
Principal components analysis corrects for stratification
in genome-wide association studies
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David Reich1,2

Population stratification—allele frequency differences between cases and controls due to systematic ancestry differences—can
cause spurious associations in disease studies. We describe a method that enables explicit detection and correction of population
stratification on a genome-wide scale. Our method uses principal components analysis to explicitly model ancestry differences
between cases and controls. The resulting correction is specific to a candidate marker’s variation in frequency across ancestral
populations, minimizing spurious associations while maximizing power to detect true associations. Our simple, efficient approach
can easily be applied to disease studies with hundreds of thousands of markers.

Population stratification—allele frequency differences between cases
and controls due to systematic ancestry differences—can cause spur-
ious associations in disease studies1–8. Because the effects of stratifica-
tion vary in proportion to the number of samples9, stratification will
be an increasing problem in the large-scale association studies of the
future, which will analyze thousands of samples in an effort to detect
common genetic variants of weak effect.

The two prevailing methods for dealing with stratification are
genomic control and structured association9–14. Although genomic
control and structured association have proven useful in a variety of
contexts, they have limitations. Genomic control corrects for stratifi-
cation by adjusting association statistics at each marker by a uniform
overall inflation factor. However, some markers differ in their allele
frequencies across ancestral populations more than others. Thus, the
uniform adjustment applied by genomic control may be insufficient at
markers having unusually strong differentiation across ancestral
populations and may be superfluous at markers devoid of such
differentiation, leading to a loss in power. Structured association
uses a program such as STRUCTURE15 to assign the samples to
discrete subpopulation clusters and then aggregates evidence of
association within each cluster. If fractional membership in more
than one cluster is allowed, the method cannot currently be applied to
genome-wide association studies because of its intensive computa-
tional cost on large data sets. Furthermore, assignments of individuals
to clusters are highly sensitive to the number of clusters, which is not
well defined14,16.

We propose a method to detect and correct for population
stratification that addresses these limitations. Our method, EIGEN-
STRAT, consists of three steps (Fig. 1). First, we apply principal
components analysis17 to genotype data to infer continuous axes of

genetic variation. Intuitively, the axes of variation reduce the data to a
small number of dimensions, describing as much variability as
possible; they are defined as the top eigenvectors of a covariance
matrix between samples (see Methods). In data sets with ancestry
differences between samples, axes of variation often have a geographic
interpretation: for example, an axis describing a northwest-southeast
cline in Europe would have values that gradually range from positive
for samples from northwest Europe, to near zero in central Europe, to
negative in southeast Europe. Second, we continuously adjust
genotypes and phenotypes by amounts attributable to ancestry
along each axis, via computing residuals of linear regressions;
intuitively, this creates a virtual set of matched cases and controls.
Third, we compute association statistics using ancestry-adjusted
genotypes and phenotypes.

The EIGENSTRAT method has arisen out of our systematic
exploration of the use of principal components analysis in a more
general population genetic context. Principal components analysis was
originally applied to genetic data to infer worldwide axes of human
genetic variation from the allele frequencies of various popula-
tions18,19. We have further developed this approach in a parallel
paper (N.J.P., A.L.P. and D.R., unpublished data), focusing instead
on individual genotype data and placing the method on a firm
statistical footing by rigorously assigning statistical significance to
each axis of variation20–22. EIGENSTRAT applies this toolkit to analyze
population structure in the context of disease studies.

Correcting for stratification using continuous axes of variation has
several advantages. Continuous axes provide the most useful descrip-
tion of within-continent genetic variation, according to recent stu-
dies23. Because our continuous axes are constructed to be orthogonal,
results are insensitive to the number of axes inferred, as we verify
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empirically. In addition, our approach is computationally tractable on
a genome-wide scale. Here, we test EIGENSTRAT on simulated
genome-wide disease studies and apply it to a real data set of 488
European American samples genotyped at 116,204 SNPs.

RESULTS
Simulated disease studies
Our simulated disease studies are similar to those carried out in ref. 24
in a comparison between structured association and genomic control
methods, except that our studies are many orders of magnitude larger.
We generated data at 100,000 random SNPs for 500 cases and 500
controls, with 60% of the cases and 40% of the controls sampled from
population 1 and the remaining cases and controls sampled from
population 2. Allele frequencies for population 1 and population 2
were generated using the Balding-Nichols model25 with FST ¼ 0.01
(see Methods) (FST ¼ 0.01 is typical of differentiation between
divergent European populations26,27 and leads to allele frequency
differences under 0.10 for typical common SNPs).

