Linear Models for Correlated Data: Inference
The goal is to estimate the vector of regression coeffi-

cients 3 when the data are correlated. We assume
Y ~ MVN(XB,V)
Y, ~ MVN(X;8,V;),i=1,....,m
where V' and Vj are covariance matrices
e Balanced data = V; =V, i =1,...,m
e Unbalanced data= V; £V, i =1,...,m
e Parametric models for covariance matrix

e Completely unstructured covariance matrix

Weighted least-squares estimation

Y ~ MVN(XB,V)

e The weighted least squares estimate of 3, using a
symmetric weight matrix W, is the value ,BW, which

minimizes the quadratic form:
(y—XB)W(y—XB)
e the solution is:
By = (X WX) X' Wy

e By is an unbiased estimator of 3 whatever
the choice of W/

Inference
e Weighted Least Square (WLS) (V; known)
e Maximum Likelihood (V; unknown)
e Restricted Maximum Likelihood (V; unknown)
e Robust estimation (V; unknown)
e Hypothesis Testing

e Example: Growth of Sitka Trees

Weighted least-squares estimation
o If W = 0°I then BW — B;, where 37 is the ordinary
least-squares estimator
Br=(XX) Xy
e var(B) = (X' X)"!
olf W=V"land Y ~ MVN(XB,V) then By =
B, where ,B is the MLE 3 so defined:
B=(XVIX) XV ly
evar(B) = (X V1x)~1
e the most efficient weighted least-squares estimator for
Buses W=V"1
e Why? Because by using W = V1, then ,@ maxi-

mizes the likelihood function
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Estimation of Mean Model
Weighted Least Squares

o General Linear Model for longitudinal data:
Y=XB+e

where

e~ MVN(0,V)
o How the regression parameters (3 are estimated?
® The log-likelihood of 3 is

1 1 1 o
L(B) = —5nmlog(2m) - Slog [V| - 5(y — XB) V' (y — XB)
o Therefore the maximum likelihood estimator 3 is obtained by minimiz-
ing the weighted sum of squares
WRSS = (y - XB) V' (y — XB)
e 3 that minimizes WRSS is a weighted least squares with W = V! and
it is defined as: R , ,
B = (XVIX) XV ly
var(B) = (XV1X)!
o If the data are indipendent, then V takes the form V = oI which gives
rise to the OLS estimator
(X'X)'X'y

Bors ,
(X X)!

var(B)

o

What Does this Equation Say? Examples
e I/ diagonal
e I/ is not a diagonal matrix, corr(Y7,Ys) = .9

e I/ is not a diagonal matrix, AR model of order 1

Note that we can re-write the WRRS as following:
WRSS = (y—XB)V ™'y~ XB)
= 37 (y; — XiB)V; My — XiB)
= Syl = XB) (v — X7B)
where: .
y; =V, y,
X7 =V X,
Therefore WLS is equivalent to OLS applied to trans-
formed data y* and X™*. In fact

N !

,8 _ (X'V—IX)—IX'V—ly _ (X* X*)—1<X* y*)

Examples: V diagonal

Y; =fy+e, 1=1,2,3
Y1 1 €1
Y =|wp|=|1]|06t]e
Y3 1 €3

e ~ MVN(,V)

100
V =1010
0010
o +yo+
IBOLS:yl%zys



Examples: V' diagonal

100

vl =1]o010

Bwrs = QV-l)y~l1'v-

Only one subject, we assume that covariance parameters 6 and

o? are known, and that the covariance matrix V' has an exponential

00

ly

= (2.1) 7Yy +yo + 1y3)

= 48y; + .48ys +

.04ys

Examples: AR1

correlation structure

y = (1,92, Yn)
Yj = ziB+¢
€j = Oej_1+aj
a; ~ N(0,0%)
Cov(€j, €j4,) = 0207
166%6 ...
16 6%...
14 = o? Lo
1
(V7y) =y; = Oyjm1, G=2,...,m
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en—l
0n72

