LONGITUDINAL DATA ANALYSIS

Homework I, 2005

SOLUTION

1. Suppose A and B are both 2×2 matrices with

$$
\mathbf{A}=\left(\begin{array}{cc}
6 & 3 \\
-2 & 5
\end{array}\right), \mathbf{B}=\left(\begin{array}{cc}
-4 & 10 \\
7 & 6
\end{array}\right)
$$

(a) Verify that $|\mathbf{A}||\mathbf{B}|=|\mathbf{A B}|$.

$$
|\mathrm{A}|=6 \times 5-3 \times(-2)=36 ;|\mathrm{B}|=(-4) \times 6-10 \times 7=-94 .
$$

Therefore $|\mathrm{A}||\mathrm{B}|=36 \times(-94)=-3384$.

$$
\mathrm{AB}=\left(\begin{array}{cc}
6 & 3 \\
-2 & 5
\end{array}\right)\left(\begin{array}{cc}
-4 & 10 \\
7 & 6
\end{array}\right)=\left(\begin{array}{cc}
-3 & 78 \\
43 & 10
\end{array}\right)
$$

So, $|\mathrm{AB}|=(-3) \times 10-78 \times 43=-3384=|\mathrm{A}||\mathrm{B}|$
(b) Verify that $|\mathbf{A}|=1 /\left|\mathbf{A}^{-1}\right|$.

$$
\mathrm{A}^{-1}=\frac{1}{36}\left(\begin{array}{cc}
5 & -3 \\
2 & 6
\end{array}\right) .
$$

Therefore, $\left|\mathrm{A}^{-1}\right|=\frac{5}{36} \cdot \frac{6}{36}-\left(-\frac{3}{36}\right) \frac{2}{36}=1 / 36=|\mathrm{A}|^{-1}$
(c) Verify that $\operatorname{tr}(\mathrm{AB})=\operatorname{tr}(\mathrm{BA})$.

$$
\begin{aligned}
& \mathrm{AB}=\left(\begin{array}{cc}
-3 & 78 \\
43 & 10
\end{array}\right), \operatorname{tr}(\mathrm{AB})=-3+10=7 \\
& \mathrm{BA}=\left(\begin{array}{cc}
-44 & 38 \\
30 & 51
\end{array}\right), \operatorname{tr}(\mathrm{BA})=-44+51=7 \\
& \text { So, } \operatorname{tr}(\mathrm{AB})=\operatorname{tr}(\mathrm{BA}) .
\end{aligned}
$$

2. Suppose that a_{1} and a_{2} are constants, and y_{1} and y_{2} are (possibly correlated) random variables with means μ_{1} and μ_{2} respectively. Show that $\operatorname{cov}\left(a_{1} y_{1}, a_{2} y_{2}\right)=$ $a_{1} a_{2} \operatorname{cov}\left(y_{1}, y_{2}\right)$ by using the definition of covariance.

Proof By the definition of covariance:

$$
\begin{aligned}
\operatorname{cov}\left(a_{1} y_{1}, a_{2} y_{2}\right) & =E\left(\left(a_{1} y_{1}-a_{1} \mu_{1}\right)\left(a_{2} y_{2}-a_{2} \mu_{2}\right)\right) \\
& =a_{1} a_{1} E\left(\left(y_{1}-\mu_{1}\right)\left(y_{2}-\mu_{2}\right)\right) \\
& =a_{1} a_{2} \operatorname{cov}\left(y_{1}, y_{2}\right)
\end{aligned}
$$

