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S

We propose a novel approach to estimating the mean difference between two highly
skewed distributions. The method, which we call smooth quantile ratio estimation,
smooths, over percentiles, the ratio of the quantiles of the two distributions. The method
defines a large class of estimators, including the sample mean difference, the maximum
likelihood estimator under log-normal samples and the L -estimator. We derive asymptotic
properties such as consistency and asymptotic normality, and also provide a closed-form
expression for the asymptotic variance. In a simulation study, we show that smooth
quantile ratio estimation has lower mean squared error than several competitors, including
the sample mean difference and the log-normal parametric estimator in several realistic
situations. We apply the method to the 1987 National Medicare Expenditure Survey to
estimate the difference in medical expenditures between persons suffering from the smoking
attributable diseases, lung cancer and chronic obstructive pulmonary disease, and persons
without these diseases.

Some key words: Comparing means; Health expenditure; Log-normal; Order statistic; Q–Q plot; Regression
spline; Smoking.
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1. I

This paper is motivated by the question of how to compare medical expenditures
between cases, who are persons with lung cancer or chronic obstructive pulmonary disease,
and controls, who are persons without a major smoking attributable disease in a given
year; that is, we seek to estimate the difference D=E(Y1 )−E(Y2 ), where Y1 and Y2 are
random variables representing the expenditures for a case and a control, respectively. We
estimate D from the 1987 National Medical Expenditure Survey (National Center for
Health Services Research, 1987), which provides data on annual medical expenditures and
disease status for a representative sample of U.S. non-institutionalised adults.
Two special features of these data are that, in each group, the distribution of the nonzero

medical expenditures is highly positively skewed, see Fig. 1, and that there are far fewer
cases than controls, the two sample sizes being 118 and 2262.
Other concerns that arise in studying expenditure data include the existence of a signi-

ficant fraction of zero expenditures, right censoring and lack of independence among
observations within clusters (Lipscomb et al., 1999). The general problem of comparing
costs among two or more groups is discussed by for example Duan (1983), O’Brien (1988),
Fenn et al. (1996), Lin et al. (1997), Hlatky et al. (1997), Lin (2000) and Tu & Zhou (1999).

Fig. 1. Histrograms of nonzero Medicare medical expenditures for
the 1987 National Medical Expenditure Survey with and without a
logarithm transformation, and for individuals in the case and control
groups. For clarity of exposition the histogram of the expenditures has
been truncated at the top. The solid curves in (c) and (d) are density
functions from Normal distributions with means n@1=n−1
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Let y
11

, . . . , y
1n
1

and y
21

, . . . , y
2n
2

be the observed nonzero costs in the case and control
groups. An obvious estimator of D is the difference in sample means y:1−y:2 where
y:g=n−1

g
Wngi=1

y
gi
(g=1, 2). However, with highly skewed distributions, this unbiased

estimator suffers from sensitivity to extremely large observations.
An obvious approach is to try a log-normal model, in which log y

gi
~N(n

g
, s2
g
), for

i=1, . . . , n
g
and g=1, 2, and now D=exp (n

1
+s2
1
/2)−exp (n

2
+s2
2
/2) (Aitchison & Shen,

1980). The maximum likelihood estimator of D is biased (Zellner, 1971), but has reduced
variability relative to the sample mean difference. Zhou et al. (1997) and Zhou & Gao
(1997) have studied methods for testing the null hypothesis that D=0 under the log-
normal model.
However, in most applications involving expenditures, including the particular context

that has motivated this work, the symmetry implicit in the log-normal model is not based
upon any meaningful mechanism and is not likely to be realistic: the shape of the left-
hand tail is determined by administrative actions that control access to care, small
charges that can occur for prescriptions, and minor preventative services; the shape of the
right-hand tail is determined by occurrence of major diseases and traumatic events such
as myocardial infarctions, strokes and so on. Since distinct processes influence each tail,
we should not a priori expect them to have the same shape.
Deviations from the log-normal model are plainly seen in a quantile–quantile plot.

Under the log-normal model, the logarithms of the quantiles from each distribution satisfy
the linear equation

log Q
1
( p)=An1− s1s

2
n
2B+ s1s

2
log Q

2
( p), (1)

where, for 0<p<1, Q1 ( p) and Q2 ( p) are the quantile functions for the case and control
groups respectively. Figure 2 displays the sample Q–Q plot of the log expenditures for
the cases versus those for the controls, as well as the bold straight line corresponding to
the maximum likelihood estimates of the log-normal parameters for each sample. The
Q–Q plot clearly deviates from linearity.

