day of the week. The core analy-
sis for each city was a generalized additive model with log
link and Poisson error that accounts for smooth fluctuations
in mortality that may potentially confound estimates of the
pollution effect and/or introduce autocorrelation in mortality
series. These models had been developed in earlier work
using data from Philadelphia (12) and for the national-level
analyses (9, 15).

To specify the approach, let yat be the observed mortal-
ity for each age group a ! (<65, 65–74, and ≥75 years),
PM10t be the level of PM10 at day t, and uat ! E(Yat) be the
expected number of deaths at day t. We consider a log-
linear model of the form log(uat) ! βPM10t " con-
founders, where β represents the log-relative rate of mor-
tality associated with a unit increase in PM10, and PM10t is
the mean of the current day and the previous day’s con-
centration of PM10. If the previous (current) day’s concen-
tration of PM10 is missing, then we use only the current
(previous) day’s concentration of PM10. As there were
missing values for some variables on some days, we
restricted analysis to days with no missing values for all
covariates. To assess the sensibility of findings, we also fit
the models using the current day’s pollution data and also
the 1-day lag data.

To control for potential confounding of the pollution
relative rates β by longer-term trends due, for example, to
changes in health status, seasonality, or influenza epi-
demics, and to account for any additional temporal corre-
lation in the count time-series, we estimated the pollution
effect using only shorter-term variations in mortality and
air pollution. To do so, we partialled out the smooth fluc-
tuations in mortality over time by including smooth func-
tions of calendar time S(time,df) for each city. Here, df is
a smoothness parameter that we prespecified, on the basis
of epidemiologic knowledge of the time scale of the
major possible confounders. Taking into account the lit-
erature review and our prior work, we selected 7 df per
year so that little information from time scales longer
than approximately 2 months is included when estimating
β. This choice largely eliminates confounding from sea-
sonal influenza epidemics and from longer-term trends
possibly due to changing medical practices and health
behaviors while retaining as much unconfounded infor-
mation as possible on the time scale of interest. We also
controlled for age-specific longer-term and seasonal vari-
ations in mortality, adding a separate smooth function of
time with a total of 8 df over all years for each age group.
To control for weather, we also fit smooth functions of
the same day’s temperature (temp0), average temperature
for the 3 previous days (temp1–3), each with 6 df, and the
analogous functions for dew point (dew0, dew1–3), each
with 3 df.

In summary, we fit the following log-linear generalized
additive model (16) to obtain the estimated pollution 
log-relative rate and the sample variance at eachV 1β̂2β̂
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FIGURE 1. Maximum likelihood estimates and 95% confidence intervals of the city-specific mean lag particulate matter <10 µm in aerodynamic
diameter (PM10) effects on total mortality (TOTAL), cardiovascular and respiratory mortality (CVDRESP), and other-causes mortality (OTHERS),
20 largest US cities, 1987–1994. At the far right are plotted posterior means and 95% credible regions of the overall effect. la, Los Angeles; ny,
New York; chic, Chicago; dlft, Dallas-Ft. Worth; hous, Houston; sand, San Diego; staa, Santa Ana-Anaheim; phoe, Phoenix; det, Detroit; miam,
Miami; phil, Philadelphia; minn, Minneapolis; seat, Seattle; sanj, San Jose; clev, Cleveland; sanb, San Bernadino; pitt, Pittsburgh; oakl, Oakland;
atla, Atlanta; and sana, San Antonio.

location:

log µat ! βPM10t " γ DOW " S1(time, 7/year)" S2(temp0, 6) " S3(temp1–3, 6) " S4(dew0, 3) " S5(dew1–3, 3)

" intercept for age group a " separate smooth functions of time (8 df) for age group a

! βPM10t " confounders                                                                                      (1)
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where DOW are indicator variables for day of week. Samet
et al. (14, 17), Kelsall et al. (12), and more recently
Dominici et al. (15) give additional details about the ratio-
nale for the functions used to control for longer-term trends
and weather.

