
1 Introduction
Microarrays are the most mature and widely used high-throughput technology (Al-
lison et al., 2006; Eisen et al., 1998). Sophisticated preprocessing and normalization
techniques have been developed, and are widely used, to clean data from microar-
rays before analysis is performed (Allison et al., 2006). However, most of these
preprocessing techniques and significance analyses do not take into account non-
biological variables in the design of high-throughput studies (Mecham et al., 2010).
Batch effects - the collective set of unmeasured non-biological variables associated
with the batch in which a given array is run - have been identified as a major prob-
lem in the analysis of data from these studies (Leek et al., 2010). Specifically, it
has been shown that ignoring non-biological artifacts like batch in the analysis of
high-throughput data can result in misleading or incorrect results (Akey et al., 2007;
Baggerly et al., 2004).

Although batch effects are now recognized as a major problem in the anal-
ysis of high-throughput data, until now there has been no thorough examination
of the impact of batch effects on building genomic predictors. Batch could nega-
tively impact prediction by obfuscating and washing out any predictive power of
useful biological variations between certain outcomes. Furthermore, prediction ac-
curacy could be erroneously overstated if batch and outcome are highly correlated,
and batch proves to be easily predicted. In this scenario, prediction models would
appear highly accurate, even under cross-validation in one study. However, the
out-of-sample performance of these predictors would be considerably worse. Here
we investigate the role of batch effects on building and evaluating predictors based
on genomic data. To investigate the relationship between batch and prediction,
we collected data from two publicly available Affymetrix gene expression studies.
For each study, we collected information on an outcome for prediction and defined
batches based on the date the microarrays were processed.

Using these data we first evaluated the relative impact of different prediction
algorithms and normalization techniques on prediction. We examined Top-Scoring
Pairs (TSP) - a popular rank-based prediction algorithm (Geman et al., 2004), and
Prediction Analysis of Microarrays - a popular continuous prediction algorithm
(Tibshirani et al., 2002). As a benchmark, we also examined the impact on the
least angle regression implementation of the least absolute shrinkage and selection
operator (Lasso) (Tibshirani, 1996; Efron et al., 2004). We examined Robust Multi-
Array Average (RMA) - a multi-sample preprocessing technique (Irizarry et al.,
2003), and Frozen Robust Multi-Array Analysis (fRMA) - a single-sample prepro-
cessing technique (McCall et al., 2010). RMA borrows information across samples
in a single study in order to normalize data. fRMA borrows information from his-
torical studies, allowing for it to be applied to single microarrays at a time. This



feature of fRMA could be especially useful in cases where samples are examined
individually, rather than in batches.

We used a cross-validation design to observe the above preprocessing meth-
ods and predictive algorithms in three different scenarios: (1) building and testing
predictors on data collected within a single batch, (2) building predictors on one
batch and testing predictors on a different batch, and (3) building and testing pre-
dictors on data collected from a mixture of batches. For all combinations of pre-
processing and predictor building algorithms, prediction accuracy was worse when
predicting across batches. However, on average batch did not have a substantial
impact on prediction accuracy when the batch variable and the outcome variable
were not highly correlated.

There are currently various methods that have been developed in order to
correct for batch effects in the context of significance analysis, including SVA
(Leek and Storey, 2007) and Combat (Johnson et al., 2007). However, these rely
on populations of microarrays to estimate the effect of batch on individual mea-
surements. Since the goal of our analysis is, in part, to determine methods that
will work on studies with perfect confounding of batch and outcome, or on in-
dividual samples, we do not further consider these methods. Similarly, a previous
study has examined the performance of a range of predictive algorithms after batch-
affect removal using basic standardization and mean-removal methods (Luo et al.,
2010). Our study differs because we compare pre-processing methods designed for
multi-sample (RMA) and single-sample (fRMA) analysis. Using simulated study
designs, we also consider the importance of the correlation between batch effects
and outcome variables, which was not considered in Luo et al. (2010). Finally, we
consider the potential for removing batch effects using sequence-based models. Al-
though our results are negative, we believe they are an important contribution to the
growing body of knowledge about how to model batch effects.