3 Exploratory Data Analysis

(a) read data from back.raw

```
. clear
. set memory 40m
(40960k)
set matsize 800
*log using c:\data\midterm.log, replace
    infile id group pnvrs1 pnvas1 anvas1 alvas1 time1 pnvrs2 pnvas2 anvas2
alvas2 time2 pnvrs3 pnvas3 anvas3 alvas3 time3 pnvrs4 pnvas4 anvas4 alvas4
time4 using c:\data\back.raw
(27 observations read)
. *reshape to the long format
. reshape long pnvrs pnvas anvas alvas time, i(id) j(set)
(note: j = 1 2 3 4)
\begin{tabular}{|c|c|c|c|}
\hline Data & wide & -> & long \\
\hline Number of obs. & 27 & -> & 108 \\
\hline Number of variables & 22 & -> & 8 \\
\hline j variable (4 values) & & -> & set \\
\hline \multicolumn{4}{|l|}{xij variables:} \\
\hline pnvrs1 pnvrs2 & pnvrs4 & -> & pnvrs \\
\hline pnvas1 pnvas2 & pnvas4 & -> & pnvas \\
\hline anvas1 anvas2 & anvas4 & -> & anvas \\
\hline alvas1 alvas2 & alvas4 & -> & alvas \\
\hline time1 time2 & time4 & -> & time \\
\hline
\end{tabular}
```

. *make sure it is long format
. list id pnvrs pnvas anvas alvas time in 1/10

	id	pnvrs	pnvas	anvas	alvas	time
1.	1	2	29	9	27	65
2.	1	2	22	12	48	298
3.	1	2	33	6	9	545
4.	1	2	11	32	8	785
5.	2	2	31	13	91	90
6.	2	1	0	14	12	342
7.	2	1	1	6	29	575
8.	2	1	6	3	81	855
9.	3	2	10	15	53	270
10.	3	2	20	35	46	374

. *recode missing values
. for var pnvrs pnvas anvas alvas time: replace $\mathrm{X}=$. if $\mathrm{X}==-9$
-> replace pnvrs = . if pnvrs == -9
(1 real change made, 1 to missing)
-> replace pnvas $=$. if pnvas == -9
(2 real changes made, 2 to missing)
-> replace anvas $=$. if anvas $==-9$
(4 real changes made, 4 to missing)
-> replace alvas $=$. if alvas == -9
(3 real changes made, 3 to missing)
-> replace time $=$. if time $==-9$
(1 real change made, 1 to missing)
. *convert to cross-sectional time-series data

```
tsset id time
    panel variable: id, 1 to 27
    time variable: time, 25 to 890, but with gaps
. iis id
. tis time
```

(b) describe the data
. xtdes, patterns(0)

id	1, 2, ..., 27	$\mathrm{n}=$	27
time	25, 42, ..., 890	$\mathrm{T}=$	90
	$\text { Delta(time) }=1 ;(890-25)+1=866$		

| Distribution of T_i: | min | 5% | 25% | 50% | 75% | 95% | max |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| | 4 | 4 | 4 | 4 | 4 | 4 | 4 |

There are 27 subjects in this dataset. The measurements are obtained at 90 different times since the treatment. The panel variable and the time variable can uniquely identify each observation. Each subject is tested 4 times. In this data, the time varying variables are time since treatment (in minutes) and the scores of the four test, pain VRS, pain VAS, anxiety VAS, and alertness VAS. The baseline variable is the treatment group, either intercostals/epidural analgesic (Group 1), or morphine infusion analgesic (Group 2). The data is balanced but not equally spaced.
(c) explore the anxiety VAS with respect to time and to treatment group. . sum pnvas anvas alvas

Variable	Obs	Mean	Std. Dev.	Min	Max
pnvas	106	29.0283	20.8379	0	86
anvas	104	26.46154	23.9534	0	99
alvas	105	54.86667	27.23405	2	97

```
. gen anvas1 = anvas if group == 1
(53 missing values generated)
. gen anvas2 = anvas if group == 2
(59 missing values generated)
. ksm anvas1 time, gen(sm1) lowess bw(0.8) nograph
. ksm anvas2 time, gen(sm2) lowess bw(0.8) nograph
. sort time
. graph anvas1 anvas2 sm1 sm2 time, c(..ll)s(oT.x) xlab ylab saving(c,replace)
```