To critically examine the log-linear assumption for par-
ticulate levels in model 1, we allowed for greater flexibility
in the air pollution/mortality association by assuming that
the logarithm of the expected value of the mortality counts
is a smooth function of air pollution, specifically, a spline
dose-response model; we modeled mortality as a smooth
function of S(PM10,λ), with λ denoting the degrees of free-
dom for the smoothness of the dose-response curve. A
straightforward and flexible approach is to restrict the
choice of the smooth functions to the natural cubic splines
with a fixed number of knots. These are cubic polynomials
within each pair of knots with smooth connections between
adjoining segments (continuous first and second deriva-
tives). Our spline dose-response model assumed that:

log µat ! S(PM10t, knots 

! c(30, 60)) " confounders                    (2)

We used a natural cubic spline with knots at 30 and 60
µg/m3, which is sufficiently flexible to capture the PM10-
mortality association in the range of our air pollution data.
We located the two knots at 30 and 60 µg/m3 because these
values are approximately the 25 percent and 75 percent
quantiles of the PM10 distributions for many of the 20 cities.

To examine the question of whether the mortality effects
of particulate pollution are negligible below some level, we
also fit a threshold model that we compare with the linear
and spline models detailed above.

In the threshold model, we replaced the PM10t term in
model 1 with a term of the form (PM10t – h)+, where (x+ ! x
if x ≥ 0 and x+ ! 0 if x < 0) and h is an unknown change
point that is estimated from the data. We then assumed:

log µat ! θ(PM10t – h)" " confounders            (3)

TABLE 1. Selected counties, populations, average total deaths, average cardiorespiratory deaths, average other deaths, number
of days recording PM10* (DPM10), and PM10 daily mean with 10th and 90th percentiles, 20 largest US cities, 1987–1994

Los Angeles

New York

Chicago

Dallas-Ft. Worth

Houston

San Diego

Santa Ana-Anaheim

Phoenix

Detroit

Miami

Philadelphia

Minneapolis

Seattle

San Jose

Cleveland

San Bernadino

Pittsburgh

Oakland

Atlanta

San Antonio

Los Angeles

Bronx, Kings, New York, 
Richmond, Queens, and
Westchester

Cook

Collin, Dallas, Rockwall, and
Tarrant

Harris

San Diego

Orange

Maricopa

Wayne

Dade

Philadelphia

Hennepin and Ramsey

King

Santa Clara

Cuyahoga

San Bernadino

Allegheny

Alameda

Fulton and De Kalb

Bexar

8,863,164

7,510,646

5,105,067

3,312,553

2,818,199

2,498,016

2,410,556

2,122,101

2,111,687

1,937,094

1,585,577

1,518,195

1,507,319

1,497,577

1,412,141

1,412,140

1,336,449

1,279,182

1,194,788

1,185,394

City County(ies) Population
(no.)

148

190.9

113.9

47.9

39.9

41.6

32.4

38.4

46.9

43.8

42.3

26.3

25.6

19.7

36.5

20.6

37.6

22.2

17.5

20.1

87

108.3

62

26

20

22.6

18.7

20.9

26.5

23.6

21.5

13.9

13.4

10.7

20.1

12.1

21.0

12.2

8.8

10.5

61.15

82.61

51.89

21.90

19.83

19.04

13.62

17.45

20.41

20.16

20.83

12.42

12.24

9.00

16.44

8.50

16.89

9.98

8.71

9.59

580

489

2,683

624

793

521

480

436

1,348

484

495

2,764

2,205

945

1,298

538

2,899

508

482

670

46.0 (21.5, 73.11)†

28.8 (16.1, 44.81)

35.6 (15.7, 60.28)

23.8 (11.4, 39.78)

30.0 (13.5, 48.57)

3.6 (18.1, 52.1)

37.4 (18.4, 59.2)

39.7 (21.4, 58.4)

40.9 (16.4, 71.1)

25.7 (16.0, 36.6)

35.4 (19.0, 56.0)

26.9 (10.9, 45.2)

25.3 (10.2, 44.8)

30.4 (9.3, 61.6)

45.1 (19.7, 78.7)

37.0 (16.1, 56.2)

31.6 (8.9, 61.2)

26.3 (9.3, 47.8)

34.4 (15.8, 56.4)

23.8 (12.3, 36.3)

Total
deaths
(no.)

Cardio-
respiratory

deaths
(no.)

Other
deaths
(no.)

