Linear Models for Correlated Data: Inference

The goal is to estimate the vector of regression coefficients $\boldsymbol{\beta}$ when the data are correlated. We assume

$$Y \sim MVN(X\beta, V)$$

$$\boldsymbol{Y}_i \sim MVN(X_i\boldsymbol{\beta}, V_i), i = 1, \dots, m$$

where V and V_i are covariance matrices

- Balanced data $\Rightarrow V_i = V_0, i = 1, \dots, m$
- Unbalanced data $\Rightarrow V_i \neq V_0, i = 1, \dots, m$
- Parametric models for covariance matrix
- Completely unstructured covariance matrix

Weighted least-squares estimation

$$Y \sim MVN(X\beta, V)$$

• The weighted least squares estimate of β , using a symmetric weight matrix W, is the value $\tilde{\beta}_W$, which minimizes the quadratic form:

$$(\boldsymbol{y} - X\boldsymbol{\beta})'W(\boldsymbol{y} - X\boldsymbol{\beta})$$

• the solution is:

$$\tilde{\boldsymbol{\beta}}_{W} = (X'WX)^{-1}X'W\boldsymbol{y}$$

 $\bullet\,\tilde{\pmb\beta}_W$ is an unbiased estimator of $\pmb\beta$ whatever the choice of W

Inference

- Weighted Least Square (WLS) (V_i known)
- Maximum Likelihood (V_i unknown)
- Restricted Maximum Likelihood (V_i unknown)
- Robust estimation (V_i unknown)
- Hypothesis Testing
- Example: Growth of Sitka Trees

Weighted least-squares estimation

 \bullet If $W=\sigma^2I$ then $\tilde{\pmb{\beta}}_W=\tilde{\pmb{\beta}}_I$, where $\tilde{\pmb{\beta}}_I$ is the ordinary least-squares estimator

$$\tilde{\boldsymbol{\beta}}_{I} = (X'X)^{-1}X'\boldsymbol{y}$$

- $\bullet \ var(\tilde{\boldsymbol{\beta}}_I) = \sigma^2(\boldsymbol{X}'\boldsymbol{X})^{-1}$
- If $W=V^{-1}$ and $\boldsymbol{Y}\sim MVN(X\boldsymbol{\beta},V)$ then $\tilde{\boldsymbol{\beta}}_W=\hat{\boldsymbol{\beta}}$, where $\hat{\boldsymbol{\beta}}$ is the MLE $\boldsymbol{\beta}$ so defined:

$$\hat{\boldsymbol{\beta}} = (X'V^{-1}X)^{-1}X'V^{-1}\boldsymbol{u}$$

- $\bullet \, var(\hat{\boldsymbol{\beta}}) = (\boldsymbol{X}'\boldsymbol{V}^{-1}\boldsymbol{X})^{-1}$
- \bullet the most efficient weighted least-squares estimator for ${\pmb \beta}$ uses $W=V^{-1}$
- ullet Why? Because by using $W=V^{-1}$, then $\hat{oldsymbol{eta}}$ maximizes the likelihood function

Estimation of Mean Model Weighted Least Squares

• General Linear Model for longitudinal data:

$$Y = X\beta + \epsilon$$

where

$$\epsilon \sim MVN(0, V)$$

- ullet How the regression parameters eta are estimated?
- ullet The log-likelihood of $oldsymbol{eta}$ is

$$L(\boldsymbol{\beta}) = -\frac{1}{2}nmlog(2\pi) - \frac{1}{2}\log|V| - \frac{1}{2}(\boldsymbol{y} - X\boldsymbol{\beta})^{'}V^{-1}(\boldsymbol{y} - X\boldsymbol{\beta})$$

• Therefore the maximum likelihood estimator $\hat{\beta}$ is obtained by minimizing the weighted sum of squares

$$WRSS = (\boldsymbol{y} - X\boldsymbol{\beta})'V^{-1}(\boldsymbol{y} - X\boldsymbol{\beta})$$