The figure above shows the score of anxiety VAS in the two treatment groups across the time since treatment (in minutes). The open squares represent the scores of anxiety VAS in Group 1 intercostals/epidural analgesic), while the open triangles show the scores of anxiety VAS in Group 2 (morphine infusion analgesic). There are two smoothed lines showing the marginal tread to the scores of anxiety VAS across time in the figure. The top line represents the marginal trend for Group 1 while the bottom line for Group 2. In the beginning, both groups have similar scores of anxiety VAS. After that, it seems that the scores of anxiety VAS in Group 1are relatively stable over time. On the other hand, the scores of anxiety VAS in Group 2 decrease over time.

(d) explore the correlation structure.

```
: xi: reg anvas i.group*time
```

i.group _Igroup_1-2 (naturally coded; _Igroup_1 omitted)
i.group*time _IgroXtime_\# (coded as above)

Source	SS	df	MS
Model	2538.57675	3	846.192249
Residual	56559.2694	100	565.592694
Total	59097.8462	103	573.765497

Number of obs	$=$	104
$\mathrm{~F}(3,100)$	$=$	1.50
Prob $>$ F	$=$	0.2202
R-squared	$=$	0.0430
Adj R-squared	$=0.0142$	
Root MSE	$=$	23.782

anvas	Coef.	Std. Err.	t	$P>\|t\|$	[95\% Conf. Interval]	
_Igroup_2	-7.997515	9.193631	-0.87	0.386	-26.23742	10.24239
time	-. 0068926	. 012107	-0.57	0.570	-. 0309126	. 0171274
IgroXtime_2	-. 0020711	. 0174927	-0.12	0.906	-. 0367761	. 0326338
_cons	33.79133	6.347495	5.32	0.000	21.19808	46.38458

```
. predict anvasres1, resid
(4 missing values generated)
```

. xtsumcorr anvasres1

Variable	Mean	Std. Dev.	Min	Max	Observations	
anvasr~1 overall	3.64e-08	23.43329	-32.39845	69.22707	N	104
between		19.62853	-30.60852	56.40872	n	27
within		13.02375	-34.83516	32.30041	T-bar	185
corr. between		17.95069				
corr. within		15.06292				

. variogram anvasres1, bw(0.8)
Computing smooth lowess model for v in ulag

Variogram of anvasres1 (7 percent of v_ijk's excluded)

The figure above shows the variogram after removing the time and treatment group effects. It is clear that the variogram does not monotonically increase over time lag. We can notice that the time lag is highly clustered. Therefore we can group time using hour as the unit for the time since treatment instead of using minute.
. gen time2hrs = round(time/60,1)
(1 missing value generated)
. tab time2hrs set

	set				Total
time2hrs	1	2	3	4	
0	1	0	0	0	1
1	17	0	0	\bigcirc	17
2	6	0	0	0	6
3	1	0	0	0	1
4	1	1	0	0	2
5	1	15	0	0	16
6	0	8	0	0	8
7	0	2	0	0	2
8	0	0	1	\bigcirc	1
9	0	0	19	0	19
10	0	0	5	\bigcirc	5
11	0	0	2	0	2
12	0	0	0	5	5
13	0	0	0	13	13
14	0	0	0	7	7
15	0	0	0	2	2
Total	27	26	27	27	107

