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have focused on studying the amplitude of evoked fMRI responses, though there
has recently been an increased interest in measuring onset, peak latency and duration of the responses as
well. A number of modeling procedures provide measures of the latency and duration of fMRI responses. In
this work we compare several techniques that vary in their assumptions, model complexity, and
interpretation. For each method, we introduce methods for estimating amplitude, peak latency, and
duration and for performing inference in a multi-subject fMRI setting. We then assess the techniques' relative
sensitivity and their propensity for mis-attributing task effects on one parameter (e.g., duration) to another
(e.g., amplitude). Finally, we introduce methods for quantifying model misspecification and assessing bias
and power-loss related to the choice of model. Overall, the results show that it is surprisingly difficult to
accurately recover true task-evoked changes in BOLD signal and that there are substantial differences among
models in terms of power, bias and parameter confusability. Because virtually all fMRI studies in cognitive
and affective neuroscience employ these models, the results bear on the interpretation of hemodynamic
response estimates across a wide variety of psychological and neuroscientific studies.

© 2008 Elsevier Inc. All rights reserved.
Introduction
Functional magnetic resonance imaging (fMRI) is based on study-
ing the vascular response in the brain to neuronal activity and can be
used to study mental activity. It is most commonly performed using
blood oxygenation level-dependent (BOLD) contrast (Ogawa et al.,
1992) to study local changes in deoxyhemoglobin concentration in the
brain. The primary goal of fMRI research is to use information
provided by the BOLD signal to make conclusions about the under-
lying unobserved neuronal activation. Therefore, the ability to
accurately model the evoked hemodynamic response to a neural
event plays an important role in the analysis of fMRI data. When
analyzing the shape of the estimated hemodynamic response function
(HRF), summary measures of psychological interest (e.g., amplitude,
delay, and duration) can be extracted and used to infer information
regarding the intensity, onset latency, and duration of the underlying
brain metabolic activity.

To date most fMRI studies have been primarily focused on
estimating the amplitude of evoked HRFs across different tasks.
However, there is a growing interest in studying the time-to-peak and
duration of activation as well (Bellgowan et al., 2003; Formisano and
Goebel, 2003; Richter et al., 2000). The onset and peak latencies of the
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HRF can provide information about the timing of activation for various
brain areas and the width provides information about the duration of
activation. However, questions remain regarding which methods for
obtaining estimates of these parameters are most efficient while
giving rise to the least amount of bias and misspecification.

In this paper, we focus on estimation of response amplitude/height
(H), time-to-peak (T), and full-width at half-max (W) in the HRF as
potential measures of response magnitude, latency and duration of
neuronal activity. Ideally, the parameters of the HRF should be directly
interpretable in terms of changes in neuronal activity, and should be
estimated so that statistical power is maximized. An accurate estimate
of the HRF shape may help prevent both false positive and negative
results from arising due to ill-fitting constrained statistical models, as
even minor amounts of mis-modeling can lead to severe loss in power
and validity (Lindquist and Wager, 2007; Loh et al., 2008).

The issue of interpretability is complex, and the problem can be
divided into two parts, shown in Fig. 1. The first relates to whether
changes in physiological, metabolic-level parameters (e.g. magnitude,
delay, and duration of evoked changes in neuronal/glial activity)
directly translate into changes in corresponding parameters of the
HRF, such as H, T, and W. These physiological parameters are often
assumed to be neural in origin as they have been shown to correlate
highly with measures of extracellular post-synaptic activity (Logothe-
tis, 2003), but they also have glial components (Schummers et al.,
2008). However, this part of the problem is complicated for several
reasons. First, the neural response to a given stimulus is complex, task-
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Fig. 1. The relationship between neural activity, evoked changes in the BOLD response, and estimated parameters. Solid lines indicate expected relationships, and dashed lines
indicate relationships that complicate interpretation of the estimated parameters. As an example, for task-induced changes in estimated time-to-peak to be interpretable in terms of
the latency of neural firing, the estimated time-to-peak must vary only as a function of changes in neural firing onsets, not firing rate or duration. The relationship between neural
activity and true BOLD responses determines theoretical limits on how interpretable the parameter estimates are. The relationship between true and estimated BOLD changes
introduces additional model-dependent constraints on the interpretability of parameter estimates.
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dependent, and is not constant over time (Logothetis, 2003). Second,
the hemodynamic response is sluggish (i.e., there is hysteresis) and,
when it does reflect neuronal/glial activity, it integrates this activity
across time. Thus, an increase in the duration of neuronal activity
could result in increases in both the amplitude (H) and duration (W) of
the evoked BOLD response. Third, the BOLD response is itself a
nonlinear integrator, as the vascular response saturates over time
(Friston et al., 2000; Vazquez et al., 2006; Wager et al., 2005), further
complicating matters. In sum, there is not always a clear relationship
between neuronal/glial activity changes and parameters of the evoked
BOLD response.