Fig. 2. Quantile–quantile plot of log nonzero Medicare
expenditures for cases and controls. The bold straight
line is the Q–Q plot if each sample is assumed to
come from a log-normal model with parameter values

estimated by maximum likelihood.
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In general, we might assume that Q1 ( p) is an arbitrary function of Q2 ( p), that is
Q1 ( p)=g{Q2 ( p)} or equivalently F1 (y)=F2{h(y)}, where F

g
(y) (g=1, 2) are the cumulative

distribution functions of Y1 and Y2 . Doksum & Sievers (1976) define h ( . ) as the amount
of ‘shift’ needed to bring the first sample Y1 up to the second Y2 in distribution; for example,
we might assume Q1 ( p) to be a smooth function of Q2 ( p) with l degrees of freedom,
Q1 ( p)=s{Q2 ( p), l}, where s is a parametric or nonparametric smoother.
Instead, we assume that the log quantile ratio is a smooth function of the percentile p

with l degrees of freedom:

logqQ1 ( p)

Q
2
( p)r=s( p, l) (0<p<1). (2)

The basic idea of smooth quantile ratio estimation is to replace the empirical quantiles
QC1 ( p) and QC2 ( p) with smoother and less variable versions obtained by smoothing the
log-transformed ratio of the two quantile functions across percentiles. This produces an
estimator of D that tends to be less variable than the sample mean difference but with
small bias. For different distributional assumptions, shapes of s( p, l) and choices of l,
smooth quantile ratio estimation encompasses a rich class of estimators including the
sample mean difference, the maximum likelihood estimator under log-normal samples
and L -estimators.
The method has three possible advantages over the shift estimator when estimating D.
First, the procedure of the shift estimator does not treat the two quantile functions
symmetrically, as would be natural when the target for inference is D. Secondly, the smooth
function s would take arguments on the positive real line making the choice of l critical.
Instead, smooth quantile ratio estimation ‘spends’ its degrees of freedom l over the interval
(0, 1) rather than over the real line, and hence imposes stronger smoothness constraints
in the tails where little information is available in our smaller sample. Thirdly, if we
then use the fitted values from the smoothed Q–Q plot to calculate DC , this estimator
is asymptotically equivalent to the difference in the sample means. This is because, for
large samples, the fitted values of the smoothed Q–Q plot are estimates of the empirical
quantile functions and therefore the average of these fitted values will reproduce the
sample mean.

2. S   

2·1. Definition

Let Y1 and Y2 be two positive random variables, with cumulative distribution functions
F1 and F2 , and define Q1 and Q2 to be the corresponding quantile functions so that
Q
g
( p)=F−1

g
( p) and F

g
{Q
g
( p)}=pr{Y

g
∏Q
g
( p)}=p, for g=1, 2 and 0<p<1. Our goal

is to estimate

D=E(Y
1
)−E(Y

2
)=P 1

0
{Q
1
( p)−Q

2
( p)}dp (3)

under the assumption that the ratio of the quantiles is a smooth function of the percentiles
with l degrees of freedom:

logqQ1 ( p)

Q
2
( p)r=s( p, l) (0<p<1). (4)
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Equations (3) and (4) lead to

D=P 1
0

Q
1
( p)[1−exp{−s( p, l)}]dp=P 1

0
Q
2
( p)[exp{s( p, l)}−1]dp. (5)

2·2. Estimation approach

Let y
1
= (y
11

, y
12

, . . . , y
1n
1

) be a random sample of size n1 from F1 , and let
y
2
= (y
21

, y
22

, . . . , y
2n
2

) be a random sample of size n2 from F2 . We define y
(g)
=

(y
g(1)

, y
g(2)

, . . . , y
g(n
g
)
) to be the order statistics for the sample from F

g
. We first estimate D

for the case n1=n2=n, and then extend our definition to the more common situation,
n1%n2 .
First, we define a regression model for s( p, l) and we use it to smooth the observed

log ratios log (y
1(1)

/y
2(1)

), . . . , log (y
1(n)

/y
2(n)

) across percentiles. This is the parametric
part. Secondly, we estimate D by using the smoothed quantile ratios and nonparametric
estimates of F1 and F2 . The two steps are detailed below.

Step 1. We impose a smoothness assumption for s( p, l) by assuming a regression model:

logAy1(i)y
2(i)
B=s( p

i
, b)+e

i
(i=1, . . . , n), (6)

where s( p
i
, b)=Wl

j=0
B
j
( p
i
)b
j
, p
i
= i/(n+1), and B

j
( p) are orthonormal basis functions,

with B0 ( p)=1. We estimate b by (b@0 , b
@
1 , . . . , b

@
l
) by ordinary least squares, although

alternative methods could be substituted.