Examples: V no diagonal

(190
v =|910
\ 0 01
(53 —470
V7l =] —47 53 0
\ 0 0 1

Bwrs = VI~V ly
= (2.053)71(.526y; + 5261 + .48y3)
= .26y1 + .26y9 + .48y3
— 59 (%) + 48y3
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yj — Hyj,l = iEj,B + € — H(x]-,l,é’ + 6]',1)
= (.’I?j — 91‘]'71)5 +€ — 96]'71
v; = z;f+ a;
a; ~ N(0,0?)
oy =y —0y;1

where

oz} = (z; — Oz; 1)

[ a]' =€ — 9€j_1

Now use OLS with y; and x7 to get WLS estimate of 3.
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Weighted least-squares estimation - Summary
Y ~ MVN(XB,V), V known

e For an arbitrary W, the weighted least squares estimate of 3
is
By = (XWX)" X Wy
o If we choose W = V71, then the following weighted least square
estimator
B = (XV X)XV Yy
has minimum variance among all the weighted least squares es-
timators. This because BW it is also the Maximum Likelihood

estimator when V' is known
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Example

e m = 10 units each observed at n = 5 time-points
t; =-2,-1,0,1,2

e let the mean response at time ¢ be
u(t) = Bo + Bit
e assume that Vp = (1 — p)I + p11T

o here the OLS are fully efficient in this case:

UW(BOLS) = WT(B)

where:
o var(Bops) = (X X) ' X'VX(X'X)
e var(B) = (X'V1X)!

e with some matrix calculations, we can show that

WT(BOLS) = WT(B)
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Efficiency
Let's assume that:
Y ~MVN(XB,V), V known
e We calculate the OLS estimate assuming that the data are in-
dipendent, i.e. W = o%I:
BOL,AS = (XX)'X'y
var(Bors) = (X' X)X VX(X'X)™
e We do the "right thing”, i.e. we calculate the WLS estimate
with W = V1 and get the MLE:
Bwis = (XVIX)XV 'y
var(By1s) = oX(X'V1X)™

e How bad is BOLS with respect to BWLS?

e Calculate the efficiency, as ratio of the variance of the two esti-
mators. If the ratio is close to 1, then the OLS is ok.

e(Bos) = varlByss)

Var(ﬁOLS)
o f the ratio is close to 1, then the OLS is ok.
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When can we use OLS and ignore V'?
1. uniform correlation model

2. balanced data

e with a common correlation between any two equally
spaced measurements on the same unit there is no

reason to weight measurements differently

e this would be not true if the number of measurements
varied between units because, with p > 0, units
with more measurements would then convey more in-
formation per measurements than units with fewer

measurements.

e in many circumstances where there is a balanced
design, the OLS estimator is perfectly satisfactory

for point estimation.
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Example: Two-treatment crossover design

e . = 3 measurements are taken, at unit time intervals,

on each of m = 8 subjects

e the sequence of treatments given to the eight subjects

are AAA, AAB, ABA, ABB, BAA, BAB, BBA

and BBB
Yij = Bo + fuzij + €5
e where z is a binary indicator for treatment B and
€;; follow and exponential correlation model with cor-
relation p between successive measurements on any

subject

e In this case, OLS is horribly inefficient for 8 when
p is large
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So far we have developed a theory that estimate B in a marginal
model for the mean E[Y] = X3, when the errors are correlated
€ ~ MVN(0,V), and V is known. We have learned that 8 =
(X'VIX) XV 1y is MLE.

The problem is that we don't know V. Two options:

e If the data are balanced, V; = Vj, and we are willing to assume
a parametric model for V4. In this case, we can estimate 3 and

Vo “jointly” by maximinzing the log-likelihood.

e Alternatively, we can use “robust” estimation, which does not

require to specify a parametric model for V.
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Example: Two-treatment crossover design

e here, efficient estimation of (; requires careful bal-
ancing of between-subject and within-subject compar-
isons of the two treatments, and the approximate bal-
ance depends critically on the correlation structure.

e In presence of positive autocorrelation, main use of
ordinary least squares can seriously over or under es-
timate the variance of 3, depending on the design

matrix.