From the table above, the time since treatment is clustered at 1, 5, 9 and 13 hours. Also it is highly related to the variable "set" (the correlation between time2hrs and set is 0.9830 which can be shown using "corr time2hrs set" in STATA). Thus we can use set as the time variable in variogram.
. tis set
. sort group set
. by group set: egen anvasmn = mean(anvas)

```
. gen anvasres2 = anvas - anvasmn
(4 missing values generated)
. xtsumcorr anvasres2
\begin{tabular}{|c|c|c|c|c|c|}
\hline Variable & Mean & Std. Dev. & Min & Max & Observations \\
\hline anvasr~2 overall & -9.17e-08 & 23.33507 & -33.15385 & 69 & \(\mathrm{N}=104\) \\
\hline between & & 19.62466 & -30.46703 & 56.53297 & \(\mathrm{n}=127\) \\
\hline within & & 12.85709 & -34.06868 & 32.78846 & T-bar \(=3.85185\) \\
\hline corr. between & & 17.98343 & & & \\
\hline corr. within & & 14.87017 & & & \\
\hline rho & & . 5939 (b & tw. fract & f total) & \\
\hline
\end{tabular}
. variogram anvasres2, discrete
Computing ANOVA model for v in ulag
Variogram of anvasres2 ( 9 percent of v_ijk's excluded)
```



```
The overall variance is \(23.335^{2}=544.22\). From the variogram, the betweensubject "trait" variance is less than 200. The variogram is almost flat, suggesting that after removing the time and treatment effect, uniform correlation might be reasonable.
```


4 Confirmatory Data Analysis

(a)

The scientific purpose of the study is to compare two treatments (either intercostals/epidural analgesic, group 1, or morphine infusion analgesic, group 2) with respect to alertness. Since rating scores of alertness were obtained at different time since treatment, a model of alertness with treatment group, time, and their interaction may capture the scientific goal. The model is

$$
E\left(\text { alvas }_{i j}\right)=\beta_{0}+\beta_{1} \text { group }_{i}+\beta_{2} \text { time }_{i j}+\beta_{3} \text { group }_{i} * \text { time }_{i j}
$$

where alvas is the rating score of alertness, group is treatment group indicator, time is the test time since treatment (in minutes), and $\beta \mathrm{s}$ are coefficients.
(b)

```
xi.reg alvas i.group*time
i.group _Igroup_1-2 (naturally coded; _Igroup_1 omitted)
i.group*time _IgroXtime_# (coded as above)
```

Source	SS	df	MS	Number of obs $=$	105
				$F(3,101)=$	9.29
Model	16675.0656	3	5558.35521	Prob > F	0.0000
Residual	60461.0677	101	598.624433	R-squared	0.2162
				Adj R-squared =	0.1929
Total	77136.1333	104	741.69359	Root MSE =	24.467

alvas	Coef.	Std. Err.	t	$P>\|t\|$	[95\% Conf. Interval]	
_Igroup_2	27.82285	9.399639	2.96	0.004	9.1765	46.46921
time	-. 0174555	. 0124556	-1.40	0.164	-. 042164	. 007253
_IgroXtime_2	-. 0149187	. 0179537	-0.83	0.408	-. 0505341	. 0206967
_cons	52.67963	6.530218	8.07	0.000	39.72544	65.63383

```
(c)
. predict alvasres, resid
(3 missing values generated)
. tsset id time
    panel variable: id, 1 to 27
        time variable: time, 25 to 890, but with gaps
```

. xtsumcorr alvasres

Variable		Mean	Std. Dev.	Min	Max	Observations
alvasres	overall	4.63e-08	24.11133	-42.21107	47.4845	$\mathrm{N}=105$
	between		16.90955	-32.24049	33.04132	$\mathrm{n}=27$
	within		17.56376	-45.9137	41.28148	T-bar $=3.88889$
corr.	between		13.04003			
corr.	within		20.28088			
	rho		. 2925 (b	tw. fract.	of total)	

[^0]Variogram of alvasres (14 percent of v _ijk's excluded)

The variogram of alvas (alertness) is shown above. The total variance is $24.111^{2}=581.34$. The between-subject "trait" variance and the measurement error variance are quite small.
(d)

The variogram of alvas shown in (c) suggests an exponential model for the correlation structure. The variogram increases monotonically with time lag, and saturates at a level very close to the total variance, a typical variogram pattern for an exponential correlation model.

[^0]: variogram alvasres, bw(0.8)
 Computing smooth lowess model for v in ulag