We used principal components analysis to infer orthogonal axes of
continuous variation for each of ten independent data sets of 100,000
random SNPs (see Methods). Because the data contain only one added
dimension of population structure, we expect only the top axis of
variation to be of interest. However, in order to test the sensitivity of
EIGENSTRAT to the number of axes of variation used, we actually
inferred the top ten axes of variation. We checked whether the top axis
of variation accurately tracks membership in population 1 versus
population 2, and we found that the coordinate along the top axis is
99.9% correlated to population membership across samples; the
remaining axes are artifacts of sampling.

We simulated three categories of candidate SNPs to compare the
effectiveness of different stratification correction methods. For the first
category (random SNPs with no association to disease), we again used
the Balding-Nichols model with FST ¼ 0.01 (see Methods). For the
second category (differentiated SNPs with no association), we
assumed population allele frequencies of 0.80 for population 1 and
0.20 for population 2. This category was motivated by previous studies

of a SNP in the lactase (LCT) gene, which was shown to be spuriously
associated to the height phenotype in European Americans because of
stratification6; this SNP varies in frequency from 0.20 to 0.80 in
European populations because of positive selection28. For the third
category (causal SNPs), we used the Balding-Nichols model with
FST ¼ 0.01 and a multiplicative disease risk model with a relative risk
of 1.5 for the causal allele (see Methods). For each of the ten data sets
of 100,000 random SNPs, we simulated 1,000,000 candidate SNPs in
each of the three categories, and computed association statistics using
three methods: (i) Armitage trend w2 statistic29 with no stratification
correction, (ii) genomic control using random SNPs to infer an
inflation factor, and (iii) EIGENSTRAT using random SNPs to infer
ten axes of variation (see Methods). Association statistics producing a
P value o 0.0001 were reported as significant.

Our simulations show that by explicitly modeling the ancestry of
cases and controls, EIGENSTRAT achieves an equal or lower rate of
false positive associations and achieves superior sensitivity to detect
true associations, relative to genomic control. For random candidate
SNPs, both methods reduce the false positive rate to the expected
value for a P o 0.0001 cutoff (Table 1, top); we have verified that the
EIGENSTRAT statistic is w2 distributed with 1 degree of freedom
(Supplementary Note and Supplementary Fig. 1 online). For highly
differentiated candidate SNPs, genomic control is likely to produce
false positives, whereas EIGENSTRAT still perfectly corrects for
stratification (Table 1, top). On the other hand, for causal disease
SNPs, EIGENSTRAT has higher power (nearly equivalent to the
statistic uncorrected for stratification): 49% versus 30% for genomic
control (Table 1, top). These results confirm the hypothesis that the
uniform adjustment of genomic control is insufficient at markers that
show unusually strong differentiation across ancestral populations and
is superfluous at markers devoid of such differentiation, leading to a
loss in power.

A possible concern with our EIGENSTRAT simulations is that we
adjusted for ancestry along the top ten axes of variation. As this data
set contains only one added dimension of population structure,
however, we expect only the top axis of variation to be of interest.
We tested the sensitivity of EIGENSTRAT to the number (K) of axes of
variation used (Supplementary Table 1 online). We see that in each
SNP category, results are virtually identical for K ¼ 1, 2, 5 or 10. This
implies that EIGENSTRAT results are not sensitive to the number of
axes of variation used, as long as there is a sufficient number of axes to
capture true population structure effects. This is a natural conse-
quence of the fact that the axes are orthogonal by definition; for
example, allowing K 4 1 has no effect whatsoever on the top axis. In
practice, we have chosen K ¼ 10 as a default value for running
EIGENSTRAT; a more rigorous approach is to set K equal to the
number of statistically significant axes of variation (N.J.P., A.L.P. and
D.R., unpublished data).

To explore how EIGENSTRAT performs under more extreme
mismatching of cases and controls, we next simulated a disease
study in which some of the cases have no matching control: we
sampled 50% of the cases and 0% of the controls from population 1
and the remaining cases and all controls from population 2. This
simulates a situation in which, for example, European American cases
are compared with controls from a single European country. For each
of ten data sets of 100,000 random SNPs used to infer population
structure, we computed association statistics at 1,000,000 candidate
SNPs in each of three categories using the Armitage trend w2 statistic,
genomic control and EIGENSTRAT (Table 1, center). For random
candidate SNPs, stratification is more severe than before but is still
perfectly corrected for by genomic control and EIGENSTRAT. For
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Figure 1 The EIGENSTRAT algorithm, illustrated on simulated data.