Since batch effects were only recently identified as playing a major role in
the analysis of genomic data, much of the archived data in databases like the Gene
Expression Omnibus (GEO) (Edgar et al., 2002) or ArrayExpress (Parkinson et al.,
2009) come from studies where batch and outcome may be highly correlated. There
continues to be strong interest in developing and validating predictors using these
data. We designed a second cross-validation scheme to evaluate the impact of batch
effects on prediction when batch and outcome were perfectly correlated. Using
this cross-validation technique we showed that when batch and outcome are highly
correlated: (1) there is a much stronger adverse effect of batch on prediction, (2) if
the probes most highly associated with batch are known, removing them from the
analysis improves prediction.

Taken together our results suggest that a critical component of building ac-
curate genomic predictors is to develop training datasets where batch and other non-



biological variables are not highly correlated with the outcome of interest. Further-
more, our results suggest that using normalization techniques specifically designed
to handle one sample at a time may lead to more accurate predictions. We have also
shown that it may still be possible to build and evaluate predictors in data where
batch and outcome are highly correlated, if the batch-affected probes are known
in advance. Our results suggest that a fruitful avenue for future research may be
to develop methods to identify and adjust or remove batch-affected probes when
building genomic predictors.

2 Microarray case studies
We evaluated the role of batch on prediction using a set of simulated study designs
to mimic a typical real-life development and application of a genomic predictor.
The simulated designs are comprised of actual measured gene expression levels
from two studies performed using the hgu133a Affymetrix platform. We down-
loaded the raw intensity measurements and phenotype data from the Gene Expres-
sion Omnibus (GEO) (Edgar et al., 2002). We determined batch using the date on
which the array was processed, which is embedded in the raw data files. While
date has been shown to be a good proxy for batch (Leek et al., 2010), it is possible
that there is further unwanted variation within the batches defined by date. There-
fore, our results may be conservative. In our simulated study designs, we varied the
type of preprocessing method, the composition of the training and test sets, and the
predictive algorithms.

2.1 Case Study 1 - Wang et al. (2005)

Our first dataset is from a large study of relapse-free survival in breast cancer sam-
ples (Wang et al. 2005; Carroll et al. 2006, accession GSE2034). The data set
consists of 286 lymph-node negative samples with 180 patients relapse free after 5
years and 106 patients with a distant metastasis. Distant metastasis is a subtle phe-
notype and extremely challenging to predict, even without accounting for potential
batch effects. So for the purpose of illustration we chose a more easily predicted
phenotype, estrogen receptor (ER) status, as the outcome for our study. There were
209 ER+ patients and 77 ER- patients in the study.

Information about batches was not recorded in the metadata available for
this study from GEO. However, the processing date of each microarray is included
in the raw intensity Affymetrix CEL files. We extracted the sample processing
dates from the CEL files and assigned samples into three batches based on clusters
of these processing dates (Figure 1a). Batch A had 102 arrays (68 ER+, 34 ER-).



Batch B had 87 arrays (64 ER+, 23 ER-). Batch C had 97 arrays (77 ER+, 20 ER-).
For the analyses presented, we use only the data from batches A and B. We chose
these batches because the distribution of outcomes is more comparable in these two
batches, and the span of dates included in each batch is roughly the same.

2.2 Case Study 2 - Minn et al. (2005)

The second case study is based on a medium-sized microarray study of breast can-
cer (Minn et al. 2005, accession GSE2603). We again used ER status as the outcome
for illustrative purposes. There were 57 ER+ and 42 ER- patients (we excluded cell
line data). We again assigned samples into four batches based on clusters of pro-
cessing dates (Figure 1b). Batch A had 34 arrays with outcome information (15
ER+, 19 ER-). Batch B had 38 arrays with outcome information (23 ER+, 15 ER-).
Batch C had 27 arrays with outcome information (19 ER+, 8 ER-). For the analy-
ses presented, we use only the data from batches A and B. We chose these batches
because both the span of the dates and the distribution of outcomes in these two
batches is more comparable.

Figure 1: Assignment of batch by date of microarray studies. We assigned
batches as indicated, based on the histogram of array dates for (a) Wang et al. (2005)
and (b) Minn et al. (2005) data.



3 Simulated Study Designs
Genomic predictors are typically built on data from a single study and cross-validation
accuracy is reported. The data within a single study are typically generated by the
same personnel, using the same facilities, and under similar conditions. A second
step in developing a genomic predictor is to evaluate the prediction accuracy on an
independent validation set. In many publications, the validation samples are col-
lected by the same group and using the same technology as the original samples. In
clinical applications, each sample might be collected by different individuals using
different technology and facilities. We created our simulated design to mimic this
clinical application.