Step 2. We define

u
1
= (u
11

, . . . , u
12n

)= (y
1(1)

, . . . , y
1(n)

, y*
1(1)

, . . . , y*
1(n)

),

u
2
= (u
21

, . . . , u
22n

)= (y
2(1)

, . . . , y
2(n)

, y*
2(1)

, . . . , y*
2(n)

)

to be samples of size 2n, where y*
1(i)
=y
2(i)
exp{s( p

i
, b@ )}, y*

2(i)
=y
1(i)
exp{−s( p

i
, b@ )}, and

s( p
i
, b@ ) are the fitted values for the regression model (6). We estimate D by

DC SQ (u1 , u2 , l)=u:1−u:2

=
1

2n
∑
n

i=1
y
1(i)

[1−exp{−s( p
i
, b@ )}]+

1

2n
∑
n

i=1
y
2(i)

[exp{s( p
i
, b@ )}−1]. (7)

The estimator DC SQ (u1 , u2 , l) is then the sample mean difference between the two extended
samples u

g
(g=1, 2), by which we mean the vector of actual observations y

(g)
augmented

with the transformed values from the other sample y*
(g)

. Two desirable properties are
immediately evident. The estimator is symmetric in the two samples: DC SQ (u1 , u2 , l)=−DC SQ (u2 , u1 , l). Furthermore, D

C
SQ (u1 , u2 , l) can be viewed as a linear combination of order

statistics, but with weights estimated from the data, and thus it is related to L -estimation
(Huber, 1996, pp. 16–20; Serfling, 1980, Ch. 8).
To simplify the notation, we will denote DC SQ (u1 , u2 , l) by D

C
SQ (l). Note that if l=n then

the basis functions in (6) can be chosen so that s( p, b@ ) interpolates the values log(y
1(i)

/y
2(i)
).

In this case, we treat the two samples as independent, and DC SQ (l) reduces to the difference
in sample means y:1−y:2 .
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In the motivating application, n1 is much smaller than n2 so the order statistics from
the two samples do not line up perfectly. In this case we calculate DC SQ (l) with y2 replaced
by q2 , the linear interpolant of the order statistics y

2(i)
at the grid of points p

1i
= i/(n1+1),

for i=1, . . . , n1 , with a similar modification if n1>n2 .

2·3. Special cases

For different shapes of s( p, b), choices of the basis functions B
j
( p) and specifications

of the parametric cumulative distribution functions, smooth quantile ratio estimation
encompasses a large class of estimators.

Example 1. If Y
g
~Un[0, h

g
], for g=1, 2, then Q1 ( p)/Q2 ( p)=h1/h2 and D= (h1−h2 )/2.

The smooth quantile ratio estimator of D, denoted by DC SQ (Un, l=0), is obtained by fitting
the regression model (6) with B0 ( p)=1 and B1 ( p)=0, and using s( p

i
, b@ )=b@0= l:1− l:2 ,

where l= log y in equation (7). This leads to

DC SQ (Un, l=0)=12[y:1{1−exp(−b
@
0 )}−y:2{1−exp(b

@
0)}].

Note that DC SQ (Un, l=0 ) is not the maximum likelihood estimator of D, which is equal
to (y

1(n)
−y
2(n)
)/2.

Example 2. If Y
g
~(n

g
, s
g
), for g=1, 2, then log{Q1 ( p)/Q2 ( p)}=b0+b1W−1 ( p),

where W−1 ( p) is the quantile function of the N (0, 1) random variable, b0= (n1−n2 ),
b1= (s1− s2 ) and D= exp(n1+ s21/2)−exp (n

2
+s2
2
/2). The smooth quantile ratio esti-

mator of D, denoted by DC SQ (, l=1), is obtained by fitting the regression model (6)
with B0 ( p)=1 and B1 ( p)=W−1 ( p), and using s( p

i
, b@ )=b@0+b

@
1W−1 ( pi ) in equation (7).

Note that DC SQ (; 1) is not the maximum likelihood estimator of D, which instead is
defined as =exp( l:

1
+h2
1
/2)−exp( y:2+h2

2
/2), where l= log y and h is the standard

deviation of the log-transformed data. Also note that, if s1=s2 , then s( p, l) is constant
in p and equal to b0 .

3. A 

The smooth quantile ratio estimator is nearly an L -estimator except that the weight
function applied to the empirical quantile function is stochastic instead of deterministic.
In this section we derive the asymptotic distribution of smooth quantile ratio estimation
by extending standard results from L -statistic theory.

T 1: Consistency and asymptotic normality of b@ . Assume that n1 , n2� 0 and there
exist M, b1 , b2 and d>0 such that
(i ) |log F−1

g
( p)|∏Mp−D+b

1
+d (1−p)−D+b

2
+d, for g=1, 2;

(ii ) the basis functions |B
j
( p) | are continuously diVerentiable on (0, 1) and |B

j
( p) |∏

Mp−b
1
(1−p)−b

2
.