 \bullet $\hat{\pmb{\beta}}$ that minimizes WRSS is a **weighted least squares** with $W=V^{-1}$ and it is defined as:

$$\hat{\boldsymbol{\beta}} = (X'V^{-1}X)^{-1}X'V^{-1}\boldsymbol{y}$$

 $var(\hat{\boldsymbol{\beta}}) = (X'V^{-1}X)^{-1}$

 \bullet If the data are ${\bf indipendent},$ then V takes the form $V=\sigma^2I$ which gives rise to the OLS estimator

$$\hat{\boldsymbol{\beta}}_{OLS} = (X'X)^{-1}X'\boldsymbol{y}$$
 $var(\hat{\boldsymbol{\beta}}) = \sigma^2(X'X)^{-1}$

5

Note that we can re-write the WRRS as following:

$$WRSS = (\boldsymbol{y} - X\boldsymbol{\beta})'V^{-1}(\boldsymbol{y} - X\boldsymbol{\beta})$$

$$= \sum_{i=1}^{m} (\boldsymbol{y}_i - X_i\boldsymbol{\beta})'V_i^{-1}(\boldsymbol{y}_i - X_i\boldsymbol{\beta})$$

$$= \sum_{i=1}^{m} (\boldsymbol{y}_i^{\star} - X_i^{\star}\boldsymbol{\beta})'(\boldsymbol{y}_i^{\star} - X_i^{\star}\boldsymbol{\beta})$$

where:

$$egin{aligned} m{y}_i^* &= V_i^{-rac{1}{2}} m{y}_i \ X_i^* &= V_i^{-rac{1}{2}} X_i \end{aligned}$$

Therefore WLS is equivalent to OLS applied to transformed data \boldsymbol{y}^{\star} and X^{\star} . In fact

$$\hat{\boldsymbol{\beta}} = (X'V^{-1}X)^{-1}X'V^{-1}\boldsymbol{y} = (X^{*'}X^{*})^{-1}(X^{*'}\boldsymbol{y}^{*})$$

6

What Does this Equation Say? Examples

- ullet V diagonal
- ullet V is not a diagonal matrix, $corr(Y_1,Y_2)=.9$
- ullet V is not a diagonal matrix, AR model of order 1

Examples: V diagonal

8

$$Y_i = \beta_0 + \epsilon_i, \ 1 = 1, 2, 3$$

$$\mathbf{Y} = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \beta_0 + \begin{pmatrix} \epsilon_1 \\ \epsilon_2 \\ \epsilon_3 \end{pmatrix}$$

$$\epsilon \sim MVN(0, V)$$

$$V = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 10 \end{pmatrix}$$

$$\hat{\boldsymbol{\beta}}_{OLS} = \frac{y_1 + y_2 + y_3}{3}$$

7

Examples: V diagonal

$$V^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \frac{1}{10} \end{pmatrix}$$

$$= \hat{\boldsymbol{\beta}}_{WLS} = (1'V^{-1}1)^{-1}1'V^{-1}\boldsymbol{y}$$

$$= (2.1)^{-1}(y_1 + y_2 + .1y_3)$$

$$= (48y_1 + .48y_2 + .04y_3)$$

Examples: V no diagonal

$$V = \begin{pmatrix} 1 & .9 & 0 \\ .9 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$V^{-1} = \begin{pmatrix} 5.3 & -4.7 & 0 \\ -4.7 & 5.3 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\hat{\boldsymbol{\beta}}_{WLS} = (1'V^{-1}1)^{-1}1'V^{-1}\boldsymbol{y}$$

$$= (2.053)^{-1}(.526y_1 + .526y_2 + .48y_3)$$

$$= .26y_1 + .26y_2 + .48y_3$$

$$= .52\left(\frac{y_1 + y_2}{2}\right) + .48y_3$$

10

Examples: AR1

Only one subject, we assume that covariance parameters θ and σ^2 are known, and that the covariance matrix V has an exponential correlation structure

$$y = (y_1, y_2, \dots, y_n)$$

$$y_j = x_j \beta + \epsilon_j$$

$$\epsilon_j = \theta \epsilon_{j-1} + a_j$$

$$a_j \sim N(0, \sigma^2)$$

$$Cov(\epsilon_j, \epsilon_{j+\tau}) = \sigma^2 \theta^{\tau}$$

$$V = \sigma^2 \begin{pmatrix} 1 & \theta & \theta^2 & \theta^3 & \dots & \theta^{n-1} \\ 1 & \theta & \theta^2 & \dots & \theta^{n-2} \\ & 1 & \theta & \vdots \\ & & & \theta \\ & & & & 1 \end{pmatrix}$$