We performed a leave-half-out cross-validation procedure on a series of
simulated study designs, comprised of data from our two case studies (Figure 2,
pseudocode in Appendix). In each simulated study design, we generated multiple
training and test sets. The predictive model was built on the training set and ap-
plied to the test set to get a prediction accuracy. In the first simulated study design,
all samples in the training set came from a single batch and the test set samples
came from the same batch (“within-batch” cross-validation). This design mimics
the scenario where a single lab has collected all of the data for a study. Second, we
simulated a study design where the training set samples were drawn from one batch,
and then used to predict outcomes in a test set where samples came from a different
batch (“between-batch” cross-validation). This mimics an independent validation
where the predictive model is built in one lab or one study, and then applied to a
separate study. In the third simulated study design, we built and tested the predic-
tive model on training and test sets built from a mixture of batches (“pooled-batch”
cross validation). This design allows us to evaluate the impact of ignoring batch
when building and testing predictors in large studies with multiple batches.

In order to simulate both the within-batch and between-batch study designs
described above, for both the Wang et al. (2005) and Minn et al. (2005) datasets we
selected batches A and B (Figure 1). Then, for each of the batches we chose two
subsets of the data - a training subset and a testing subset, each of which is equal
to half of the size of the smaller batch in the dataset. In addition, for each of these
subsets, we sampled such that the outcome variable was balanced and proportional
to the mixture of outcomes present in the entire dataset. Thus, for each study there
are four total subsets, each of which is preprocessed separately with either RMA or
fRMA normalization.

After preprocessing, we then built a model on the training subsets for each
batch within the study, creating one prediction model for each batch. Models were
built using the defaults from the R-packages. For the within-batch scenario, we then
tested each model using the testing data from the same batch. For the between-batch



scenario, we tested each model using the testing data from the other batch.
We repeated the above described procedure 100 times. That is, we per-

formed 100 random selections of training and testing data, and then built and tested
the predictive models on each of these subsets of data to obtain a cross-validated
prediction accuracy measure.

In order to test against a model which ignored the effect of batch, we also
performed the analysis above on the data from each study regardless of batch. That
is, we sampled training data and testing data from the entire dataset, making sure to
take samples from both batches. We then built the predictive model on the training
data, and measured its predictive accuracy on the testing data.

Figure 2: Design of cross-validation for prediction accuracy, allowing for (a)
within, (b) between and (c) pooled batches. We randomly selected two mutually
exclusive training and testing subsets of arrays from each batch - all four had the
same number of samples, with proportional mixes of each outcome. These subsets
were preprocessed separately. We built a predictive model on the training set, and
then either tested it on a) the testing set of the same batch, or b) the testing set of
the other batch. We iterated this process 100 times to obtain robust accuracy rates
for the models. c) In addition, an internal control was created which pooled the
batches together. We randomly selected two mutually exclusive training and testing
equal-sized subsets of the arrays, with a mix of batch and outcome proportional to
the entire dataset. We again built a predictive model on the training set and tested it
on the test set, and iterated 100 times.

3.0.1 Batch only slightly impacts prediction accuracy

For both the Wang et al. (2005) and Minn et al. (2005) datasets, the prediction
accuracy was only slightly impacted when models were build on one batch and



then tested on another (Table 1, boxplots presented in Appendix Figure 9). In all
combinations of preprocessing method and prediction algorithm, the median cross-
validated accuracy level was decreased by no more than 6 percentage points total.
The interquartile range was increased in these cases by no more than 6 percentage
points as well.

In general, PAM prediction performed with higher accuracy than TSP and
Lasso prediction. PAM likely outperformed TSP due to the fact that the PAM model
utilized more probe sets in its predictor. fRMA normalization also consistently per-
formed either the same as, or better than, RMA normalization. These improvements
were no greater than 12 percentage points.

The performance of within-batch prediction and pooled-batch prediction
was also similar. This suggests that, with study designs that ensure small corre-
lation between batch and outcome, batch does not dramatically impact prediction
accuracy.

