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Abstract 

In air pollution epidemiology, improvements in statistical analysis tools can translate into 

significant scientific advances, because of the unfavorable signal-to-noise ratios, and 

large correlations between exposures and confounders. Therefore, the use of a novel 

model selection approach in identifying time windows of exposure to pollutants that lead 

to adverse health effects is important and welcome. However, previous literature has 

raised concerns about approaches that select a model based on a given data set, and 

then estimate health effects in the same data assuming that the chosen model is correct. 

Problems can be particularly severe when: 1) the sample size is small for the magnitude 

of the true health effects to be detected; and 2) candidate predictors are highly 

correlated and likely to have a similar effect on the health outcome.  Bayesian Model 

Averaging (BMA) has been advocated as a way of estimating health effects accounting 

for model uncertainty. However, BMA might not be as effective for effect estimation as it 

has proven to be for prediction. This is because posterior model probabilities might not 

reflect the ability of the model to provide an estimate of the health effect properly 

adjusted for confounding. In studies of air pollution and health, the focus should ideally 

be on estimating health effects, accounting for the uncertainty in the adjustment for 

confounding factors, especially when model choice and estimation are performed on the 

same data. However, the development of appropriate statistical tools remains an area of 

open investigation. 

 

 



 1. Introduction 

In this issue of the Journal, Mortimer et al 2008 estimate the association between 

prenatal and lifetime exposures to air pollutants and pulmonary function measures in a 

cohort of children with asthma. They find large correlations between different pollutants 

as well as between different exposures time windows for the same pollutant. Therefore, 

rather than estimating the health effect of each exposure separately, they use a recently 

developed model selection procedure, the Deletion/Substitution/Addition algorithm 

(DSA) (Sinisi and van der Laan 2004) to identify the best predictive model, and base 

their conclusions about health effects on the model so selected. DSA is an iterative 

model-search algorithm, which optimizes global measures of prediction performance, 

here the mean squared error of residuals. Compared to stepwise model selection 

procedures, DSA has the advantages of being less sensitive to outliers, via the use of 

cross-validation during the search, and of allowing the search to move between 

statistical models that are not nested. 

 

Air pollution epidemiology is an area where progress in statistical modeling strategies 

can translate into significant scientific advances, because of the unfavorable signal-to-

noise ratios, and the number and correlation of both the exposures and the potential 

confounders exemplified in Mortimer et al. With this in mind, we welcome the thorough 

exploration of novel model selection approaches in a well conducted and statistically 

challenging study. However, we are also concerned about two potential issues: 1) is it 

safe to estimate health effects assuming that the best predictive model is correct? 2) 

How can one account for the uncertainty in the selection of population characteristics 

when estimating the association between an exposure and a health outcome? 

 

2. Potential Pitfalls of Model Selection followed by Estimation 

The authors’ implementation of DSA is ambitious: it aims to identify which among: a) 

exposures X;  b) population characteristics Z; c) functional form of the X; d) functional 

form of the Z; and e) interactions between the X and the Z lead to a model with the best 

predictive power. The chosen maximum model size is 10 terms, but the order of the 

interaction between covariates is up to 2, and the sum of the power of the polynomial 

function of each predictor is up to 3, leading to a large number of candidate terms for the 

algorithm to choose from. Health effect estimates and their variances are then obtained 

using GEE (see Table 3 of Mortimer et al) assuming that the selected model is correct.  



Previous literature has shown that approaches that select a model based on a given 

data set, and then estimate health effects in the same data assuming that the chosen 

model is correct, can lead to misleading inferences. These approaches can identify 

exposure variables that appear to have strong predictive power even in randomly 

generated data, for which there are no true health effects (Raftery, Madigan, and 

Hoeting,1997 and Draper 1995). In addition, confidence intervals of regression 

coefficients calculated after model selection can have poor statistical properties 

(Benjamini and Yekutieli, 2005, Thomas et al 2005). These problems can be particularly 

severe when: 1) the sample size is small for the magnitude of the true health effects to 

be detected; and 2) the candidate predictors are highly correlated and likely to have a 

similar effect on the health outcome.   