(a) Principal components analysis is applied to genotype data to infer

continuous axes of genetic variation; a single axis of variation is illustrated

here. (b) Genotype at a candidate SNP and phenotype are continuously

adjusted by amounts attributable to ancestry along each axis, removing

all correlations to ancestry. (c) After ancestry adjustment, an association

statistic between genotype at the candidate SNP and phenotype shows no

significant association.
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highly differentiated SNPs, stratification is now guaranteed to generate
a false positive association that genomic control cannot correct for,
whereas EIGENSTRAT again achieves perfect stratification correction.
For causal SNPs, genomic control loses nearly all power, whereas
EIGENSTRAT suffers a partial power loss. These results again confirm
the hypothesis that the uniform adjustment of genomic control is
insufficient at markers showing unusually strong differentiation across
ancestral populations and is superfluous at markers devoid of such
differentiation, leading to a loss in power. We further examined the
power attained by EIGENSTRAT and determined that it is identical to
the power achieved by computing the uncorrected w2 statistic using
only the 250 cases and 500 controls from population 2. Intuitively, the
ancestry adjustment of EIGENSTRAT effectively removes the 250 cases
from population 1 from the study, which is exactly what is supposed
to happen given the lack of matching controls. Thus, given a specified
set of cases and controls with no prior knowledge of ancestry,
EIGENSTRAT will implicitly and automatically match cases and
controls to extract the maximum possible amount of power from
the data while avoiding false positives due to stratification. We caution
that this does not obviate the need to carefully match cases and
controls when designing a disease study: in the current example, a
more closely matched set of 500 cases and 500 controls would have
achieved superior power to detect true associations.

We next explored how EIGENSTRAT performs in an admixed
population. We sampled individuals with ancestry proportions a from
population 1 and (1 – a) from population 2, with a uniformly
distributed on [0,1] and case/control status simulated using disease
risk proportional to ra, based on ancestry risk r (see Methods). For
each of ten data sets of 100,000 random SNPs used to infer population
structure, we computed association statistics at 1,000,000 candidate
SNPs in each of three categories using the Armitage trend w2 statistic,
genomic control and EIGENSTRAT. Results for r ¼ 2 and r ¼ 3 are
reported in Table 1 (bottom). Once again, EIGENSTRAT is far more

effective than genomic control in correcting for stratification at highly
differentiated SNPs and achieves higher power at causal SNPs. How-
ever, even EIGENSTRAT incurs a slight power loss at causal SNPs:
because its ancestry inference is extremely accurate—the top axis is
99.8% correlated to true ancestry for either value of r—we hypothesize
that this power loss may be an unavoidable consequence of imperfect
matching of cases and controls, analogous to the unavoidable power
loss of Table 1, center.

Finally, we explored how much data is needed to accurately infer
population structure and correct for stratification. (We note that this
is greater than the amount of data needed to merely detect the
existence of population structure). There are many variables of
interest, but we restricted our attention to the number of samples
(N), the number of random SNPs (M) used to infer population
structure, and FST. All other variables were fixed as in our original
simulations; in particular, 60% of cases and 40% of controls were
sampled from population 1, with the remainder from population 2.
First, we tried altering the number N of samples and found that
simulations at N ¼ 100, 200, 500 or 1,000 each yielded a top axis of
variation that is 99.9% correlated to population membership across
samples, with EIGENSTRAT effectively correcting for stratification in
each case, even at highly differentiated candidate SNPs (data not
shown). Thus, effective stratification correction is insensitive to the
number of samples. We then fixed the sample size N at 1,000 and ran
simulations at various values of M, the number of random SNPs used
to infer population structure. We focused our attention on highly
differentiated candidate SNPs, which are particularly likely to produce
false positive associations, as demonstrated above. False positive rates
for these SNPs, along with the correlation between the top axis of
variation and population membership across samples, are reported
in Supplementary Table 2 online. We see that EIGENSTRAT
has difficulty inferring a perfectly accurate axis of variation when
M o 5,000, leading to incomplete stratification correction. On the

