Introduction to Matrix Calculus

A matrix is any rectangular array of real numbers. We denote an arbitrary array of p rows and n columns by,

$$
\mathbf{A}=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{p 1} & a_{p 2} & \cdots & a_{p n}
\end{array}\right]_{(p \times n)}
$$

The transpose operation \mathbf{A}^{\prime} of a matrix changes the columns into rows so that the first column of A becomes the first row of \mathbf{A}^{\prime}, the second column becomes second row, and so fourth.

Example 1:

If

$$
\mathbf{A}=\left[\begin{array}{ccc}
3 & -1 & 2 \\
1 & 5 & 4
\end{array}\right]_{(2 \times 3)}
$$

then

$$
\mathbf{A}^{\prime}=\left[\begin{array}{rr}
3 & 1 \\
-1 & 5 \\
2 & 4
\end{array}\right]_{(3 \times 2)}
$$

A matrix may also be multiplied by a constant c. The product $c \mathbf{A}$ is the matrix that results from multiplying each element of \mathbf{A} by c. Thus

$$
c \mathbf{A}=\left[\begin{array}{cccc}
c a_{11} & c a_{12} & \cdots & c a_{1 n} \\
c a_{21} & c a_{22} & \cdots & c a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
c a_{p 1} & c a_{p 2} & \cdots & c a_{p n}
\end{array}\right]_{(p \times n)}
$$

Two matrices \mathbf{A} and \mathbf{B} of the same dimensions can be added. The sum $\mathbf{A}+\mathbf{B}$ has (i, j) entry $a_{i j}+b_{i j}$.

Example 2:

If

$$
\mathbf{A}=\left[\begin{array}{rrr}
0 & 3 & 1 \\
1 & -1 & 1
\end{array}\right]_{(2 \times 3)} \quad \text { and } \quad \mathbf{B}=\left[\begin{array}{rrr}
1 & -2 & -3 \\
2 & 5 & 1
\end{array}\right]_{(2 \times 3)}
$$

then

$$
2 \mathbf{A}=\left[\begin{array}{rrr}
0 & 6 & 2 \\
2 & -2 & 2
\end{array}\right]_{(2 \times 3)}
$$

and

$$
\begin{aligned}
\mathbf{A}+\mathbf{B} & =\left[\begin{array}{rrr}
0+1 & 3-2 & 1-3 \\
1+2 & -1+5 & 1+1
\end{array}\right]_{(2 \times 3)} \\
& =\left[\begin{array}{rrr}
1 & 1 & -2 \\
3 & 4 & 2
\end{array}\right]_{(2 \times 3)}
\end{aligned}
$$

It is possible to define matrix multiplication if the dimensions of the matrices confirm in the following manner. When \mathbf{A} is $(p \times k)$ and \mathbf{B} is $(k \times n)$, so that the number of elements in a row of \mathbf{A} is the same as the number of elements in the columns of \mathbf{B}, we can form the matrix product $\mathbf{A B}$. An element of the new matrix $\mathbf{A B}$ is formed by taking the inner product of each row of \mathbf{A} with each column of \mathbf{B}. The matrix product $\mathbf{A B}$ is
$\mathbf{A}_{(\mathbf{p} \times \mathbf{k})} \mathbf{B}_{(\mathbf{k} \times \mathbf{n})}=$ the $(p \times n)$ matrix whose entry in the $i^{\text {th }}$ row of \mathbf{A} and the $j^{\text {th }}$ column of \mathbf{B}
or
(i, j) entry of $\mathbf{A B}=a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+\cdots+a_{i k} b_{k j}=\sum_{l=1}^{k} a_{i l} b_{l j}$

Example 3:

If

$$
\mathbf{A}=\left[\begin{array}{rrr}
3 & -1 & 2 \\
1 & 5 & 4
\end{array}\right]_{(2 \times 3)} \quad \text { and } \quad \mathbf{B}=\left[\begin{array}{r}
-2 \\
7 \\
9
\end{array}\right]_{(3 \times 1)} \quad \text { and } \quad \mathbf{C}=\left[\begin{array}{rr}
2 & 0 \\
1 & -1
\end{array}\right]_{(2 \times 2)}
$$

then and

$$
\begin{aligned}
\mathbf{A B} & =\left[\begin{array}{rrr}
3 & -1 & 2 \\
1 & 5 & 4
\end{array}\right]_{(2 \times 3)}\left[\begin{array}{r}
-2 \\
7 \\
9
\end{array}\right]_{(3 \times 1)} \\
& =\left[\begin{array}{c}
3(-2)+(-1) 7+2(9) \\
1(-2)+5(7)+4(9)
\end{array}\right]_{(2 \times 1)} \\
& =\left[\begin{array}{c}
5 \\
69
\end{array}\right]_{(2 \times 1)}
\end{aligned}
$$

Similarly,

$$
\mathbf{C A}=\left[\begin{array}{rrr}
6 & -2 & 4 \\
2 & -6 & -2
\end{array}\right]_{(2 \times 3)}
$$

Square matrices are of special importance in development of statistical methods. A square matrix is said to be symmetric if $\mathbf{A}=\mathbf{A}^{\prime}$ or $a_{i j}=a_{j i}$ for all i and j.