DPM10 PM10 (µg/m3)

* PM10, particulate matter <10 µm in aerodynamic diameter.
† Numbers in parentheses, 10th and 90th percentiles of PM10 daily mean.
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Note that the parameters β in model 1 and θ in model 3 have
different interpretations; β measures the percentage increase
in mortality per 10-µg/m3 increase in PM10 at any level of
the pollutant; θ measures the percentage increase in mortal-
ity per 10-µg/m3 increase in PM10 when PM10t is higher than
h. For PM10t values smaller than h, the log-relative rate of
mortality is set to zero.

Estimation

Using the gam() function in Splus (MathSoft, Inc.,
Cambridge, Massachusetts), we fit the generalized additive
linear and spline models 1 and 2, respectively, within each
city to obtain city-specific estimates and standard errors of
the linear effect and of the parameter vector corresponding to
the splines. Let φc denote the city-specific parameters mea-
suring linear and nonlinear effects of PM10 on mortality for
models 1–2 for city c: c ! 1, …, 20. For the linear model, 
φc ! βc, and for the dose-response model, φc equals the vec-
tor of coefficients corresponding to the splines. To combine
the coefficients across cities, we first test for heterogeneity
using a generalization of the statistic proposed by
DerSimonian and Laird (18) in the context of meta-analysis:

where . Under the null hypothesis of
no heterogeneity, X 2 follows a chi-squared distribution with

degrees of freedom. When we fail to
reject the null, we combine the city-specific estimates using
a fixed-effects model with weights and an esti-
mator of the form with variance,

.
If we reject the null, we fit a two-level Bayesian normal

hierarchical model (see, e.g., Daniels and Kass (19)),

with flat priors on φ, the overall coefficient vector, and D,
the between-city covariance matrix (i.e., p(φ)α1 and
p(D)α1). This model is fit using the Gibbs sampler and
gives similar results to random effects models (18) with
weights of the form for some estimate of
the between-city covariance matrix D.

Because the threshold model 3 assumes that the thresh-
old h is unknown, we implemented the following procedure
to jointly estimate θ and h within each city. First, we 
created a grid of possible thresholds, extending from 5
µg/m3 to 200 µg/m3 with a spacing of 5 µg/m3. Then, con-
ditional on each possible threshold in the grid, we fit model
3 in each city using the gam function, thus obtaining a set
of coefficients  of maximum like-
lihood estimates of θ, conditional on h. For each of the 20
cities, we then found the maximum likelihood estimate of h
by searching over the grid for the point that maximizes
the likelihood , and we set . This method
is equivalent to choosing the pair (θ(h),h) that maximizes

θ̂ ! θ̂1ĥ2l1θ̂1h2, h2
ĥ

5θ̂1h2, h ! 5, 10, ..., 2006

Wc ! 1D " Vc2
#1

132φ̂C  ! N1φ, D2

122φ̂C  ! N1φC, VC2

V1φ2 ! 1"cWc2
#1

φ ! 1"cWc2
#1"cWcφc

Wc ! Vc
#1

20x dim1φc2 # dim1φc2

φ ! 1"cVc
#12#1"cVc

#1φc

112X2 ! a
C
1φ̂C # φ2TVC

#11φ̂C # φ 2

the joint log likelihood, l(θ,h). We do not pool the coeffi-
cients across cities for the threshold model because coef-
ficients have different interpretations for different h.

We did not compute the covariance matrix for the coeffi-
cients and threshold jointly, or a standard error for the
threshold as for most cities, estimation of the threshold was
quite unstable and standard information-based approaches
failed. Consequently, to find an estimate of the overall
threshold, we chose the value, , which minimizes the
deviance (or equivalently, maximizes the log likelihood):

where with and
are the city-specific deviance and log-likelihood evalu-

ated at h, respectively. We consider h ranging in {0, 5, 10,
…, 75 µg/m3}, where 75 µg/m3 is the largest PM10 level for
which the parameters of the threshold model were identified
for all 20 cities. We consider the linear case (h ! 0) as a spe-
cial case of the threshold model when estimating the overall
h. To find a measure of uncertainty for the threshold, we first
calculate the following weights:

where wh measures the extent to which the data support the
hypothesis that h is the true threshold H ! {0, 5, …, 75}.
We then define a 95 percent credible set as 
wh ≥ 0.95}. The approach of computing the credible set for
the overall threshold using the weights, wh, is similar in con-
cept to inverting the likelihood ratio (see, e.g., (20)), and it
can be further justified by showing its connection to the
Bayesian information criterion (BIC) and posterior mode
probabilities. The BIC for a model M corresponding to a
threshold h, BIC(Mh), is given by Dev(h) " (number of
parameters) × log(sample size). The approximate posterior
probability of Mh, when also considering the models with
the other thresholds, is

The first equality holds if we assume that each threshold is
equally likely a priori. The second equality holds since all
models being considered here have the same number of
parameters. The weight wh can then be interpreted as an
approximate posterior probability of the model Mh.