4 Batch strongly negatively impacts prediction when
outcome and batch are highly correlated

Often in high-throughput studies, batch and outcome are perfectly confounded.
This could occur, for example, if a laboratory first obtains diseased tissues from
patients, and then later matches them to controls.

In order to examine the above described situation, we simulated a study
design with the Wang et al. (2005) dataset (Figure 3). We obtained two mutually-
exclusive training and testing data subsets from the Wang et al. (2005) dataset.
However, for the training set, we obtained ER- samples exclusively from batch A,
and ER+ samples exclusively from batch B (thus perfectly confounding batch and
outcome). The testing data, however, contained a mixture of ER+ and ER- samples
from each batch that reflected the original proportions in the dataset. The training
and testing sets were normalized separately using RMA or fRMA preprocessing
methods. Then, the predictive algorithm PAM or TSP was build on the training
set. The predictive accuracy of the method was then measured using the testing set.
This process was iterated 100 times in order to obtain robust results.

4.1 Prediction accuracy patterns show that batch and outcome
information are conflated by predictive algorithms

We obtained 100 measures of cross-validated prediction accuracy rate for the four
combinations of preprocessing method and prediction algorithm (Figure 4, Ap-



Wang et al. (2005)
Within Between Pooled

RMA-Lasso 0.81 (0.77, 0.84) 0.81 (0.74, 0.86) 0.81 (0.79, 0.86)
fRMA-Lasso 0.81 (0.77, 0.84) 0.83 (0.76, 0.88) 0.84 (0.79, 0.86)

RMA-TSP 0.79 (0.73, 0.83) 0.77 (0.71, 0.84) 0.77 (0.72, 0.84)
fRMA-TSP 0.79 (0.73, 0.84) 0.79 (0.72, 0.84) 0.79 (0.72, 0.84)
RMA-PAM 0.88 (0.84, 0.91) 0.86 (0.83, 0.91) 0.86 (0.84, 0.91)

fRMA-PAM 0.88 (0.84, 0.91) 0.88 (0.86, 0.91) 0.87 (0.84, 0.91)

Minn et al. (2005)
Within Between Pooled

RMA-Lasso 0.94 (0.82, 1.00) 0.88 (0.82, 0.94) 0.94 (0.82, 0.94)
fRMA-Lasso 0.94 (0.82, 1.00) 0.89 (0.83, 0.94) 0.94 (0.88, 0.94)

RMA-TSP 0.88 (0.81, 0.94) 0.82 (0.75, 0.89) 0.88 (0.82, 0.88)
fRMA-TSP 0.88 (0.81, 0.94) 0.82 (0.77, 0.89) 0.88 (0.77, 0.88)
RMA-PAM 0.94 (0.88, 0.94) 0.89 (0.82, 0.94) 0.94 (0.88, 1.00)

fRMA-PAM 0.94 (0.88, 1.00) 0.94 (0.82, 1.00) 0.94 (0.88, 1.00)

Table 1: Predicting between batches does not largely impact accuracy. Sum-
maries of 100 cross-validated prediction accuracy rates, as found using the design
above (Figure 2), are shown for the Wang et al. (2005) and Minn et al. (2005)
datasets. Results are displayed as median (25th percentile, 75th percentile). Predic-
tion accuracy was measured within batches, between batches, and pooling batches,
in order to assess the role that batch plays in prediction. Data were preprocessed
with two commonly-used preprocessing methods - RMA and fRMA - in order to
see the affect of preprocessing on batch. We see that in general, prediction accuracy
is not largely impacted by batch for studies with little correlation between batch and
outcome.

pendix Figure 10). We divided the results into the four combinations of outcome
and batch (as defined in Figure 3). The prediction accuracy is highest in the data
that had the same batch/outcome combination as the data used to train the predic-
tive model. This is because the algorithm is using information from the batch in
creating the predictor - that is, the algorithm is predicting batch in addition to pre-
dicting outcome. The prediction accuracy is substantially lower in batch/outcome
combinations that were not included in the training data - that is, when the al-
gorithm cannot predict both batch and outcome simultaneously. Additionally, the
overall accuracy of the predictive algorithm over the entire testing dataset when



Figure 3: Simulated design allows for predictive model to be built on subset of
data with batch and outcome perfectly confounded. We built the model on a
subset of the data, using ER- samples only from batch A, and ER+ samples only
from batch B. We then tested the accuracy of the model on a subset of the data from
each batch and outcome combination and report the accuracy in Figure 4.

batch is perfectly confounded with outcome is lower than when batch and outcome
are not confounded (as previously reported in Table 1, Appendix Figure 9). Over-
all, it is quite problematic when batch and outcome are confounded when building
a predictive model using these algorithms, because the algorithms have no way of
separating which parts of the genomic signal are due to the outcome and which are
due to the batch.