T hen b@
j
is strongly consistent for b

j
, for j=0, 1, . . . , l. If, in addition,

lim
n
1
,n
2
�2
{n
1
/(n
1
+n
2
)}

exists and is in the interval (0, 1), then b@−b asymptotically has a multivariate normal
distribution with mean 0 and covariance matrix S= (s

ij
), where

s
ij
=A 1n

1
+

1

n
2
B P 1
0
P 1
0

{min ( p, q)−pq}B
i
( p)B
j
(q)dp dq.
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Remark 1. For consistency alone, the condition (i) can be replaced by the less stringent
condition
(i∞) ∆ |log Y

g
|rdF
g
(x)<2, |log F−1

g
( p) |∏Mt−1+b

1
+d (1−t)−1+b

2
+d, for g=1, 2.

Proof of T heorem 1. The consistency and asymptotic normality of the b@
j
’s follow

as a corollary to the L -statistic results of Shorack (1972) and Wellner (1977). The
Cramer–Wold device is applied to show that b@−b has an asymptotic multivariate normal
distribution. %

T 2: Asymptotic normality of smooth quantile ratio estimation. Assume that
n1 , n2�2 and that l

g
= lim

n
1
,n
2
�2
{n
1
/(n
1
+n
2
)} exists and lies in (0, 1). Suppose there

exist M, b and d>0 such that the following conditions hold for g=1, 2, j=1, 2, . . . , l and
all pµ(0, 1):
(i ) F−1

g
∏M{p(1−p)}−b+d and |log F−1

g
|∏M{p(1−p)}−D+d;

(ii ) exp{(−1)g Wl
j=1
b
j
B
j
( p)}∏M{p(1−p)}−D+b;

(iii ) |B
j
( p) |∏M{p(1−p)}−d/(d+2).

T hen √n (DC−D ) is asymptotically normal with mean 0 and variance s2, where

s2=P 1
p=0
P 1
q=0

{min ( p, q)−pq}{l
1
g
1
( p)g
1
(q)+l

2
g
2
( p)g
2
(q)}dp dq, (8)

g
g
( p)=

F−1
g

( p)+1
2
[F−1
1

( p)+F−1
2

( p)−∆1
0
Wl
j=1

B
j
(q){F−1

1
(q)+F−1

2
(q)}dq]

(−1)gF−1
g

( p) f
g
{F−1
g

( p)}
.

A sketch of the proof is found in the Appendix; details are available in L. Cope’s 2003
Ph.D. thesis from Johns Hopkins University.
Expression (8) appears unwieldy but is straightforwardly calculated. In § 4 we use

adaptive quadrature to calculate this asymptotic variance expression in one special case,
and we demonstrate that it gives a good approximation.
All of the conditions in Theorem 2 are easily interpreted. They simply require that the

quantile functions, the log quantile functions, the quantile ratio, its reciprocal and the basis
functions do not grow too rapidly as p� 0 and p� 1. A similar comment can be made
about the conditions in Theorem 1. These assumptions are all made in order to ensure
the square integrability of the smoothed estimates of the quantile functions, which involves
a second moment condition on the random variables Y and log Y . The final assumption
in Theorem 1 ensures that the two sample sizes converge in a smooth way.
Many distributions with finite second moments and relatively smooth quantile functions

satisfy these criteria, including the log-normal family. It can be easily shown that a finite
mixture distribution will satisfy these conditions if and only if all of the individual distri-
butions do. The log quantile function of an exponential distribution is not integrable, and
therefore does not satisfy the conditions. However, simulation studies in L. Cope’s thesis
indicate that when both samples are drawn from the exponential distribution it is possible
to calculate the smooth quantile ratio estimator and its asymptotic variance, with good
agreement for large samples.

Example 3. If both samples are drawn from log-normal distributions, then the smooth
quantile ratio estimator is consistent and asymptotically normal. In this case,

F
g
=WA log x−m

g
s
g
B , F−1

g
=exp{m

g
+s
g
W−1 ( p)}, log F−1

g
=m
g
+s
g
W−1 ( p).
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The log quantile ratio is a linear function of W−1 ( p), so that a natural orthonormal basis
is B0¬1 and B1=W−1 ( p).

Example 4. If both samples are drawn from Pareto distributions, for which F(x)=
1−bax−a and a>2, then the smooth quantile ratio estimator is strongly consistent and
asymptotically normal. The Pareto distribution is an interesting example for the method
because it is very heavy-tailed, and has a finite kth moment only if the shape parameter
a�k. Its density function is f (x)=abax−a−1, where x�1 and a, b>0. The log quantile
function is given by log F−1 ( p)= log b− log(1−p)/a, leading to the two basis functions
B0 ( p)¬1 and B1 ( p)= log (1−p). Note that the orthonormalised version of B1 is equal
to {log(1−p)+1}/√3.