Table 1 Proportion of associations reported as significant by Armitage trend v2 statistic, genomic control and EIGENSTRAT

w2 Genomic control EIGENSTRAT

Discrete subpopulations with moderate ancestry differences between cases and controls

Random SNPs 0.0008 0.0001 0.0001

Differentiated SNPs 0.8520 0.5007 0.0001

Causal SNPs 0.5117 0.2980 0.4860

Discrete subpopulations with more extreme ancestry differences between cases and controls

Random SNPs 0.0365 0.0001 0.0001

Differentiated SNPs 1.0000 1.0000 0.0001

Causal SNPs 0.5073 0.0342 0.2666

Admixed population with ancestry differences between cases and controls based on ancestry risk r

r ¼ 2

Random SNPs 0.0002 0.0001 0.0001

Differentiated SNPs 0.1600 0.1004 0.0001

Causal SNPs 0.5180 0.4367 0.4863

r ¼ 3

Random SNPs 0.0007 0.0001 0.0001

Differentiated SNPs 0.7757 0.5553 0.0001

Causal SNPs 0.5158 0.3328 0.4442

We report the proportion of candidate SNPs in each category at which each method reports a significant association with P o 0.0001. Each row of the table reflects an average across 1,000,000
candidate SNPs in each of ten independent simulations. Results are given for three types of stratification (see text): (i) discrete subpopulations with moderate ancestry differences between cases
and controls, (ii) discrete subpopulations with more extreme ancestry differences between cases and controls and (iii) admixed population with ancestry differences between cases and controls
based on ancestry risk r.
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other hand, stratification correction at random candidate SNPs is
effective for M Z 200 (data not shown), even when inference of axes
of variation is slightly inaccurate. We repeated this analysis for values
of FST o 0.01 and found that fully correcting for stratification at
highly differentiated SNPs requires 20,000 SNPs for FST ¼ 0.005;
50,000 SNPs for FST ¼ 0.002 and 100,000 SNPs for FST ¼ 0.001. Thus,
genome scans on European Americans with hundreds of thousands of
SNPs will be able to detect and correct for stratification across
closely related European populations, even in the case of highly
differentiated SNPs.

We were unable to include the structured association method in
the above comparisons because of its intensive computational cost.
For example, execution of the STRAT program12 on a data set with
1,000 samples and 110 markers requires 72 hours of computation
time14; our simulations are many orders of magnitude larger than
this. (We note that EIGENSTRAT runs on a data set with 1,000
samples and 100,000 markers in less than 15 min.) Thus, we compared
EIGENSTRAT, genomic control and structured association by
duplicating the much smaller simulations of ref. 24. We observed
that the three methods achieve similar success in correcting for
stratification at random candidate SNPs, and that EIGENSTRAT
achieves superior power to genomic control or structured association
in detecting true associations at causal SNPs (Supplementary Note
and Supplementary Tables 3 and 4 online).

European American data set
We applied our method to a data set of 488
European Americans genotyped on an Affy-
metrix platform containing 116,204 SNPs as
part of an ongoing disease study (see Meth-
ods). We removed outlier individuals from
all analyses (see Methods). We used principal
components analysis to infer the top axes of
variation. Statistical methods that we have
developed (N.J.P., A.L.P. and D.R., unpub-
lished data) indicate that there are ten statis-
tically significant axes (P o 0.01 for each).
The top two axes (P o 10�12 for each) are

shown in Figure 2. Interestingly, we observed both continuous and
discrete genetic effects. We hypothesize that the first axis reflects
genetic variation between northwest and southeast Europe, based on
its correlation with lactase persistence (see below). The sign of the
correlation implies that a fraction of the samples provide the bulk of
southeast European ancestry, and the second axis separates two
southeast European subpopulations (Fig. 2).

We conducted an association study for the lactase persistence
phenotype. We chose this phenotype because it correlates with within-
Europe ancestry28 and can be inferred from the data, as it is 100%
associated to genotype at the LCT gene30. Although the SNP perfectly
associated to this phenotype was not one of the 116,204 SNPs geno-
typed, the nearby SNP rs3769005 was genotyped and is 90% correlated
to the perfectly associated SNP in European samples from HapMap31;
thus, the lactase persistence phenotype can be inferred with reasonable
accuracy from the genotype at this SNP. We computed association
statistics using the Armitage trend w2 statistic29 (see Methods),
correcting P values for the number of SNPs tested. As expected, a
large number of SNPs on chromosome 2 showed a highly significant
association, reflecting the strong selective sweep that occurred at the
LCT gene28. We thus restricted our subsequent analysis to SNPs
outside chromosome 2. Four SNPs showed significant associations
(Table 2); we hypothesized that these might be due to stratification.