For the PAM classification algorithm, we found that fRMA-normalization
and RMA-normalization perform quite similarly. Both combinations out-performed
TSP classification. This was likely due to the fact that PAM classification used more
probes to build the predictor than TSP.
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Figure 4: Prediction accuracy rates for perfect confounding simulated design
show that batch and outcome information is conflated. The study design is
presented above (Figure 3), and prediction accuracy rates are shown as boxplots
for the accuracy measurements taken from the 100 iterations. Results are shown
only for fRMA-preprocessing. RMA-preprocessing results are shown in the ap-
pendix, and are very similar to the fRMA-preprocessing results. The results show
that batch/outcome combinations used in the training dataset (Figure 3) perform
much better than batch/outcome combinations not used in the training dataset. This
suggests that batch information is heavily used by the predictive algorithm when
there is high confounding between batch and outcome.

5 Correcting for batch

5.1 Empirical correction for batch by removal of batch-affected
probes using a hard threshold

We next examined the contribution of individual probes to batch effects. Identifying
probes that are consistently affected by batch might lead to generalizable rules or
sets of probes that should be removed to improve prediction accuracy.

To do this, we first examined the role that batch plays in prediction when
there is perfect confounding between batch and outcome in a dataset, and saw how
prediction changed as we removed what we deemed to be batch-affected probes.

We repeated the study design described above (Figure 3), but with a reduced
expression matrix with batch-affected probes removed. To identify batch-affected
probe sets, we fit a model to the non-testing data (as defined in Figure 3). This
ensured that feature selection was not being performed on the test data (Smialowski
et al., 2010). Thus for each of the two studies, we identified 100 sets of batch-



affected probes - one for each iteration of randomly choosing training and testing
data. We identified batch-affected probes by fitting probe set expression levels, Yi j
with the model

Yi j = β0i +β1ibatchj +β2ioutcomej + εi j (1)

for probe set i on array j. We then defined a probe set to be batch-affected
based on the following hard threshold:

BAi =

{
1 if pi < Qx(p)
0 if pi > Qx(p)

(2)

where pi is the p-value for β1i, and Qx is the x% empirical quantile of p, the
set of pi values for i ∈ (1,22283), where 22283 is the total number of probe sets on
the array.

For each iteration of randomly building the simulated design (as described in
Figure 3), we removed the batch-affected probes from both the training and testing
sets, with Qx ranging from 10% to 60%. We then calculated the prediction accuracy
of predictors on the testing subset of the data.

The above-described procedure was performed on the Minn et al. (2005)
and Wang et al. (2005) datasets. Thus, we determined 100 candidate set of batch-
affected probes for each of the studies. We then sought to determine the predictabil-
ity of these batch-affected probes, both by comparing the sets found using the Minn
et al. (2005) and Wang et al. (2005) datasets, and by creating a model, based on
probe sequence, to describe the obtained p-value of the batch coefficient in model
1.

5.1.1 Removal of batch-affected probes increases prediction accuracy for Wang
et al. (2005) data

We performed the described simulated design using the Wang et al. (2005) dataset
with all pairwise combinations of preprocessing technique (RMA, fRMA) and pre-
diction algorithm (PAM and TSP). We consistently saw improvement in overall
prediction accuracy as batch-affected probes were removed (Figure 6. In general,
we saw greater improvement with TSP prediction than PAM prediction. For both
methods of preprocessing, after removing batch-affected probes, TSP prediction
performs approximately the same as PAM prediction. Recall that PAM prediction
performed more accurately than TSP when no batch-affected probes were removed.

We first examined a density plot of the parameter estimates β1 and β2 for
model 1 (Figure 5 (a)). Note that this is a display of the parameter estimates from



all of the 100 iterations of fitting model 1. We saw that the coefficients associated
with batch had a wider distribution than those associated with outcome - that is, it
appears that batch has a larger effect on expression than outcome for this dataset.
Notably, neither density plot displays a normal distribution, which may be evidence
that our model is not perfectly parametrized.