4. S   

The simulations in this section demonstrate that DC SQ (l) often has substantially lower
mean squared error and bias than commonly used estimators of D, such as the maximum
likelihood estimator for log-normal populations and the sample mean difference. We
also investigate the performance of the asymptotic variance of the smooth quantile ratio
estimator in equation (8). At the end of the section we apply the method to the data
represented in Figs 1 and 2.
As mentioned above, when l=n the smooth quantile ratio estimator is asymptotically

equivalent to the difference between sample means. To obtain improved mean squared
error, the smoothing parameter l must be small compared to n. So far we have treated l
as a prespecified parameter, but in practice one may prefer to estimate the value. To
estimate l we use a B-fold crossvalidation method (Efron & Tibshirani, 1993, p. 240)
which minimises

(l)= ∑
B

b=1
{(y: (b)1 −y: (b)2 )−DC (−b)SQ,l}2, (9)

where (y: (b)1 −y: (b)2 ) is the sample mean difference applied to the two bth random subvectors
for the cases and the control, as the training sets, and DC (−b)SQ,l is the smooth quantile ratio
estimate obtained from the rest of the data. We choose B=10 and we minimise (l) for
l=1, 2, 4, 6, 8.
For the simulations, data are generated under five scenarios, A–E. Under each scenario,

we compare bias and variance properties of the following six estimators of D: DC SQ (l
@ ),

where l@ is estimated by minimising (l) in equation (9); DC SQ (l= 2); D
C
SQ (l= 4 ); the

smooth quantile ratio etimator under the assumption that the two populations are log-
normal DC SQ (, 1); the maximum likelihood estimator under the log-normal model ;
and the sample mean difference y:1−y:2 . Table 1 and Fig. 3 summarise the five scenarios
studied. In scenarios A, B and C, the population-2 distribution is log-normal with normal
mean n2=7 and normal standard error s2=1·5. These parameters were chosen to approxi-
mate roughly the sample statistics from the medical expenditures datasets for non-diseased
subjects. In scenario A, population 1 is also log-normal, with larger parameter values
n1=7·5 and s1=1·75. In scenarios B and C, population 1 differs from population 2
by the functions s( p) shown in Fig. 3, chosen to represent a range of plausible shapes.
We next studied DC SQ (l)’s performance for the real-data application. Scenario D, the log
quantile functions of which are pictured in Fig. 3(d) with a dark solid line, contrasts the
distributions of nonzero medicare expenditures for cases and controls. In scenario E, we
assume that both populations have Gamma distributions with finite second moments.
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Table 1. Description of the sampling mechanisms used under
each simulation study scenario. In scenario D, FC

g
(g=1, 2)

are the empirical cumulative distribution functions of the
nonzero Medicare expenditures for patients in the case
and control groups, and, in scenarios B and C, g(y)=

exp{7+W−1 (y)1·5}

Scenario Population 1 Population 2 n1 n2
A  (7·5, 1·75) (7, 1·5) 100 1000
B u~Un(0, 1], y

1
=g(u)es

B
(u) (7, 1·5) 100 1000

C u~Un(0, 1], y
1
=g(u)es

C
(u) (7, 1·5) 100 1000

D FC1 y2~FC2 100 1000
E Ga(2·5, 2·5/y:1 ) Ga(2·5, 2·5/y:2 ) 100 1000

Fig. 3. Theoretical, (a)–(c), and empirical (d), s( p) curves. In (d), the solid curve is log( y
1(i)

/q
2(i)
) plotted

at the percentiles p
1i
= i/(n1+1), for i=1, . . . , n1 , where q

2(1)
, . . . , q

2(n
1
)
are the order statistics of the

y
21

, . . . , y
2n
2

interpolated at percentiles p
1i
. The vertical segments represent 95% pointwise bootstrap
confidence intervals.
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We generated 1000 datasets for each scenario, and we compared estimators with equal
sample sizes n1=n2=100 and unequal samples with n1=100, n2=1000. The results were
qualitatively similar and hence we report only the unequal case. For each dataset, we
implement our method with l=2, l=4 and l=l@ estimated by crossvalidation. In all
cases natural cubic splines are used as basis functions. These results show that DC SQ has a
smaller mean squared error than either y:1−y:2 or the log-normal estimators. Table 2
presents the relative mean squared error, { (y:1−y:2 )− (DC )}/ (y:1−y:2 ), and the
relative bias, {E(DC )−D}/D, as percentages. Negative values for the relative mean squared
error imply that y:1−y:2 is preferred, and positive ones favour D

C
SQ .