@ here an uniform correlation model is not appropriate
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Maximum Likelihood estimation under Gaussian

assumption

Simultaneous estimation of the parameter of interest 3 and of

covariance parameters o and V} using the likelihood function

fY ~ MV N(XP,0%V), the log-likelihood for observed data y

is
L(B,0%,Vy) = —0.5{nmlog(c?) + mlog(| Vo |)+

+ o y—XB)V Yy - XB)}

1. Assume V; and o2 are known, and maximize L(3,0% V;) as
function of 3. The MLE estimator for 3 is the weighted least

squares estimator
BV) =XV X)XV 1y

2. Caleulate L(B(V), 02, V,), and maximize L(B(V), 02, V) with
respect to o2. This gives

*(Vo) = RSS(Vo)/nm

20



where
RSS(Vy) = (y — XB(Vo) V' (y ~ XB(Vo))
3. Calculate L(B(V),6% V;), and maximize L(8(V), 2, V;) with
respect to V4.
The maximum likelihood estimates are:
o Vo = argmaxL,(Vp)
.= B

o 5% = 6%(Vo)
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Generalized Least Square Estimator
Robust estimation
If we are not willing to specify a parametric model for V, then we
can use a “robust” estimation and estimate 3 by:

By = (XWX)'XWy
Ry = {XWX) ' XWIV{XWX)'X'W}
where:

e V is a consistent estimate for VV whatever the true covariance

structure (will tell you how to calculate V)
e W is a “working” covariance matrix,
e Example are: W =T or [W];x = exp{—c | t; — tx |}
Then is can be show that:

By ~ MVN(B, Rw) (%)
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Restricted Maximum Likelihood estimates

e MLE approach produces biased estimates of the variance com-

ponents in the general linear model

o the MLE estimate of 02 is % = RSS/(nm) where RSSS denotes

the residual sum of squares

e an unbiased estimator for 0% is % = RSS/(nm — p) where p
denotes the number of elements of 3 - this is called Restricted

Maximum Likelihood Estimator.
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Robust estimation of V' under a saturated model

® measurements are made at each of n time-points ¢; on my, ex-

perimental units in g experimental groups
*ynj, h=1,...,9,1=1,....omp, j=1,...,n
e h =treatment, ¢ =unit, and j =time-point
e the saturated model for the mean response is
E(Yyij) =pnj, h=1,...,9, 5=1,...,n
e a saturated model for the covariance matrix assume
Viy)=V
with non-zero diagonal block equal to Vj,a positive definite but
otherwise arbitrary n x n matrix.

24



Robust Estimation of V'

o[y, = LS
Hhj = 5 24i=1 Yhij

e REML estimator for V; is:
Vo = (Zhymn—g) ' x
XY ey S (Ui — ) (Y — Bn)
where
Yni = (Yhits - - -, Yhin)
p, = (nts - s )

e the required estimate V is the block-diagonal matrix with non
zero blocks VO.

25

Robust estimation versus a parametric approach

e the crucial difference between this and a parametric modeling
approach is that a poor choice of W will affect only the efficiency

of our inferences for 3, not their validity

e confidence intervals and test hypothesis derived from (x) will be

asymptotically correct whatever the true form of V'

® we can get consistent estimate of V' by REML under a saturated
model
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For Example

e g=2 my =2, my=23we have
o]
10
X=|01
01
01]

where I and O are, respectively, the n x n identity matrix and

the n X n matrix of zeros.
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Maximum Likelihood Estimation of V'

When the saturated model strategy is not feasible, typically when
data are from observational studies with continuous covariates, we
can estimate V' my maximizing the likelihood - however this depends
on how big is V1.

Unbalanced Data

In this case V can still be block diagonal, but the Vj; will have

different sizes. We can still estimate V{; as:

%i = (y; — ;) (y; — ﬂi)’

where f1, is the OLS estimate of p,; from the most complicated

model we are prepared to entertain for the mean response.
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Example: Growth of sitka tree with and without ozone

e data consist of measurements on 79 sitka spruce trees over two

growing seasons

e the trees were grown in four controlled environment chambers,
of which the first two containing 27 trees each, were treated with
introduced ozone at 70 ppb while the remaining two, containing