5.1.2 Removal of batch-affected probes slightly increases prediction accuracy
for Minn et al. (2005) data

For the Minn et al. (2005) dataset, the removal of batch-affected probes by the
method described improved prediction slightly in three of the four combinations of
preprocessing and prediction algorithm (Appendix Figure 11). The improvement
was not as dramatic as that for the Wang et al. (2005) dataset. A density plot (Figure
5 (b)) of the parameter estimates from the model 1 show very similar distributions
for the parameter estimates β1 and β2. Thus, for this data the signal and the batch
effects had a very similar intensity - something that is not often seen in studies
with more subtle outcomes. This may play a role in why our method of removing
batch-affected probes does not work for the fRMA-PAM combination.

5.1.3 There is little overlap between the batch-affected probes found using
the Wang et al. (2005) and Minn et al. (2005) datasets

We next sought to determine any similarities in the batch-affected probes deter-
mined by the Wang et al. (2005) and Minn et al. (2005) RMA-preprocessed datasets.
First, we compared within each study the pairwise overlap of batch-affected probes
between each of the 100 iterations fitting model 1 to the non-testing data (Figure 2).
In general we found that the overlap did not exceed what would happen by chance
if randomly selecting probes and calling them batch-affected (Appendix Table 3).

We also compared the batch-affected probes identified in the Wang et al.
(2005) and Minn et al. (2005) datasets. To do this, we identified probes that were
called batch-affected in at least 50% of the 100 iterations. We then compared these
probes between the two studies. We found little overlap between the batch-affected
probes (Table 2). Even in the case of a very conservative definition of batch-affected
(that is, defining 60% of the probes in a study as batch-affected, as described pre-
viously in model 1), we see only a 36% overlap. We have concluded that batch-
affected probes cannot be generalized across samples or studies.



(a) Wang et al. (2005)
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(b) Minn et al. (2005)
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Figure 5: Density plots of β1 and β2 estimates from the fitted model 1 on 100
iterations of the simulated design (Figure 3), using the a) Wang et al. (2005) data,
and b) Minn et al. (2005) data. We utilized both RMA- and fRMA- normalization
for each study.
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Figure 6: Prediction accuracy improves as batch-affected probes are removed.
Batch-affected probes in the Wang et al. (2005) dataset were determined by fitting
model 1 and selecting probes with the most significant β1 estimates.

5.1.4 Batch-affected probes cannot be predicted using linear modeling based
on probe sequence

We next sought to assess whether or not the extent to which probes are affected by
batch might be a function of the nucleotide sequence of the probes. Nucleotide se-
quence has previously been shown to affect probe expression levels, likely because
of the physical properties of the different nucleotides (see for example Wu et al.



Percentage Batch-Affected RMA Agreement fRMA Agreement
10% 0.02 0.02
20% 0.06 0.05
30% 0.11 0.10
40% 0.18 0.16
50% 0.26 0.25
60% 0.36 0.35

Table 2: Proportion agreement for batch-affected probes for Wang et al. (2005)
and Minn et al. (2005) shows little overlap beyond what is expected by chance.
Because batch-affected probes were determined using the non-testing data for each
of the 100 random iterations, we determined 100 different sets of batch-affected
probes. Results for the 100 iterations are displayed as median (25th percentile, 75th
percentile). These results call into question whether batch-affected probes can be
generalized beyond a single study, regardless of preprocessing method.

2004; Johnson et al. 2006). We defined the extent to which a probe is batch-affected
as the − log10(pk), where pk is the p-value for the batch coefficient in model 1 for
probe k. Our model was

− log10(pk) = ∑
i

∑
j

µi jI(Bi = j) (3)

for basepair j (A, T, C or G) and position i (1-25) on probe k. Note that to
find the p-value from equation 1, we were required to use probe-level expression
data (since the sequence information is applicable at the probe-level, not the probe-
set-level). Thus, we could not apply RMA and fRMA preprocessing to candidate
datasets, since both methods summarize probe-level data into probe sets. Instead of
preprocessing, we performed GCRMA-background correction (as described in Wu
et al., 2004) to correct for probe-effects, and took the log2 of the expression values.