Example 4:

The matrix

$$
\mathbf{A}=\left[\begin{array}{rr}
3 & 5 \\
5 & -2
\end{array}\right]_{(2 \times 2)}
$$

is symmetric; the matrix

$$
\mathbf{A}=\left[\begin{array}{rr}
3 & 6 \\
5 & -2
\end{array}\right]_{(2 \times 2)}
$$

is not symmetric
When two square matrices \mathbf{A} and \mathbf{B} are of same dimensions, both products $\mathbf{A B}$ and $\mathbf{B A}$ are defined, although they need not be equal. if we let bf I denote the square matrix with ones on the diagonal and zeros elsewhere it follows from the definition of matrix multiplication that the (i, j) enrty of $\mathbf{A I}$ is $a_{i 1} \times 0+\cdots+a_{i, j-1} \times 0+a_{i j} \times 1+a_{i, j+1} \times 0+\cdots+a_{i k} \times 0=a_{i j}$, so $\mathbf{A I}=\mathbf{A}$. Similarly, IA $=\mathbf{A}$ so for any \mathbf{A},

$$
\mathbf{I}_{k \times k} \mathbf{A}_{k \times k}=\mathbf{A}_{k \times k}
$$

The matrix I acts like 1 in ordinary multiplication, so it is called identity matrix.
The fundamental scalar relation about the existence of an inverse number a^{-1} such that $a^{-1} a=$ $a a^{-1}=1$, if $a \neq 0$, has the following matrix algebra extension. If there exists a matrix \mathbf{B} such that

$$
\mathbf{B}_{(k \times k)} \mathbf{A}_{(k \times k)}=\mathbf{A}_{(k \times k)} \mathbf{B}_{(k \times k)}=\mathbf{I}_{k \times k}
$$

then \mathbf{B} is called the inverse of \mathbf{A} and is denoted by \mathbf{A}^{-1}.

Singularity:

A square matrix that not have a matrix inverse is called singular matrix. A matrix is singular iff its determinant is 0 . The determinant of a matrix A is denoted as $|\mathrm{A}|$.

Some special matrices:

1) Identity Matrix:
2) Block Matrix: A block matrix is a matrix that is defined using smaller matrices, called blocks. For example, $E=\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]$

$$
\begin{aligned}
& A=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right] \\
& B=\left[\begin{array}{lll}
5 & 6 & 7 \\
8 & 9 & 10
\end{array}\right] \\
& C=\left[\begin{array}{lll}
11 & 12 & 13 \\
14 & 15 & 16 \\
17 & 18 & 19
\end{array}\right] \\
& D=\left[\begin{array}{ll}
20 & 21 \\
22 & 23 \\
24 & 25
\end{array}\right]
\end{aligned}
$$

$$
E=\left[\begin{array}{ccccc}
1 & 2 & 5 & 6 & 7 \\
3 & 4 & 8 & 9 & 10 \\
11 & 12 & 13 & 20 & 21 \\
14 & 15 & 16 & 22 & 23 \\
17 & 18 & 19 & 24 & 25
\end{array}\right]
$$

3) Diagonal Matrix: A square matrix of the form

$$
a_{i j}=c_{i} \delta_{i j} \text {, where } \delta_{i j}=1 \text { if } i=j, \delta_{i j}=0 \text { if } i \neq j .
$$

A diagonal matrix has the form

$$
A=\left[\begin{array}{cccc}
c 1 & 0 & \ldots & 0 \\
0 & c 2 & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots \\
0 & 0 & \ldots & c n
\end{array}\right]
$$

Question:

1) Is identity matrix a diagonal matrix?
2) What is a block-diagonal matrix (PP56, Diggle, Liang, and Zegger, 1994)?

Using matrices to represent simultaneous equations

Example 1:
$5 x+3 y+z=1$
$2 x+3 y+5 z=2$
$x+9 y+6 z=3$
Rewrite the three equations as a single matrix equation:
where $A=\left[\begin{array}{lll}5 & 3 & 1 \\ 2 & 3 & 5 \\ 1 & 9 & 6\end{array}\right\rfloor, U=\left[\begin{array}{l}x \\ y \\ z\end{array}\right] V=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right\rfloor$.
Example 2:
Linear Regression Model:

$$
Y_{i}=\beta_{1} x_{i 1}+\beta_{2} x_{i 2}+\ldots+\beta_{p} x_{i p}+\varepsilon_{i}, i=1,2, \ldots, n .
$$

In Matrix form,

$$
Y=X \beta+e .
$$

Web Resource for Matrix:
http://mathworld.wolfram.com/
It has all the definition related to matrix and matrix operation.

Exercise:

$\rho=0.5$
I is 5×5 identity matrix
J is 5×5 matrix with all of its elements of 1 .
$X=\left[\begin{array}{cc}1 & -2 \\ 1 & -1 \\ 1 & 0 \\ 1 & 1 \\ 1 & 2\end{array}\right]$.

Calculate

1) $V_{0}=(1-\rho) I+\rho J$
2) $X^{\prime} X$
3) $X^{\prime} V_{0} X$