In addition to obtaining an overall curve that draws infor-
mation from all cities, we also compared the models within
each city and over all cities to determine which best fits the

 ! wh

 !
exp1#0.5 $ Dev1h2 2

"15
j!0exp1#0.5 $ Dev15 * j2 2

 P1Mh 0data2 !
exp1#0.5 $ BIC1Mh2 2

"15
j!0exp1#0.5 $ BIC1M15$ j2 2 2

5 1hL,hU2:"h!hU
h!hL

 

wh !
exp1#0.5Dev1h2 2

a
h%H

exp1#0.5Dev1h2 2
; for h ! 0, p , 75,

lc1h2
Devc1h2Dev1h2 ! "cDevc 1h2 ! #2"clc1h2

ĥ ! arg min
h

 Dev 1h2

ĥ

θ̂c
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data. We used the Akaike information criterion (AIC) for
this purpose (21). The AIC for each model is a combination
of the deviance and the number of parameters in the model:
AIC ! deviance " 2(number of parameters). The second
term provides a penalty for models with more parameters.
The model with a lower value of AIC is preferred. To com-
pare the threshold and the linear models using AIC, we
exclude h ! 0 (linear) when we fit the threshold model.
However, to compute our overall estimate, we include h !
0 as a possible value.

RESULTS

Figure 1 gives city-specific and overall estimates and 95
percent confidence intervals for the PM10 effects under the
linear model. The results are reported using the mean of
concurrent day (lag 0) and previous day (lag 1) pollution
values. For all causes, there was an increase in mortality
with increasing level of PM10. Overall, the largest effect was
estimated for respiratory and cardiovascular mortality, with
an increase in mortality of 0.69 percent (95 percent confi-
dence interval (CI): 0.40, 0.98) for a 10-µg/m3 increase of
PM10. The estimates for total and other mortality were 0.54
percent (95 percent CI: 0.33, 0.76) and 0.34 percent (95 per-
cent CI: 0.17, 0.51), respectively. Table 2 reports point esti-
mates and 95 percent credible regions of the overall effects
of PM10 using concurrent day (lag 0) and previous day (lag
1) pollution levels and mean lag. The overall effects of PM10
are robust with respect to lag specification.

Figure 2 shows the spline dose-response curves for all
cause, cardiorespiratory, and other cause mortality for the
mean lag and lags 0 and 1. For total and cardiorespiratory
mortality, the spline curves are roughly linear, consistent
with the absence of a threshold. For mortality from other
causes, there appears to be little increase in risk until the
PM10 concentration exceeds 50 µg/m3. Thus, this curve sug-
gests that the threshold model (model 3) may be reasonable
for other-cause mortality. The shapes of the dose-response
curves do not change substantially for mean lag, lag 0, and
lag 1.

The tests for heterogeneity for the dose-response curves
across cities indicated heterogeneity for total and cardiovas-
cular and respiratory mortality for mean lag. The hetero-
geneity of the curves for mean lag and total mortality
appears in figure 3, which displays the overall curve and the
city-specific curves estimated from the Bayesian hierarchi-
cal model. Although there appears to be considerable het-

erogeneity across cities, the curves have similar shapes and
no one or two cities appear to dominate the estimate of the
overall curve.