To assess the performance of this model, we performed a meta-analysis us-
ing 262 microarray studies, all of which used the Affymetrix hgu133plus2 platform
and had at least 6 microarrays in the study. (Specific study names can be found on
the author’s website, http://biostat.jhsph.edu/~jleek/PracticalBatch/.)
We divided each study into two batches. To determine these two batches, we found
the median array date within each study, and assigned arrays with dates earlier than
or equal to the median to be in batch A, and arrays with dates later than the median
to be in batch B. Furthermore, we specified that each batch must have at least 25%
of the arrays. Thus, studies with mostly one batch (for example, studies performed

http://biostat.jhsph.edu/~jleek/PracticalBatch/


mostly on one day) were excluded. We chose to define batches in this conservative
way in order to maximize the number of studies we analyzed while still maintaining
a suitable, consistent and reproducible estimation of batch by date.

Because we did not have one consistent outcome throughout the 262 studies,
we excluded the outcome variable when fitting model 1, thus fitting a simple linear
model with batch as the only covariate. We also fit the model to the Wang et al.
(2005) and Minn et al. (2005) datasets, run on the hgu133a Affymetrix platform.
For ease of comparison, for these two studies we also only used the batch covariate
and not the outcome covariate when fitting model 1. For these two studies we used
the same batch covariate found by the array date histogram (Figure 1).
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Figure 7: Histogram of R2 values from model 3 for background-adjusted probe-
level data from 262 microarray studies, as well as the Wang et al. (2005) and
Minn et al. (2005) datasets. R2 values show that no more than 15% of the variation
in the measure of batch-affectedness in the probes is due to the probe sequence.

In general, we found poor model fit for the 262 studies, as well as the Wang
et al. (2005) and Minn et al. (2005) datasets. The models predicted less than 10%
of the variability in the p-values associated with batch (Figure 7). We conclude



that nucleotide sequence has little predictive power to identify our estimated batch-
affected probes. That is, it appears that nucleotide sequence of specific probes is
not a useful predictor of which probes will be susceptible to batch effects.

We next examined specific parameter estimates for each of these studies. In
general, the parameter estimates were quite close to zero for the vast majority of
the studies (Figure 8). In some cases, the parameter estimates differed from zero.
However, they did not differ in a consistent way, leading us to conclude that whether
or not a probe is batch-affected can not be consistently estimated using model 3.
Graphs of parameter estimates for each of the 262 studies can be found on the
author’s website (http://biostat.jhsph.edu/~jleek/PracticalBatch/).
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Figure 8: Examples of parameter estimates from model 3 for the Wang et al.
(2005) and Minn et al. (2005) datasets, as well as 262 others, do not show a
consistent pattern. Model 3 was fit on GCRMA-background corrected probe-
level data with the outcome coefficient excluded. The vast majority of the models
displayed coefficients close to zero, as in the Minn et al. (2005) dataset. Some
studies did show coefficient patterns, such as in the Wang et al. (2005) dataset.
However, these patterns were not consistent from study to study.

6 Conclusions
We have found that prediction is negatively affected by batch. In the case of study
designs in which batch and outcome are not confounded, we see that prediction is
only somewhat negatively impacted across all preprocessing techniques and pre-
diction algorithms. In the case of study designs in which batch and outcome are

http://biostat.jhsph.edu/~jleek/PracticalBatch/


perfectly confounded, we see that prediction accuracy is substantially reduced by
batch.

Furthermore, we show that the removal of empirically-determined batch-
affected probes can greatly increase prediction accuracy when batch and outcome
are perfectly confounded. This shows promise that certain probes are more suscep-
tible to batch than others within a study. However, we show very limited success in
determining batch-affected probes using modeling. Our results suggest that batch-
effect removal for prediction is still critical, but can not be accomplished through
sequence modeling alone. Instead, new methods are required to identify and remove
batch effected probes in individual studies.

7 Appendix
In addition to the graphical design of the leave-half-out cross validation design pre-
sented in Figure 3, we created pseudocode that describes the process.

Within- and Between-Batch Cross-Validation

1. For the batch with the smaller sample size (batch A), randomly choose half
of the arrays from outcome 1 (n1) and half of the arrays from outcome 2 (n2).
This will be the training data for batch A.