$$y_j^* = (V^{-1/2}y_j) = y_j - \theta y_{j-1}, \ j = 2, \dots, n$$

$$\begin{array}{ll} y_j - \theta y_{j-1} &= x_j \beta + \epsilon_j - \theta(x_{j-1} \beta + \epsilon_{j-1}) \\ &= (x_j - \theta x_{j-1}) \beta + \epsilon_j - \theta \epsilon_{j-1} \\ y_j^* &= x_j^* \beta + a_j \\ a_j &\sim N(0, \sigma^2) \\ \bullet \ y_i^* = y_j - \theta y_{j-1} \end{array} \text{ where}$$

$$\bullet \ x_i^* = (x_j - \theta x_{j-1})$$

$$\bullet \ a_j = \epsilon_j - \theta \epsilon_{j-}$$

Now use OLS with y_j^* and x_j^* to get WLS estimate of β .

Weighted least-squares estimation - Summary

$$Y \sim MVN(X\beta, V), V \text{ known}$$

ullet For an **arbitrary** W, the *weighted least squares* estimate of $oldsymbol{eta}$ is

$$\tilde{\boldsymbol{\beta}}_W = (X'WX)^{-1}X'W\boldsymbol{y}$$

 \bullet If we choose $W=V^{-1}$, then the following weighted least square estimator

$$\hat{\boldsymbol{\beta}}_W = (X'V^{-1}X)^{-1}X'V^{-1}\boldsymbol{y}$$

has minimum variance among all the weighted least squares estimators. This because $\hat{m{\beta}}_W$ it is also the Maximum Likelihood estimator when V is known

13

Example

- m=10 units each observed at n=5 time-points $t_i=-2,-1,0,1,2$
- ullet let the mean response at time t be

$$\mu(t) = \beta_0 + \beta_1 t$$

- ullet assume that $V_0 = (1ho)I +
 ho \mathbf{1} \mathbf{1}^T$
- here the OLS are fully efficient in this case:

$$var(\hat{\boldsymbol{\beta}}_{OLS}) = var(\hat{\boldsymbol{\beta}})$$

where:

- $var(\tilde{\boldsymbol{\beta}}_{OLS}) = (X'X)^{-1}X'VX(X'X)^{-1}$
- $\bullet \ var(\hat{\boldsymbol{\beta}}) = (X'V^{-1}X)^{-1}$
- ullet with some matrix calculations, we can show that $var(ilde{eta}_{OLS}) = var(\hat{eta})$

Efficiency

Let's assume that:

$$Y \sim MVN(X\beta, V), V$$
 known

ullet We calculate the OLS estimate assuming that the data are indipendent, i.e. $W=\sigma^2I$:

$$\begin{array}{ll} \hat{\pmb{\beta}}_{OLS} &= (X'X)^{-1}X'\pmb{y} \\ {\rm var}(\hat{\pmb{\beta}}_{OLS}) &= \sigma^2(X'X)^{-1}X'VX(X'X)^{-1} \end{array}$$

 \bullet We do the "right thing", i.e. we calculate the WLS estimate with $W=V^{-1}$ and get the MLE:

$$\begin{array}{ll} \hat{\pmb{\beta}}_{WLS} &= (X'V^{-1}X)^{-1}X'V^{-1}\pmb{y} \\ {\rm var}(\hat{\pmb{\beta}}_{WLS}) &= \sigma^2(X'V^{-1}X)^{-1} \end{array}$$

- ullet How bad is $\hat{oldsymbol{eta}}_{OLS}$ with respect to $\hat{oldsymbol{eta}}_{WLS}$?
- Calculate the efficiency, as ratio of the variance of the two estimators. If the ratio is close to 1, then the OLS is ok.

$$e(\hat{\boldsymbol{\beta}}_{OLS}) = \frac{\mathrm{var}(\hat{\boldsymbol{\beta}}_{WLS})}{\mathrm{var}(\hat{\boldsymbol{\beta}}_{OLS})}$$

• If the ratio is close to 1, then the OLS is ok.

14

When can we use OLS and ignore V?

- 1 uniform correlation model
- 2. balanced data
- with a common correlation between any two equally spaced measurements on the same unit there is no reason to weight measurements differently
- ullet this would be not true if the number of measurements varied between units because, with ho>0, units with more measurements would then convey more information per measurements than units with fewer measurements.
- in many circumstances where there is a **balanced design**, the **OLS** estimator is perfectly **satisfactory** for point estimation.