Table 2: Simulation study. Mean squared error relative to y:1−y:2 defined by
[{ (y:1−y:2 )− (DC )}/ (y:1−y:2 )]×100, , and percentage bias relative to
y:1−y:2 defined by [{E(DC )−D}/D]×100, , under the data generation mechanisms
described in § 3. T he degrees of freedom l are estimated by the crossvalidation approach

illustrated in equation (9) for B=10

Scenario A Scenario B Scenario C Scenario D Scenario E
DC          

DC SQ (l
@ ) 58 −3 17 −6 8 11 14 4 0 0

DC SQ (2) 66 −9 28 −17 32 10 24 6 0 0
DC SQ (4) 59 −3 18 −5 21 10 20 2 0 1
DC SQ (, 1) 66 −3 29 −23 −436 47 −201 45 −1 1
 65 7 22 −27 −3725 131 −1393 112 −28 4

 (y:1−y:2 ) 17827 51555 1390 6090 500
D 4982 15225 5244 7144 7144

In scenario A, when both populations are log-normal, DC SQ (l
@ ) and DC SQ (l) for l=2

and l=4 are approximately 60% better than y:1−y:2 . Note that the smooth quantile
ratio estimates perform better even than the log-normal maximum likelihood estimate,
which in this case is asymptotically efficient.
In scenario B, the five estimators have comparable performance and they are all superior

to the sample mean difference. In scenarios C and D, both DC SQ (, 1) and  perform
very poorly because of the substantial nonlinearity of s( p) whereas the smooth quantile
ratio estimators are 20% to 30% better than the sample mean difference. Finally, for the
empirical scenario D, the smooth quantile ratio estimators are 10% to 20% better than
the sample mean difference, and again the log-normal estimator performs very poorly. In
scenario E, the maximum likelihood estimator of D is the sample mean difference, the
smooth quantile ratio estimator’s performance is similar to that of the maximum likelihood
estimator, and much better than that of the log-normal maximum likelihood estimator.
Table 2 also displays relative biases, showing that DC SQ (l) has small biases in the cases
considered. As expected, the bias of DC SQ (, 1) is small only when s( p) is almost constant.
Finally, except in scenario A when the two populations are log-normal, the  estimator
is badly biased.
We also varied the choice of the basis functions. For each of the datasets, and for each

scenario, we estimated s( p) using natural cubic splines, smoothing splines and polynomials.
These estimates are all quite close to each other and to the true s( p), results not shown.
We compared the asymptotic variance in equation (8) with the sample variance under

scenario A for several sample-size specifications. Results shown in Table 3 indicate good



553Smooth quantile ratio estimation

Table 3. Estimates of the asymptotic variance s2 in equation (8)
and of the sample variance, s@2, when y1~ (7·5, 1·75) and

y2~ (7, 1·5) corresponding to scenario A with n2/n1=10

n1+n2
10 50 100 1000 2000 2500 10000

s@2 44826·40 15189·20 10127·80 2811·50 1945·10 1745·70 856·60
s2 19294·00 12203·20 8628·90 2728·70 1929·50 1725·80 862·90

agreement between the two variance estimators. L. Cope’s Ph.D thesis shows that the
results for the uniform, log-normal and Pareto samples also display good agreement
between the asymptotic and the sample variance for moderate to large samples.
Finally, we estimate the mean difference between annual Medicare expenditures for
cases and controls in the real data. Of course not all of those with lung cancer and
chronic obstructive pulmonary disease are smokers. Since medical expenditures may be
different for smokers and nonsmokers, we therefore partition the subjects according
to smoking status and analyse them separately, as well as estimating the overall mean
difference. Figure 4 shows boxplots of 500 bootstrap estimates of D for all subjects and
for the smokers alone. Estimators used are those compared in the simulation study. As
in the simulation results, the smooth quantile ratio estimator is far more efficient than the
selected competitors. In addition, the nonlinearity of the estimated s( p

i
, b), see Fig. 3(d),

also suggests that the maximum likelihood estimator, , is likely to be biased. Estimates
for the smokers are slightly larger than for everyone.

Fig. 4. Boxplots of 500 bootstrap samples of the estimated mean differences DC of Medicare expenditures
for people with and without smoking-attributable diseases. Results are reported (a) for everyone in the
sample (n1=118, n2=2262) and (b) for smokers only (n1=112, n2=980). The labels denote the smooth

quantile ratio estimates defined in Table 2 and  denotes the sample mean difference.
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5. D

The software for implementing the method, the data for reproducing all the analyses
reported in this paper, details of the asymptotic properties and extensions to the regression
case are all available at http://biostat.jhsph.edu/~fdominic/square.html.
The idea of linking two samples in a semiparametric model is obviously not new.