We first attempted to correct for stratification using genomic
control10. We computed a genome-wide inflation factor of l ¼ 1.43
(see Methods). After dividing the uncorrected w2 statistics by this
quantity, the top associated SNP remained significant (Table 2). We
then ran EIGENSTRAT, which did not report any significant associa-
tion either at any of the originally associated SNPs (Table 2) or at any
other SNP. Notably, the top axis of variation inferred by EIGENSTRAT
is strongly correlated both to the four originally associated SNPs and
to the lactase persistence phenotype—presumably because lactase
persistence varies between northwest and southeast Europe6,28.
Thus, correcting along this axis addresses the spurious associations.

In the above analysis, the set of SNPs used by EIGENSTRAT to infer
axes of variation included the candidate SNPs of interest. This raises
the question of whether the axes of variation could be biased by the
inclusion of these SNPs. To address this question, we reran EIGEN-
STRAT with the four candidate SNPs, the LCT region SNP rs3769005,
and all SNPs within 5 Mb of each of those SNPs excluded when
inferring axes of variation. Results were essentially unchanged. This
suggests that the method is robust to inclusion or exclusion of
candidate SNPs when inferring axes of variation in large data sets.

To test how many random SNPs are needed to effectively correct for
stratification, we reran EIGENSTRAT using a subset of M SNPs, for
various values of M. The association reported by EIGENSTRAT at the
candidate SNP rs10511418 is reported in Supplementary Table 5
online, together with the correlation of the top axis of variation to the
top axis inferred using all SNPs. We see that EIGENSTRAT has
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Figure 2 The top two axes of variation of European American samples. We

hypothesize that the first axis reflects genetic variation between northwest

and southeast Europe, with a fraction of the samples showing southeast

European ancestry (first axis o 0; see text). It follows that the second axis

separates two southeast European subpopulations.

Table 2 SNPs outside chromosome 2 that are spuriously associated to the lactase persistence

phenotype

SNP w2 Genomic control EIGENSTRAT

rs10511418 45.11 (0.0000022) 31.55 (0.0023) 11.57 (1.00)

rs2493880 26.12 (0.037) 18.27 (0.89) 8.17 (1.00)

rs4306808 26.04 (0.039) 18.21 (0.90) 8.83 (1.00)

rs2243133 25.60 (0.049) 17.90 (0.93) 5.88 (1.00)

We list association statistics (P values in parentheses, corrected for 116,204 SNPs tested) for three methods: Armitage
trend w2 statistic, genomic control and EIGENSTRAT. Significant associations (P o 0.05) are listed in bold.
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difficulty inferring a perfectly accurate axis of variation when M o
20,000, leading to incomplete stratification correction. Thus, the
number of SNPs needed is larger than we had determined in
simulation for FST ¼ 0.01 (Supplementary Table 2). We hypothesized
that because European Americans are an admixed population, the
effective FST might be smaller than 0.01. Indeed, the level of popula-
tion structure is similar to what would be observed in the case of two
discrete subpopulations with FST ¼ 0.004 (Supplementary Note
online). Given these results, it is not surprising that EIGENSTRAT
fails to correct for stratification in the data set from ref. 6 of 368
European Americans typed at 178 markers (Supplementary Note).

DISCUSSION
We have described a new method to detect and correct for population
stratification that explicitly models ancestry differences between cases
and controls along continuous axes of variation. Practical issues such
as linkage disequilibrium between markers and extending to quanti-
tative traits are discussed in the Supplementary Note. The EIGEN-
STRAT method outperforms prevailing methods on simulated
and real data sets and can easily be applied to disease studies
with hundreds of thousands of markers. The method should be
particularly valuable in disease studies involving European Americans,
as genetic risk has already been reported to vary across Europe for
numerous diseases32–36.