Example: Two-treatment crossover design

- n=3 measurements are taken, at unit time intervals, on each of m=8 subjects
- ullet the sequence of treatments given to the eight subjects are $AAA,\ AAB,\ ABA,\ ABB,\ BAA,\ BAB,\ BBA$ and BBB

$$Y_{ij} = \beta_0 + \beta_1 x_{ij} + \epsilon_{ij}$$

- ullet where x is a binary indicator for treatment B and ϵ_{ij} follow and exponential correlation model with correlation ρ between successive measurements on any subject
- \bullet In this case, **OLS is horribly inefficient** for β when ρ is large

Example: Two-treatment crossover design

- ullet here, efficient estimation of eta_1 requires careful balancing of between-subject and within-subject comparisons of the two treatments, and the approximate balance depends critically on the correlation structure.
- In presence of positive autocorrelation, main use of ordinary least squares can seriously over or under estimate the variance of $\hat{\beta}$, depending on the design matrix.
- here an uniform correlation model is not appropriate

So far we have developed a theory that estimate $\pmb{\beta}$ in a marginal model for the mean $E[\pmb{Y}] = X\pmb{\beta}$, when the errors are correlated $\pmb{\epsilon} \sim MVN(0,V)$, and V is known. We have learned that $\hat{\pmb{\beta}} = (X'V^{-1}X)^{-1}XV^{-1}\pmb{y}$ is MLE.

The problem is that we don't know V. Two options:

- If the data are balanced, $V_i=V_0$, and we are willing to assume a parametric model for V_0 . In this case, we can estimate β and V_0 "jointly" by maximinzing the log-likelihood.
- ullet Alternatively, we can use "robust" estimation, which does not require to specify a parametric model for V.

Maximum Likelihood estimation under Gaussian assumption

Simultaneous estimation of the parameter of interest β and of covariance parameters σ^2 and V_0 using the likelihood function

If $m{Y} \sim MVN(Xm{eta}, \sigma^2V)$, the log-likelihood for observed data $m{y}$ is

$$L(\boldsymbol{\beta}, \sigma^2, V_0) = -0.5\{nm\log(\sigma^2) + m\log(|V_0|) + \sigma^{-2}(\boldsymbol{y} - X\boldsymbol{\beta})'V^{-1}(\boldsymbol{y} - X\boldsymbol{\beta})\}$$

1. Assume V_0 and σ^2 are known, and maximize $L(\beta,\sigma^2,V_0)$ as function of β . The MLE estimator for β is the weighted least squares estimator

$$\hat{\boldsymbol{\beta}}(V) = (X'V^{-1}X)^{-1}X'V^{-1}\boldsymbol{y}$$

2. Calculate $L(\hat{\beta}(V), \sigma^2, V_0)$, and maximize $L(\hat{\beta}(V), \sigma^2, V_0)$ with respect to σ^2 . This gives

$$\hat{\sigma}^2(V_0) = RSS(V_0)/nm$$

where

$$RSS(V_0) = (\boldsymbol{y} - X\hat{\boldsymbol{\beta}}(V_0)'V^{-1}(\boldsymbol{y} - X\hat{\boldsymbol{\beta}}(V_0))$$

3. Calculate $L(\hat{\pmb{\beta}}(V),\hat{\sigma}^2,V_0)$, and maximize $L(\hat{\pmb{\beta}}(V),\hat{\sigma}^2,V_0)$ with respect to V_0 .

The maximum likelihood estimates are:

- $\hat{V}_0 = \operatorname{argmax} L_r(V_0)$
- $\bullet \; \hat{\boldsymbol{\beta}} = \hat{\boldsymbol{\beta}}(\hat{V}_0)$
- $\bullet \ \hat{\sigma}^2 = \hat{\sigma}^2(\hat{V}_0)$

Restricted Maximum Likelihood estimates

- MLE approach produces biased estimates of the variance components in the general linear model
- \bullet the MLE estimate of σ^2 is $\hat{\sigma}^2=RSS/(nm)$ where RSS denotes the residual sum of squares
- an unbiased estimator for σ^2 is $\tilde{\sigma}^2 = RSS/(nm-p)$ where p denotes the number of elements of β this is called Restricted Maximum Likelihood Estimator.