Perhaps the most famous and influential example is the Cox proportional hazards model
(Cox, 1972) where the target is the hazard ratio. A second example is the density ratio
model of Qin & Zhang (1997). Here, the ratio of densities f (x)/g(x) is assumed to be a
smooth function of x. This model would lead to an estimator of the mean difference that
is analogous to ours but where a smooth function of the unordered data is used in
equation (7) rather than a smooth function of the order statistics.
We have investigated how to generalise our theoretical results to the case where l is
unknown and needs to be estimated using crossvalidation. It can be shown that, with
probability converging to 1, generalised crossvalidation selects a large enough number
of basis functions and consistency is retained. However, in this same situation we are
not able to prove asymptotic normality and simulation studies suggest that asymptotic
normally fails to hold.
As an alternative to our method, we could assume that Qlog Y

1

( p)=s{Qlog Y
2

( p), l}, and
estimate D by using the fitted values of the Q–Q plot. We included this estimator in our
simulation study, but found it not to be as efficient as smooth quantile ratio estimation.
Our analysis of medical expenditures allows smoking status to modify the effect of
disease on expenditures. We examine this modification effect by first stratifying the cases
and the controls with respect to their smoking status, and then applying our methods
separately to smokers and nonsmokers, within each group. A more desirable goal would
be to compare medical expenditures for cases and controls taking into account individual-
level characteristics x. In this case smooth quantile ratio estimation can be extended to
the regression case by assuming that

log Q
1
( p; x)= log Q

2
( p; x)+s( p; x). (10)

To control for systematic differences in covariates between two populations, a common
strategy is to group units into subclasses based on covariate values, for example using
propensity score matching (Cochran & Rubin, 1973; Rubin, 1973), and then to apply our
method within strata of propensity scores. The extension of smooth quantile regression
estimation to the regression case and a comparison with common econometric models such
as two-part log-linear regression models (Duan, 1983) are described in a technical report
by F. Dominici and S. Zeger, available at http://www.bepress.com/jhubiostat/paper16/.
In clinical trials our approach can be used to estimate treatment effects that vary
smoothly with respect to the percentiles of the health outcome. If Y has a more nearly
symmetric distribution, rather than smoothing the log ratio of the quantiles, we can smooth
their difference; that is, we can assume that Q1 ( p)−Q

2
( p)=s( p). Under this model, we

estimate the treatment effect, D, by ∆ s( p)dp. The plot of the estimated s( p) versus p is also
informative for identifying the outcome percentiles where the treatment is mostly effective.
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A

Sketch of proof of T heorem 2

To show that DC−D asymptotically has a normal distribution we use the von Mises functional
d-method (Serfling, 1980, Ch. 6). To implement this method, we first establish the asymptotic
equivalence between the smooth quantile ratio estimator and the functional T (F1 , F2 ) defined below.
The proof of asymptotic equivalence is detailed in L. Cope’s thesis. Secondly, we expand the
functional in a one-term Taylor series. The first derivative of the functional at the point (F1 , F2 )
converges to a Gaussian distribution. If the Taylor remainder term converges in probability to
zero, then the estimator, like the derivative, has a Gaussian limiting distribution. The necessary
assumptions, bounding conditions on components of the functional, are very similar to those
required to prove that L -estimators are asymptotically normal.
Our functional takes the form

T (F
1
, F
2
)=

1

2 P 1
0

F−1
1

( p)[1−exp{−s( p, b)}]dp+
1

2 P 1
0

F−1
2

( p)[exp{s( p, b)−1}]dp,

where

s( p, b)= ∑
l

j=0
b
j
B
j
( p), b

j
=P 1
0

B
j
( p)[ log{F−1

1
( p)}− log{F−1

2
( p)}]dp,

so that the functional version of the estimator is given by T (FC1 , FC2 ).
In using the differentiable statistical function approach, the largest task is to demonstrate that
the remainder,

R
1
=√n[T (FC )−T (F)−d

1
{T , F; √n(FC−F)}],

converges to zero in distribution, because then√n{T (FC )−T (F)} is equivalent to d1{T , F;√n(FC−F)}
and the asymptotic properties of the former can be derived from the latter. In the case of smooth
quantile ratio estimation,

d
1
{T , F; √n(FC−F)}=

√n

2 P 1
0

[F
1
{FC−1
1

( p)}−p]g
1
( p)dp+

√n

2 P 1
0

[F
2
{FC−1
2

( p)}−p]g
2
( p)dp.