Although EIGENSTRAT is a robust and powerful method for
correcting for stratification, it is not a panacea, and researchers should
adhere to the principles of careful experimental design, matching the
ancestry and laboratory treatment of cases and controls to the fullest
extent possible. If violation of these principles leads to a strong bias
between cases and controls, EIGENSTRAT is likely to detect the bias;
however, a loss in power will inevitably result, because any putative
disease association will resemble an unusually strong instance of the
bias. Though our focus here has been on ancestry effects, a recent
study has suggested that differences in laboratory treatment among
samples is a pervasive issue that will often outweigh the effects of
population stratification37. These effects are so common that it is not
surprising if assay artifacts are detected by our methods, especially in a
large study where our sensitivity is high. Indeed, in the European
American data set described here, the top two axes of variation
describe ancestry effects, but subtle evidence of differences in labora-
tory treatment among samples is detected in the third axis (Supple-
mentary Note). EIGENSTRAT’s ability to explicitly address such
subtle effects is an encouraging prospect.

METHODS
Simulated disease studies. Following ref. 24, simulated data for populations 1

and 2 with a specified value of FST were generated using the Balding-Nichols

model25. For each SNP, an ancestral population allele frequency p was drawn

from the uniform distribution on [0.1,0.9]. The allele frequencies for popula-

tions 1 and 2 were each drawn from a beta distribution with parameters

p(1 – FST)/FST and (1 – p)(1 – FST)/FST. This distribution has mean p and

variance FST p(1 – p). It follows that the quantity FST agrees with its usual

measure of genetic distance between two populations26,38. The risk model

with a relative risk of R for the causal allele was implemented as follows:

for individuals from population l with population allele frequency pl,

control individuals were assigned genotype 0, 1 or 2 with probabilities

(1 – pl)
2, 2pl(1 – pl), or pl

2, respectively, and case individuals were assigned

genotype 0, 1 or 2 with relative probabilities (1 – pl)
2, 2Rpl(1 – pl), or R2p

l
2,

respectively, each scaled by (1 – pl)
2 + 2Rpl(1 – pl) + R2pl

2.

Simulated disease studies in an admixed population. Case/control status for

individuals with ancestry proportions a from population 1 and (1 – a) from

population 2 were simulated using disease risk proportional to ra, based on

ancestry risk r . To insure an average value of 0.5 across possible values of a, the

probability of disease was set to 0.5 log(r) ra/(r – 1). The risk model with a

relative risk of R for the causal allele was implemented as above, replacing pl
with ap1 + (1 – a)p2, the allele frequency conditional on an individual’s ancestry

proportion a.

Inference of axes of variation. Let gij be a matrix of genotypes for SNP i

and individual j, where i ¼ 1 to M and j ¼ 1 to N. We subtract the row mean

mi ¼ (Sj gij)/N from each entry in row i to obtain a matrix with row sums equal

to 0; missing entries are excluded from the computation of mi and are

subsequently set to 0. We then normalize row i by dividing each entry byffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pið1 � piÞ

p
, where pi is a posterior estimate of the unobserved underlying

allele frequency of SNP i defined by pi ¼ (1 + Sjgij)/(2 + 2N), with missing

entries excluded from the computation. We denote the resulting matrix X. We

compute an N � N covariance matrix C of individuals, where Cjj́ is defined to

be the covariance of column j and column j́ of X. We define the kth axis of

variation to be the kth eigenvector of C (that is, the eigenvector with kth largest

eigenvalue). Thus, the ancestry ajk of individual j along the kth axis of variation

equals coordinate j of the kth eigenvector. We note that eigenvectors are

orthonormal by definition; thus, Sj ajk ¼ 0, Sj ajk
2 ¼ 1 and Sj ajk ajḱ ¼ 0 for

distinct axes k and ḱ. In particular, the ancestry values ajk can be either positive

or negative and should not be interpreted as percentages. Each axis is invariant

to multiplying by a factor of –1, which does not change its interpretation.

The above procedure is motivated by the decomposition X¼ USVT, where U

is an M � N matrix whose kth column contains coordinates of each SNP along

the kth principal component, S is a diagonal matrix of singular values and V is

an N � N matrix whose kth column contains ancestries ajk of each individual j

along the kth principal component. It follows that XTX ¼ VS2VT; thus, the

columns of V are the eigenvectors of the matrix XTX. The matrix XTX is

equivalent up to a constant to the covariance matrix C, and the matrix S2 of

squared singular values is equivalent up to a constant to the diagonal matrix of

eigenvalues of C.