The histograms in figure 4 show the posterior probabili-
ties (wh) of the thresholds (h) for each category of cause-spe-
cific mortality and for the mean of lag 0 and lag 1 PM10. The
posterior distributions of the thresholds are skewed to the
right for total mortality and cardiovascular and respiratory
mortality and skewed to the left for other causes of mortal-
ity. The posterior mode and 95 percent credible regions for
the threshold at lag 0 and lag 1 are summarized in table 3.
The posterior mode does not change substantially across dif-
ferent lags. Likelihood functions are more informative for
the mean lag than for lag 0 and lag 1 and, therefore, lead to
more reliable threshold estimates with narrower confidence
intervals. The threshold estimates ranged between about 15
and 65 µg/m3 PM

10
, corresponding approximately to the

10th and 80th interquartile ranges of the PM10 distributions
for most of the cities. The category of other-cause mortality
had the highest, most probable threshold, at 65 µg/m3 (95
percent credible regions: 55, 75). However, for cardiovascu-
lar and respiratory mortality, the data give more support to
low values of h (as 0, 5, 10 µg/m3) than for total mortality,
indicating that the threshold, if any, for cardiovascular and
respiratory mortality may be lower than the threshold for
total mortality. The posterior modes for the thresholds for
cardiovascular and respiratory mortality and for total mor-
tality were, respectively, 15 µg/m3 (95 percent credible
region: 0, 20) and 15 µg/m3 (95 percent credible region: 10,
20).

We more formally examined the hypothesis of linearity in
the PM10-mortality relation by comparing the AIC values
obtained under the linear, threshold, and spline dose-
response models. Table 4 shows the difference in the AIC
values between the threshold and linear models and between
the spline dose-response and linear models for lags 0 and 1
and for the mean lag for total, cardiovascular and respira-
tory, and other-cause mortality. Positive values of these dif-
ferences indicate that the linear model is preferred over the
threshold and spline models, respectively. To compare the
spline and the threshold models, the model with the smaller
AIC difference is preferred.

We can see that the spline model is never preferred at any
lag or type of mortality. In comparing the linear and thresh-
old models, we find that the linear model is preferred for all
cases except for the mean lag in the case of “other” mortal-
ity. This preference is consistent with visual assessment of

TABLE 2. Posterior means and 95% credible regions (numbers in parentheses) of the overall effects
(percentage increase in mortality per 10-unit increase in PM10*) at mean lag, lag 0, and lag 1 on total,
cardiovascular and respiratory, and other-causes mortality, 20 largest US cities, 1987–1994

Mean current and previous day
PM10 measure (mean lag)

Current day (lag 0)
Previous day (lag 1)

0.54 (0.33, 0.76)
0.41 (0.21, 0.66)
0.46 (0.27, 0.69)

Total
mortality

0.69 (0.40, 0.98)
0.48 (0.09, 0.88)
0.58 (0.34, 0.87)

0.34 (0.13, 0.55)
0.31 (0.01, 0.68)
0.25 (0.03, 0.48)

Cardiovascular and
respiratory mortality

Other-causes
mortality

* PM10, particulate matter <10 µm in aerodynamic diameter.
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FIGURE 2. Mortality-particulate matter <10 µm in aerodynamic diameter (PM10) dose-response curves for total (TOTAL) mortality, cardiovas-
cular and respiratory (CVDRESP) mortality, and other causes (OTHERS) mortality, 20 largest US cities, 1987–1994. The dose-response curves
for the mean lag, current day, and previous day PM10 are denoted by solid lines, squared points, and triangle points, respectively.

the spline dose-response curves for other causes of mortal-
ity.

DISCUSSION

The shape of the exposure-response relation between lev-
els of an environmental agent and risk for adverse effects
may have profound implications for developing regulations
to protect public health (22–24). Linear models are often
assumed on a biologic basis or for computational simplicity,
but nonlinear models may have plausibility as well, depend-
ing on the agent. For some environmental agents, for exam-
ple, ionizing radiation, there has been extensive considera-
tion for cancer risk of the shape of the dose-response or
exposure-response relation (25, 26).

For air pollution, the shape of the exposure-response rela-
tion for various adverse health effects, including mortality,
has also long been of interest as researchers have attempted
to supply useful evidence for policymakers seeking to min-

imize risk to public health. For the “criteria air pollutants,”
regulated under section 109 of the Clean Air Act, the admin-
istrator of the Environmental Protection Agency is required
to set standards that protect health with an “adequate margin
of safety.” This language provides a strong rationale for
exploring the shape of the exposure-response relation.
Approaches for doing so have included the fitting of thresh-
old linear models and various nonlinear models to observa-
tional data and the restriction of analyses to lower concen-
trations. In fact, the continued demonstration of adverse
effects of air pollution over recent decades, even as concen-
trations of pollutants have declined, suggests that exposures
have not yet gone below no-effect thresholds, if such exist.

