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1 Setting up the data from an ExpressionSet

The analyses performed in this experiment are based on gene expression measurements from
a bladder cancer study [1]. The data can be loaded from the bladderbatch data package.
The relevant packages for this Supplement can be loaded with the code:

> options(width = 10)

> library(sva)

> library(bladderbatch)
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> library(RColorBrewer)

> data(bladderdata)

> library(pamr)

> library(limma)

For the bladder cancer study, the variable of interest is cancer status. To begin we will assume
no adjustment variables. The bladder data are stored in an expression set - a Bioconductor
object used for storing gene expression data. The variables are stored in the phenotype data
slot and can be obtained as follows:

> pheno = pData(bladderEset)

The expression data can be obtained from the expression slot of the expression set.

> edata = exprs(bladderEset)

2 Applying the fsva function to remove batch effects

for prediction

The surrogate variable analysis functions have been developed for population-level analyses
such as differential expression analysis in microarrays. In some cases, the goal of an analysis
is prediction. In this case, data sets are generally composed a training set and a test set. For
each sample in the training set, the outcome/class is known, but latent sources of variability
are unknown. For the samples in the test set, neither the outcome/class or the latent sources
of variability are known.

“Frozen” surrogate variable analysis can be used to remove latent variation in the test data
set. To illustrate these functions, the bladder data can be separated into a training and test
set.

> set.seed(12354)

> trainIndicator = sample(1:57,size=30,replace=F)

> testIndicator = (1:57)[-trainIndicator]

> trainData = edata[,trainIndicator]

> testData = edata[,testIndicator]

> trainPheno = pheno[trainIndicator,]

> testPheno = pheno[testIndicator,]
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Using these data sets, the pamr package can be used to train a predictive model on the
training data, as well as test that prediction on a test data set.

> mydata = list(x=trainData,y=trainPheno$cancer)

> mytrain = pamr.train(mydata)

123456789101112131415161718192021222324252627282930

> table(pamr.predict(mytrain,testData,threshold=2),testPheno$cancer)

Biopsy

Biopsy 3

Cancer 0

Normal 0

Cancer

Biopsy 1

Cancer 16

Normal 2

Normal

Biopsy 4

Cancer 1

Normal 0

Next, the sva function can be used to calculate surrogate variables for the training set.

> trainMod = model.matrix(~cancer,data=trainPheno)

> trainMod0 = model.matrix(~1,data=trainPheno)

> trainSv = sva(trainData,trainMod,trainMod0)

Number of significant surrogate variables is: 6

Iteration (out of 5 ):1 2 3 4 5

The fsva function can be used to adjust both the training data and the test data. The train-
ing data is adjusted using the calculated surrogate variables. The testing data is adjusted
using the “frozen” surrogate variable algorithm (to be submitted). The output of the fsva

function is an adjusted training set and an adjusted test set. These can be used to train and
test a second, more accurate, prediction function.
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> fsvaobj = fsva(trainData,trainMod,trainSv,testData)

Correcting sample (out of 27 ):1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

> mydataSv = list(x=fsvaobj$db,y=trainPheno$cancer)

> mytrainSv = pamr.train(mydataSv)

123456789101112131415161718192021222324252627282930

> table(pamr.predict(mytrainSv,fsvaobj$new,threshold=1),testPheno$cancer)

Biopsy

Biopsy 3

Cancer 0

Normal 0

Cancer

Biopsy 0

Cancer 18

Normal 1

Normal

Biopsy 1

Cancer 0

Normal 4

Furthermore, we can cluster both the corrected and uncorrected training samples. Before
fsva is applied, the biopsy and normal samples do not all cluster together (Figure 1 left
panel). After fsva adjustment, the clustering of the test set is improved, with only one
cancer sample clustering with the normals and biopsies (Figure 1 right panel).

> ## Load helper functions

>

> myplclust <- function( hclust, lab=hclust$labels,

+ lab.col=rep(1,length(hclust$labels)), hang=0.1,...){

+ ## modifiction of plclust for plotting hclust objects *in colour*!

+ ## Copyright Eva KF Chan 2009
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+ ## Arguments:

+ ## hclust: hclust object

+ ## lab: a character vector of labels of the leaves of the tree

+ ## lab.col: colour for the labels; NA=default device foreground colour

+ ## hang: as in hclust & plclust

+ ## Side effect:

+ ## A display of hierarchical cluster with coloured leaf labels.

+ y <- rep(hclust$height,2)

+ x <- as.numeric(hclust$merge)

+ y <- y[which(x<0)]

+ x <- x[which(x<0)]

+ x <- abs(x)

+ y <- y[order(x)]

+ x <- x[order(x)]

+ plot( hclust, labels=FALSE, hang=hang, ... )

+ text( x=x, y=y[hclust$order]-(max(hclust$height)*hang),

+ labels=lab[hclust$order], col=lab.col[hclust$order],

+ srt=90, adj=c(1,0.5), xpd=NA, ... )}

> mypar <- function(a=1,b=1,brewer.n=8,brewer.name="Dark2",...){

+ par(mar=c(2.5,2.5,1.6,1.1),mgp=c(1.5,.5,0))

+ par(mfrow=c(a,b),...)

+ palette(brewer.pal(brewer.n,brewer.name))

+ }

> ## Make plots

>

>

> mypar()

> tmp = apply(testData,1,var)

> keep = which(rank(-tmp) < 2000)

> hBefore = hclust(dist(t(testData[keep,])))

> tmp2 = apply(fsvaobj$new,1,var)

> keep2 = which(rank(-tmp2) < 2000)

> hAfter = hclust(dist(t(fsvaobj$new[keep2,])))

> par(mfrow=c(1,2))

> myplclust(hBefore,lab=testPheno$cancer,

+ lab.col=as.numeric(testPheno$cancer),main="Before fsva",xlab="")

> myplclust(hAfter,lab=testPheno$cancer,

+ lab.col=as.numeric(testPheno$cancer),main="After fsva",xlab="")
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Figure 1: Clustering of the test samples in the bladder cancer study before (left) and after
(right) adjustment with the fsva function. After using the fsva function, the normal and
biopsy samples cluster together and only one cancer sample is “misclustered”.
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