Computation of Armitage trend v2 statistic. As discussed in ref. 10, the

Armitage trend w2 statistic29 is more appropriate than a w2 statistic obtained

from a 2 � 2 allelic or 2 � 3 genotypic w2 table. The Armitage trend w2 statistic

is equal to N times the squared correlation between genotype (0, 1 or 2) and

phenotype (0 or 1), where N is the number of samples. Though we believe that

(N – 1) times the squared correlation is a more appropriate statistic, we used

the original definition of Armitage in all of our calculations.

Computation of genome-wide v2 inflation factor for genomic control. As

described in ref. 10, a robust genome-wide inflation factor l is computed as

the median w2 statistic divided by 0.456, the predicted median w2 if there

is no inflation.

Adjustment of genotypes and phenotypes using axes of variation. Let gij be

the genotype of individual j (gij ¼ 0, 1 or 2) at SNP i, and let aj be the ancestry

of individual j along a given axis of variation. We define gij, adjusted ¼ gij – giaj,
where gi ¼ Sjajgij/Sjaj

2 is a regression coefficient for ancestry predicting

genotype across individuals j with valid genotypes at SNP i. (If there are no

missing genotypes at SNP i, then Sjaj
2 ¼ 1 by definition, and thus gi ¼ Sjajgij.)

A similar adjustment is performed for each axis of variation. The adjustment of

phenotype pj is analogous. We note that the procedure we have described is

equivalent to using the axes of variation as covariates in a multilinear

regression, but is simpler because the axes of variation are orthogonal,

and thus the adjustments can be performed independently for each

axis of variation.

Computation of v2 statistic using ancestry-adjusted genotypes and pheno-

types. Our w2 statistic is equal to (N – K – 1) times the squared correlation

between ancestry-adjusted genotype and ancestry-adjusted phenotype, where N

is the number of samples and K is the number of axes of variation used to

adjust for ancestry. This is a generalization of the Armitage trend w2 statistic29

for discrete genotypes and phenotypes (see above). The idea is to test for

correlation between two vectors which have been projected into a space of

reduced dimension, namely the space orthogonal to the K axes of variation.
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We note that using more axes of variation than necessary will in theory lead to a

loss in power; however, for K oo N the effect will be minimal.

European American data set. The data set consisted of 488 individuals chosen

from the Brigham Rheumatoid Arthritis Sequential Study (BRASS), an ongoing

single-center cohort of subjects seen at the Brigham & Women’s Hospital

Arthritis Center. The individuals chosen were unrelated and self-described as

white, suggesting European ancestry. The data set exclusively contained

individuals with rheumatoid arthritis (as diagnosed by a board-certified

rheumatologist), as cohort specimens collected at enrollment as controls were

not yet genotyped. The cohort is predominantly female (82%) with a mean age

of 57 years and an average disease duration of 15 years39. Sample collection was

approved by the Human Research Committee of Brigham and Women’s

Hospital, and informed consent was obtained from all subjects. Genotyping

was performed using the Affymetrix GeneChip Mapping Array containing

116,204 SNPs. Samples were processed in a 96-well plate format using Biomek

FX robotics according to the manufacturer’s protocol. Individual samples with

o90% genotype call rates or with more than two Hind-Xba discrepancies were

excluded from the data set.

We identified 39 outlier individuals and removed them from all analyses,

keeping 449 individuals. Although EIGENSTRAT is designed to automatically

and implicitly match cases and controls, we view the removal of outliers as a

prudent step, as outliers may skew other axes of interest because of the

orthogonality property, obfuscating their interpretation and potentially hinder-

ing their detection in the case of subtle effects. Outliers were defined as

individuals whose ancestry was at least 6 standard deviations from the mean

on one of the top ten inferred axes of variation. This trimming step was

iteratively applied, removing 39 outliers in five iterations. After correcting for

the total of 23,800 hypotheses tested, each outlier was still highly statistically

significant (P o 5 � 10�5). We note that the alternative single-iteration

approach of removing individuals whose ancestry is at least 6 standard

deviations from the mean on any statistically significant axis of variation

(N.J.P., A.L.P. and D.R., unpublished data) produces similar results.

URLs. Software for running EIGENSTRAT on a Linux platform is available at

http://genepath.med.harvard.edu/~reich/EIGENSTRAT.htm.

Note: Supplementary information is available on the Nature Genetics website.
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