 

We illustrate these points using a simulation study modeled after Mortimer et al. For 232 

subjects, we generate the 8 pollutant-specific metrics: prenatal and lifetime exposure to 

CO, NO2, O3, and PM10, from a multivariate normal distribution with mean zero, 

variance one, and correlation matrix as in Table 2 of Mortimer et al. This table does not 

include correlations between prenatal exposures and pollutants and thus we assumed 

that these correlations are the same as those estimated for lifetime exposures. We 

generate a continuous outcome, for example FVC, from a linear regression model with 

intercept 1.95 (from Table 1 of Mortimer et al). We include all 8 predictors, as linear 

terms, in the true model, and we assume that they all have the same regression 

coefficient of 0.1 (model 1). Finally we assume that errors are independent and 

identically distributed as normal with mean zero and variance 1.  We then apply DSA 

using the inputs chosen by Mortimer et al (maxsize = 10, maxsumofpow = 3, 

maxorderint = 2, nsplits = 10). Table 1 shows the predictors that were identified by DSA 

and the estimates and 95% confidence intervals of the corresponding regression 

coefficients.  Even though all predictors have the same predictive power, DSA selects 

only lifetime exposure to PM10 and prenatal exposure of NO2. The estimates of the 

health effects of these two pollutant metrics are severely biased upward, and their 95% 

confidence intervals do not include the true value of  0.1. In this example, the chosen 

model may be useful for prediction, but its interpretation in terms of etiology would be 

misleading in two ways: it would fail to indicate that the pollutants have similar effects, by 

singling out one pollutant as predictive, and it would overstate the effect of that pollutant 

on the outcome. We repeated the simulation study assuming that the true regression 



model not only included all the linear terms, but also the quadratic and cubic terms of 

lifetime exposure to CO (model 2) with true regression coefficients  of 0.01 and 0.001, 

respectively. In this scenario (see Table 2), DSA selects the linear terms of prenatal 

exposures to O3 and NO2 and the linear terms of lifetime exposure to NO2 and O3. 

Again, the estimated regression coefficients of these four predictors are biased and their 

95% confidence intervals do not include the true values.  Although we recognize that we 

may have simulated data from a somewhat unfavorable, though not unrealistic, situation, 

these simulations results suggest caution in the interpretation of the results of Mortimer 

et al. A critical consideration in this discussion is the relation of the sample size to the 

number of candidate predictors. If we generate data with a 100-fold sample size of 

23200 under model 1, then DSA identifies all the correct predictors and provides 

unbiased estimates of the corresponding regression coefficients (Table 3).  

 

3. Model Uncertainty versus Adjustment Uncertainty 

The challenges highlighted in our simulations emphasize the importance of accounting 

for uncertainty arising from the variable selection stage when reporting health effects 

estimates. Bayesian Model Averaging (BMA) (George and McCulloch, 1993; Draper, 

1995; George and Clyde, 2004) has been advocated as a way of estimating health 

effects accounting for model uncertainty. BMA treats the true model as an unknown 

random variable and estimates health effects by a weighted average of model-specific 

health effects estimates using the posterior model probabilities as weights (Clyde 2000, 

Koop and Tole 2004). In Crainiceanu et al. 2008 we have demonstrated that BMA might 

not be as effective for effect estimation as it has proven to be for prediction.  In practice 

this can happen because the posterior model probabilities might not reflect the ability of 

the model to provide an estimate of the health effect properly adjusted for confounding. 