12 and 13 trees, were controls

e response variable is the log-size measurement y = log(hd?)
where h denotes height and d denoted diameter

e Q: is there a ozone effect on the growth pattern?

o We use a separate parameter (3; say, for the treatment mean
response at the jth time-point and concentrate our modeling

efforts on the control versus treatment contrast
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Example: Growth of sitka tree with and
without ozone

Unstructured covariance matrix

e Q: Is there an effect of the ozone on the growth pat-

tern?
e Use a saturated model for the mean, i.e.
ElYyisl = ppj, h=1,...,4, j=1,...,5(1988)
e We calculated the REML for V[ in 1988 and 1989

e Chambers effects appear be negligible
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Scatterplot matrix of residuals for the 1988 data

@ You need to remove the effects of any explanatory variables, say
the day and treatment

e For example, you might want to obtain the residuals from a
2-way anova model (OLS) on day and treatment group (with

interaction)

e logsize ~ day * ozone
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Example: Growth of sitka tree with and

without ozone

e Because our inferential focus is on the ozone effect, we
make no attempt to model an overall growth pattern

parametrically

® we assume
w(t;) = Bj, j=1,...,5
,u,g(tj) =Bj+7+t;, j=1,...,5
e we use a separate parameter, ,Bj, for the treatment
mean response at the jth time point and concentrate
the modelling effort on the control versus treatment

contrast

e we estimate (;, 7 and 7 by using ordinary least
squares (W = 1)
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e we estimate V[ using REML
e the hypothesis of no treatment effect is 7=y =0

e test statistics 7' = 9.79 on 2 df corresponding to p =
0.007, i.e. strong evidence of a negative treatment

effect, that is, ozone suppresses growth.

1989 Data
For the 1989 data, we assume that this contrast is linear
in time, thus
m(tj) = Bj, j=1,...,5
,u,g(tj) =Bj+7j=1,...,5
e the hypothesis of no treatment effect is 7 = 0

e test statistics 7" is equal to 5.15 on 1 df corresponding
to p = 0.023.
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Summary: Parametric Models for covariance matrix

e Here the good reasons in favor of considering explicit

modeling of the covariance structure

1. efficiency: the theoretically optimal weighted least-
squares estimate uses a weight matrix whose inverse is
proportional to the true covariance matrix so it would
seem reasonable to use the data to estimate this op-

timal weight matrix

2. when there are n measurement per experimental unit,
the robust approach use %n(n + 1) parameters to de-
scribe the covariance matrix, all of which must be

estimated from the data
3.in contrast the true covariance structure may involve
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Summary: Unstructured covariance matrix

e Robust approach here described are very simple to

implement

e REML estimates of the covariance structure are sim-
ple to compute provided that the experimental design
allows the fitting for a saturated model for the mean
response, and the remaining calculations involve only

standard matrix manipulation

e by design, consistent inferences for the mean response
parameters follow from the correct specification of the
mean structure, whatever the true covariance struc-

ture.
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mane few parameters, which can themselves be esti-
mated more accurately than the unconstrained vari-

ance matrix

e in summary, the robust approach is usually satisfac-
tory when the data consist of short, complete, se-
quences of measurements observed at a common set
of times on many experimental units, and care is taken

in the choice of the working correlation matrix.

e in other circumstances is worth considering a para-

metric modelling approach
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Summary
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Y;~MVN(X;8,0°Vp), i=1,...,m
e 1y known — WLS
e 1y unknown — REML

o if V) is unstructured then REML can be

logsize

computationally expensive
o if V) is unstructured — robust estimation
1. specify saturated model for the mean
E(Ypij) = tnj .
2. estimate 4, by OLS and get fip,; O T E ETT M
3. REML estimate of V], s

8

Figure 1: Observed data and mean response profiles in each of the four growth chambers for the treatment and control.

4. by using Vo get robust standard errors for B

37 38
Figure 16: Pooled Averages + 2SEs First Season Second Season
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Figure 3: Top: Estimated response profiles and 95% pointwise confidence limits. Bottom: observed and fitted differences in mean

Fi 2: Ob: d i h of the four chambers.
igure 2: Observed mean response in each of the four chambers response profiles between the control and the ozone treated groups.
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