For air pollution and daily mortality, the topic of this
report, a number of investigators have explored the shape of
the exposure-response relation (27, 28). These analyses
have been exclusively carried out within single locations
and consequently have limited statistical power to provide
evidence in support of a particular model versus alterna-
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FIGURE 3. Particulate matter <10 µm in aerodynamic diameter
(PM10)-total mortality dose-response curve for the mean lag PM10
and 95% credible regions (solid lines), 20 largest US cities,
1987–1994. Dashed lines denote the Bayesian estimates of the city-
specific dose-response curves.

tives. Additionally, many of the early studies used methods
that would no longer be considered optimal. In this paper,
we introduce and apply two statistical models, a spline dose-
response model and a threshold model, to daily time-series
data for the 20 largest US cities. By use of multiple loca-
tions, power is gained and generalizability is enhanced. We
also offer a method for characterizing the uncertainty of esti-
mated thresholds. Smith et al. (29) have used piecewise
polynomials and cubic splines to estimate nonlinear rela-
tions of particulate air pollution with mortality, but their
approach was limited to data for single locations.

For total and cardiovascular and respiratory mortality,
our findings suggest that there is no threshold, but for
other causes of mortality there is evidence for a threshold
level below which an effect is small for PM10. As
expected, the estimated threshold PM10 levels for cardio-
vascular and respiratory mortality and for total mortality
are lower than the threshold PM10 level for other-cause
mortality (15 µg/m3 and 65 µg/m3, respectively). The
model comparisons based on the AIC always choose the
log-linear dose-response model except for “other” causes
of mortality, with mean lag. The linear model was found
to be adequate for total and for respiratory and cardiovas-
cular mortality. Results were not sensitive to the lag spec-
ification for PM10.

The findings are consistent with analyses of daily time-
series data that have shown significant, positive associations

PM   (µg/m 

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75
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FIGURE 4. Posterior probabilities (wh) of the thresholds for each cause-specific mortality and for the mean lag particulate matter <10 µm in
aerodynamic diameter (PM10), 20 largest US cities, 1987–1994. TOTAL, total mortality; CVDRESP, cardiovascular and respiratory mortality;
OTHERS, other mortality.
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between particle levels and mortality counts at current con-
centrations (3, 27). While analytical details of the studies are
different, essentially all analyses have modeled log mortal-
ity as having a linear relation with particulate matter con-
centration. The general finding of a positive association
implies that any threshold or no-effect level lies at the lower
end of the concentration range. In fact, there is evidence of
increasing effect at lower concentrations (9, 15, 27).
Descriptive analyses have been consistent in showing
approximately linear relations as well (30, 31).

We note several limitations of our methodology that are
amenable to solution with further development. One limita-
tion of our estimation method for the threshold is that some
cities offered only vague information and, therefore, we
could not estimate city-specific thresholds very well or eval-
uate heterogeneity across cities in the threshold values. With
regard to the spline dose-response model, the number and
locations of the knots were fixed in advance. A small
improvement might be to jointly estimate the spline dose-
response curves and the number and location of the knots.
Methods need to be developed for this purpose. On the other
hand, we fixed the knots at reasonable locations in the span
of PM10 levels and had sufficient flexibility at concentra-
tions of public health concern.

The first limitation might be addressed using a two-level
hierarchical model. For example, the following second level
might be added to the current model 2:

where hc denotes the city-specific threshold, h the overall
threshold, and τ2 the between-location variability of the
thresholds. Model fitting could be performed using Monte
Carlo Markov chain techniques. If the threshold hc varies
substantially across cities, the 20-city average curve would
not have a threshold form but would tend to be smoother.
Hence, our analysis, which indicates that the linear dose-
response is preferred for total and cardiovascular and respi-
ratory mortality, does not exclude the possibility that thresh-
olds vary across the country. The second problem can be
addressed by extending the work in Denison et al. (32) on
Bayesian curve fitting and applying it within the context of
the two-level model.

The present results give an indication that the risk-free
levels of PM10 are likely lower than the National Ambient
Air Quality Standard for PM10. These findings indicate that
linear models without a threshold are appropriate for assess-
ing the effect of particulate air pollution on daily mortality,
even at current levels.
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