For example, large weights may be assigned to models that do not adequately adjust for 

confounders, leading to a biased estimate of the health effect. For example, consider an 

exposure X, an outcome Y, and two covariates Z1 and Z2. Assume that Z1 is 

independent from X, but a good predictor of Y, and that Z2 is highly correlated with X but 

a poor predictor of Y. Table 4 summarizes the three possible models and hypothetical 

weights that would be assigned based on both predictive ability and ability to estimate 

the health effects properly adjusting for confounding.  BMA is likely to assign a high 

weight to models that do not include Z2 and therefore would provide a biased estimate 

of the health effect. Because the goal of inference is to obtain an estimate of the health 



effect, the confounder Z2 needs to be included into the model. Standard BMA can over- 

or under-estimate health effects, depending on the correlations of the variables involved. 

Here, when BMA is applied to the simulated examples above, the health effect estimates 

are higher than the true ones for 6 out of 8 pollutants. The 95% posterior intervals are 

larger than DSA, with 3 of the 8 intervals including 0, but 2 of the 8 intervals are still 

failing to include the true value of 0.1. We used the implementation in the package in R 

with default settings, constraining exposures to be included in all models.  

 

Our view is that in studies of air pollution and health, it is important to focus on 

estimating health effects that are properly adjusted for all the confounding factors 

(Dominici et al 2004), including exposure to other pollutants. Ideally, adjustment 

uncertainty should be fully incorporated into statistical inference whenever estimation is 

sensitive to model choice, especially when model choice and estimation are performed 

on the same data. However, the development of appropriate statistical tools to achieve 

this goal is still in progress. In the case of a single exposure, in Crainiceanu et al. 2008 

and in Wang et al 2008, we discuss an approach to estimate a health effect accounting 

for uncertainty in the confounding adjustment. Similar methods for multiple exposures, 

as would have been required in Mortimer et al, are not available.  

 

4. Concluding thoughts 

Mortimer et al. present interesting results on the association between lifetime and 

prenatal exposure to air pollution and pulmonary functions in a cohort of asthmatic 

children. The authors used an innovative model search approach to select the exposure 

variables that lead to the best predictive model. In doing so they faced a challenge 

common in environmental epidemiology, where the health effects to be estimated are 

small and both the exposure variables and the potential confounders are correlated. In 

this context, using ambitious model selection methods that can search efficiently through 

a large number of possible models may illuminate on important novel directions for 

etiological research. However, inference that ignores the biases and uncertainty in the 

selection of predictors may lead to inflated effects and overly optimistic estimates of 

precision. Therefore, unless the sample size far exceeds the number of potential terms 

in the model, findings of this type of analysis require further validation. 
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Table 1: Selected predictors and point estimates and 95% CI of the corresponding 

regression coefficients, data are generated from model 1, sample size =232. 

Predictor Point Estimate 95% C.I. 

10
.PML  0.320 (0.188, 0.453) 

2
.NOP  0.274 (0.143, 0.405) 

 

 

Table 2:  Selected predictors and point estimates and 95% CI of the corresponding 
regression coefficients, data are generated from model 2, sample size =232. 

Predictor Point Estimate 95% C.I. 

3
.OP  0.312 (0.159 0.465) 

2
.NOP  0.239 (0.067 0.411) 

2
.NOL  0.280 (0.105 0.456) 

3
.OL  0.301 (0.145 0.456) 

 

 

Table 3: Selected predictors and point estimates and 95% CI of the corresponding 

regression coefficients, data are generated from model 1, sample size =23200. 

Predictor Point Estimate 95% C.I. 

10
.PML  0.099 (0.080 0.119) 

2
.NOL  0.103 (0.078 0.127) 

3
.OP  0.102 (0.084 0.120) 

COL.  0.102 (0.081 0.124) 

COP.  0.120 (0.098 0.142) 



10
.PMP  0.113 (0.095 0.132) 

3
.OL  0.090 (0.072 0.109) 

2
.NOP  0.088 (0.063 0.112) 

 

 

Table 4: Toy example 

Regression Models Weights based 

on prediction 

Weights based on 

estimation 

y = x + 1z1 0.9 0.0 

y = x + 2z2  0.0 0.9 

y = x + 1z1 + 2z2  0.1 0.1 

 