2. For the batch with the larger sample size (batch B), randomly chose n1 arrays
from outcome 1, and n2 arrays from outcome 2, where n1 and n2 are defined
above. This will be the training data for batch B.

3. Preprocess the training data for batch A and batch B separately using the
preprocessing algorithm of your choosing.

4. Build a predictive model for each of the batches, thus creating model A and
model B.

5. Create test data for batch A by randomly choosing n1 arrays from outcome
1 (that were not chosen in the training data) and n2 arrays from outcome 2.
Note that if batch A has an even number of arrays for each outcome, then the
testing data will just be the remaining arrays that were not in the training set.

6. Create a test data for batch B by randomly choosing n1 arrays from outcome
1 (that were not chosen in the training data) and n2 arrays from outcome 2.

7. For Within-Batch Cross-validation: Predict the outcomes for test data A using
model A, and for test data B using model B.

8. For Between-Batch Cross-validation: Predict the outcomes for test data A
using model B, and for test data B using model A.

9. Repeat 100 times to obtain robust accuracy rates.



Pooled Batch Cross-Validation

1. Do not subdivide data into batches. Randomly choose half of the arrays from
outcome 1 (N1) and half of the arrays from outcome 2 (N2). This will be the
training data.

2. Preprocess the training data.
3. Build a predictive model using the training data.
4. Create test data by randomly choosing N1 arrays from outcome 1 and N2

arrays from outcome 2. Note that if the data has an even number of arrays
for each outcome, then the testing data will just be the remaining arrays that
were not in the training set.

5. Predict the outcomes for the test data using the model built on the training
data.

6. Repeat 100 times to obtain robust accuracy rates.



(a) Wang et al. (2005)
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Figure 9: Predicting between batches increases variance and decreases accu-
racy. Boxplots of 100 cross-validated prediction accuracy rates, as found using
the cross-validation design described in the paper are shown for a) Wang et al.
(2005) and b) Minn et al. (2005) datasets. Prediction accuracy was measured within
batches, between batches, and pooling batches, in order to assess the role that batch
plays in prediction. Data were preprocessed with two commonly-used preprocess-
ing methods - RMA and fRMA - in order to see the affect of preprocessing on batch.
We see that in general, the variance of accuracy rates increases when building the
model on one batch and testing it on another (between-batch).
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Figure 10: Prediction accuracy rates for perfect confounding simulated design
show that fRMA-PAM combination is optimal. The study design is presented
above (Figure 3), and prediction accuracy rates are shown as boxplots for the ac-
curacy measurements taken from the 100 iterations. Results are shown only for
RMA-preprocessing here. fRMA-preprocessing results are shown in Figure 4.
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Figure 11: Prediction accuracy only somewhat improves as batch-affected
probes are removed. Batch-affected probes in the Minn et al. (2005) dataset were
determined by fitting model 1 and selecting probes with the most significant β1
estimates.



Wang et al. (2005)
Percent Batch-Affected RMA fRMA

10% 0.08 (0.08, 0.08) 0.08 (0.08, 0.08)
20% 0.16 (0.16, 0.17) 0.17 (0.16, 0.17)
30% 0.25 (0.25, 0.26) 0.25 (0.25, 0.25)
40% 0.34 (0.34, 0.35) 0.34 (0.33, 0.34)
50% 0.43 (0.43, 0.44) 0.43 (0.42, 0.43)
60% 0.53 (0.52, 0.53) 0.52 (0.52, 0.53)

Minn et al. (2005)
10% 0.07 (0.07, 0.08) 0.07 (0.07, 0.07)
20% 0.15 (0.15, 0.15) 0.15 (0.15, 0.15)
30% 0.23 (0.23, 0.24) 0.23 (0.23, 0.23)
40% 0.31 (0.31, 0.32) 0.31 (0.31, 0.32)
50% 0.40 (0.39, 0.40) 0.40 (0.39, 0.40)
60% 0.48 (0.48, 0.49) 0.49 (0.48, 0.49)

Table 3: Proportion overlap of batch-affected probes in pairwise comparisons
of the 100 iterations shows little consistency. 100 sets of batch-affected probes
were generations from model 1, based on the simulated design described in figure
3. We then made pairwise comparisons of the proportion overlap of batch-affected
probes, and report the median (25th percentile, 75th percentile).
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