21

22

Generalized Least Square Estimator Robust estimation

If we are not willing to specify a parametric model for V, then we can use a "robust" estimation and estimate β by:

$$\tilde{\boldsymbol{\beta}}_{W} = (X'WX)^{-1}X'W\boldsymbol{y}$$

 $\hat{R}_{W} = \{(X'WX)^{-1}X'W\}\hat{V}\{(X'WX)^{-1}X'W\}$

where:

- \bullet \hat{V} is a consistent estimate for V whatever the true covariance structure (will tell you how to calculate $\hat{V})$
- ullet W is a "working" covariance matrix,
- Example are: W = I or $[W]_{jk} = \exp\{-c \mid t_j t_k \mid\}$.

Then is can be show that:

$$\tilde{\boldsymbol{\beta}}_W \sim MVN(\boldsymbol{\beta}, \hat{R}_W) (\star)$$

Robust estimation of V under a saturated model

- ullet measurements are made at each of n time-points t_j on m_h experimental units in g experimental groups
- y_{hij} , $h = 1, \ldots, g$, $i = 1, \ldots, m_h$, $j = 1, \ldots, n$
- \bullet h =treatment, i =unit, and j =time-point
- the saturated model for the mean response is

$$E(Y_{hij}) = \mu_{hj}, \ h = 1, \dots, g, \ j = 1, \dots, n$$

• a saturated model for the covariance matrix assume

$$V(Y) = V$$

with non-zero diagonal block equal to V_0 ,a positive definite but otherwise arbitrary $n \times n$ matrix.

Robust Estimation of V

- ullet $\hat{\mu}_{hj}=rac{1}{m_h}\sum_{i=1}^{m_h}y_{hij}$
- ullet REML estimator for V_0 is:

$$egin{array}{ll} \hat{V}_0 &= & (\sum_{h=1}^g m_h - g)^{-1} imes \ & imes \sum_{h=1}^G \sum_{i=1}^{m_h} (m{y}_{hi} - \hat{m{\mu}}_h) (m{y}_{hi} - \hat{m{\mu}}_h)' \end{array}$$

where

$$oldsymbol{y}_{hi} = \left(y_{hi1}, \dots, y_{hin}\right)'$$

$$\boldsymbol{\mu}_h = (\mu_{h1}, \dots, \mu_{hn})'$$

ullet the required estimate \hat{V} is the block-diagonal matrix with non zero blocks \hat{V}_0 .

For Example

• g = 2, $m_1 = 2$, $m_2 = 3$ we have

$$\boldsymbol{X} = \begin{bmatrix} I & 0 \\ I & 0 \\ 0 & I \\ 0 & I \\ 0 & I \end{bmatrix}$$

where I and O are, respectively, the $n \times n$ identity matrix and the $n \times n$ matrix of zeros.

25

26

Robust estimation versus a parametric approach

- ullet the crucial difference between this and a parametric modeling approach is that a poor choice of W will affect only the efficiency of our inferences for eta, not their validity
- \bullet confidence intervals and test hypothesis derived from (\star) will be asymptotically correct whatever the true form of V
- \bullet we can get consistent estimate of V by REML under a saturated model

Maximum Likelihood Estimation of V

When the saturated model strategy is not feasible, typically when data are from observational studies with continuous covariates, we can estimate V my maximizing the likelihood - however this depends on how big is V!.

Unbalanced Data

In this case V can still be block diagonal, but the V_{0i} will have different sizes. We can still estimate V_{0i} as:

$$\hat{V}_{0i} = (\boldsymbol{y}_i - \hat{\boldsymbol{\mu}}_i)(\boldsymbol{y}_i - \hat{\boldsymbol{\mu}}_i)^{'}$$

where $\hat{\mu}_i$ is the OLS estimate of μ_i from the most complicated model we are prepared to entertain for the mean response.