Both√n[F
1
{FC−1
1

( p)}−p] and√n[F
2
{FC−1
2

( p)}−p] converge to Brownian bridges, so the derivative
asymptotically has a normal distribution with variance s2 as defined above.

Sketch of proof that the remainder converges to zero. At points in this proof it is necessary to
evaluate expressions like ∆1

p=0
FC−1 ( p)J

n
( p)dp, where FC−1 is an empirical quantile function and J

n
( p)

may also be data-dependent. In order to simplify treatment of these expressions, the following
lemma establishes conditions under which the range of integration can be truncated.

L A1. L et x1 , x2 , . . . , xn be a random sample. Suppose that FC−1 is the empirical quantile
function corresponding to these data, and let J

n
: (0, 1)�R be a possibly random function. Assume

that there exist positive constants M, b and d such that
(i) the quantile function F−1 ( p)∏M{p(1−p)}−b+d, and
(ii) the random function |J

n
(x) |∏[M{p(1−p)}−1/2+b]1+e

n
, where e

n
� 0 in probability.
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T hen, in probability,

T
n
=√nqP k/n

0
FC−1 ( p)J

n
( p)dp+P 1

(n−k)/n
FC−1J

n
( p)dpr� 0.

The proof is not included here.
We break the remainder up into several pieces and prove convergence separately for each piece.
Here R1 can be written as

R
1
=R
11
+R
12
+R
13
+R
21
+R
22
+R
23

,

where

R
11
=
√n

2 P 1
0
AFC−11 ( p)−F−1

1
( p)−

[FC
1
{F−1
1

( p)}−p]

f
1
{F−1
1

( p)} B [1−exp{−s( p, b)}]dp,

R
12
=−P 1

0
√nF−1
1

(q)qexp{−s(q, b@ )}−exp{−s(q, b)}

2
−exp{−s(q, b)}

× ∑
l

i=0
B
i
(q) P 1
0

B
i
( p)A [FC

1
{F−1
1

( p)}−p]

2F−1
1

( p) f
1
{F−1
1

( p)}
−

[FC
2
{F−1
2

( p)}−p]

2F−1
2

( p) f
2
{F−1
2

( p)}Br dp dq,

R
13
=
√n

2 P 1
0

[exp{s( p, b@ )}−exp{s( p, b)}]{FC−1
2

( p)−F−1
2

( p)}dp.

As a result of the symmetry of the functional, the other remainder terms, R21 , R22 and R23 , are
identical in form to these expressions and are treated in the same fashion.
The first term, R11 , is the remainder from a function d-method approach to L -statistics. As such,
this is easily shown to converge in probability to zero. After a little bit of algebra, R12 can likewise
largely be expressed in terms of L -statistic remainders and demonstrated to converge in probability
to zero. With some manipulation, R12 can be written as

R
12
=
√n

2 P 1
0
Alog FC−1

1
− log F−1

1
−

[FC
1
{F−1
1

( p)}−p]

F−1
1

( p) f
1
{F−1
1

( p)}B ∑l
j=1

B
j
( p) P 1
0

F−1
2

B
j
(q)dq (A1)

+
√n

2 P 1
0
Alog FC−1

2
− log F−1

2
−

[FC
2
{F−1
2

( p)}−p]

F−1
2

( p) f
2
{F−1
2

( p)}B ∑l
j=1

B
j
( p) P 1
0

F−1
2

B
j
(q)dq (A2)

+
√n

2 P 1
0

F−1
2

( p) expq−∑
j
j
j
B
j
( p)r ∑

j
{(b@
j
−b
j
)B
j
( p)}2dp. (A3)

Each of the first two terms, (A1) and (A2), is the remainder from the differentiable statistical
functional form of an L -statistic with functional, and so converges in probability to zero.
To deal with (A3), we have that

expq−∑
j
j
j
B
j
( p)r∏expqK∑

j
b
j
B
j
( p)Kr1+Cn ,

and thus

√n

2 P 1
0

F−1
2

( p) expq−∑
j
j
j
B
j
( p)rq∑

j
(b@
j
−b
j
)B
j
( p)r2dp

∏n1/2M1+C
n2
max
i

(b@
i
−b
i
)2 P 1
0

[{p(1−p)}−1/2+d2/(d+2)]1+C
n
dp. (A4)
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If we set FC−1 ( p)¬1, Lemma A1 can be applied so that (A4) is bounded from above by

M
3
max
i

(b@
i
−b
i
)2n1/2+{1/2−d2/(d+2)}(1+C

n
) .

When n is sufficiently large, and therefore C
n
is sufficiently small, the exponent on n is less than 1,

ensuring convergence in probability. This completes the treatment of R12 , and the final term R13
is handled in a similar fashion.
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