Example: Growth of sitka tree with and without ozone

- data consist of measurements on 79 sitka spruce trees over two growing seasons
- ullet the trees were grown in four controlled environment chambers, of which the first two containing 27 trees each, were treated with introduced ozone at 70~ppb while the remaining two, containing 12 and 13 trees, were controls
- \bullet response variable is the log-size measurement $y=\log(hd^2)$ where h denotes height and d denoted diameter
- Q: is there a ozone effect on the growth pattern?
- ullet We use a separate parameter eta_j say, for the treatment mean response at the jth time-point and concentrate our modeling efforts on the control versus treatment contrast

Scatterplot matrix of residuals for the 1988 data

- You need to remove the effects of any explanatory variables, say the day and treatment
- For example, you might want to obtain the residuals from a 2-way anova model (OLS) on day and treatment group (with interaction)
- logsize ~ day * ozone

29

3 (

Example: Growth of sitka tree with and without ozone

Unstructured covariance matrix

- Q: Is there an effect of the ozone on the growth pattern?
- Use a saturated model for the mean, i.e.

$$E[Y_{hij}] = \mu_{hj}, \ h = 1, \dots, 4, \ j = 1, \dots, 5(1988)$$

- ullet We calculated the REML for V_0 in 1988 and 1989
- Chambers effects appear be negligible

Example: Growth of sitka tree with and without ozone

- Because our inferential focus is on the ozone effect, we make no attempt to model an overall growth pattern parametrically
- we assume

$$\mu_1(t_j) = \beta_j, \ j = 1, \dots, 5$$

 $\mu_2(t_j) = \beta_j + \tau + \gamma t_j, \ j = 1, \dots, 5$

- ullet we use a separate parameter, eta_j , for the treatment mean response at the jth time point and concentrate the modelling effort on the control versus treatment contrast
- \bullet we estimate $\beta_j, \ \ \tau$ and $\ \gamma$ by using ordinary least squares (W=I)

- ullet we estimate V_0 using REML
- ullet the hypothesis of no treatment effect is $au=\gamma=0$
- test statistics T=9.79 on 2 df corresponding to p=0.007, i.e. strong evidence of a negative treatment effect, that is, ozone suppresses growth.

1989 Data

For the 1989 data, we assume that this contrast is linear in time, thus

$$\mu_1(t_j) = \beta_j, \ j = 1, \dots, 5$$

 $\mu_2(t_j) = \beta_j + \tau \ j = 1, \dots, 5$

- ullet the hypothesis of no treatment effect is au=0
- ullet test statistics T is equal to 5.15 on 1 df corresponding to p=0.023.

33

Summary: Unstructured covariance matrix

- Robust approach here described are very simple to implement
- REML estimates of the covariance structure are simple to compute provided that the experimental design allows the fitting for a saturated model for the mean response, and the remaining calculations involve only standard matrix manipulation
- by design, consistent inferences for the mean response parameters follow from the correct specification of the mean structure, whatever the true covariance structure.

34

Summary: Parametric Models for covariance matrix

- Here the good reasons in favor of considering explicit modeling of the covariance structure
- 1. efficiency: the theoretically optimal weighted leastsquares estimate uses a weight matrix whose inverse is proportional to the true covariance matrix so it would seem reasonable to use the data to estimate this optimal weight matrix
- 2. when there are n measurement per experimental unit, the robust approach use $\frac{1}{2}n(n+1)$ parameters to describe the covariance matrix, all of which must be estimated from the data
- 3. in contrast the true covariance structure may involve

- mane few parameters, which can themselves be estimated more accurately than the unconstrained variance matrix
- in summary, the robust approach is usually satisfactory when the data consist of short, complete, sequences of measurements observed at a common set of times on many experimental units, and care is taken in the choice of the working correlation matrix.
- in other circumstances is worth considering a parametric modelling approach

Summary

 $\boldsymbol{Y}_i \sim MVN(X_i\boldsymbol{\beta}, \sigma^2V_0), \ i = 1, \dots, m$

- $ullet V_0 \ \mathsf{known} o \mathsf{WLS}$
- ullet V_0 unknown o REML
- ullet if V_0 is unstructured then REML can be computationally expensive
- ullet if V_0 is unstructured o robust estimation
 - 1. specify saturated model for the mean

$$E(Y_{hij}) = \mu_{hj}$$

- 2. estimate μ_{hj} by OLS and get $\hat{\mu}_{hj}$
- 3. REML estimate of \hat{V}_0
- 4. by using \hat{V}_0 get robust standard errors for ${m eta}$

37

Figure 2: Observed mean response in each of the four chambers

Figure 1: Observed data and mean response profiles in each of the four growth chambers for the treatment and control

38

Figure 3: Top: Estimated response profiles and 95% pointwise confidence limits. Bottom: observed and fitted differences in mean response profiles between the control and the ozone treated groups.