The second part of the problem depicted in Fig. 1 is whether the
statistical model of the HRF recovers the truemagnitude, time to peak,
and width of the response. That is, do changes in the estimate of the
height correspond to equivalent changes in the true magnitude of the
BOLD response? While the second issue may seem easy to resolve, as
we show here, both the use of multiple regression models and
presentation of stimuli rapidly enough to evoke overlapping fMRI
responses lead to the potential for mis-modeling and incorrect
inference.

In spite of these challenges, well over a thousand studies have to
date demonstrated relationships between task-evoked changes in
brain metabolic activity and measured BOLD responses. These studies
treat the evoked BOLD response as the signal of interest, without
attempting to make a direct quantitative link to neuronal activity.
Early studies presented events with large separation in time (e.g.,
visual stimuli every 20–30 s), so that task-evoked average BOLD
responses could be recovered, and H, T, and W estimated directly.
However, this design is highly inefficient, as very few stimuli can be
presented in a session, and it has become common practice to present
events rapidly enough so that the BOLD responses to different events
overlap. The dominant analysis strategy is to assume that BOLD
responses to events add linearly (Boynton et al., 1996) and use a set of
smooth functions to model the underlying HRF.

Choices of HRF models range from the use of a single canonical
HRF, the use of a basis set of smooth functions (Friston et al., 1998a),
the use of flexible basis sets such as finite impulse response models
(Glover, 1999; Goutte et al., 2000; Ollinger et al., 2001), and nonlinear
estimation of smooth reference functions with multiple parameters
(Kruggel and von Cramon, 1999; Kruggel et al., 2000; Lindquist and
Wager, 2007; Miezin et al., 2000). These models all involve a
simplified estimation of the BOLD HRF, which gives rise to the second
problem identified at the right side of Fig. 1. Not all models are equally
good at capturing evoked changes in the true H, T, and W of the BOLD
response. Evaluating the performance of these models is the focus of
the current paper.

Thus, in sum, the nature of the underlying BOLD physiology limits
the ultimate interpretability of the parameter estimates in terms of
neuronal and metabolic function, but modeling task-evoked BOLD
responses is useful, and is in fact critical for inference in virtually all
neuroscientific fMRI studies. Because of the complexity in the
relationship between neural activity and BOLD, we do not attempt
to relate BOLD signal directly to underlying neuronal activity in this
work. Instead, we concentrate on the second issue in Fig. 1 and treat
the evoked HRF as the signal of interest, and determine the ability of
different statistical models to recover true differences in the height,
time-to-peak, and width of the true BOLD response.

In previous work (Lindquist and Wager, 2007) we showed that
with virtually all models of evoked BOLD responses, true changes in
one parameter (e.g. T) can be mistaken for changes in others (e.g. H
and W). This problem is independent from the issue of how neuronal
activity actually leads to the BOLD response. The goal of this paper is to
expand on our previous work assessing the validity and power of
various hemodynamic modeling techniques by introducing techni-
ques for performing inference on estimated H, T and W parameters in
a multi-subject fMRI setting, as well as methods for quantifying the
amount of mis-modeling each model gives rise to. We consider a
number of BOLD response models, which vary significantly in their
assumptions, model complexity and interpretation, under a range of
different conditions, including variations in true BOLD amplitude,
latency, and duration. Overall, the results reported here show that it is
surprisingly difficult to accurately recover true task-evoked changes in
BOLD H, T, and W parameters, and there are substantial differences
among models in power, bias and parameter confusability. Because
virtually all fMRI studies in cognitive and affective neuroscience
employ these models, the results bear on the way HRFs are estimated
in hundreds of neuroscientific studies published per year. Thus, the
current results can inform the choice of BOLD responsemodels used in
these studies, until it becomes practical to incorporate more complete
models of BOLD hemodynamics (including nonlinear neuro-vascular
coupling) on a voxel-by-voxel basis in cognitive studies.

Methods

Modeling the hemodynamic response function

The relationship between the stimulus and BOLD response is
typically modeled using a linear time invariant (LTI) system, where the
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signal at time t, y(t), is modeled as the convolution of a stimulus
function s(t) and the hemodynamic response h(t), i.e.

y tð Þ = s4hð Þ tð Þ: ð1Þ
In many studies h(t) is assumed to take a fixed canonical shape.
However, to increase the flexibility of the approach, h(t) is often
modeled as a linear combination of B basis functions gi(t), where
i=1,….B. We can then write

h tð Þ = ∑
B

i=1
βigi tð Þ ð2Þ

where the βi are unknown model parameters. Typically the vectors
(s⁎gi)(t) are collated into the columns of a design matrix, X, and the
model is expressed

Y =Xβ + ε ð3Þ

where β is a vector of regression coefficients, Y is a vector
containing the observed data, and ε is a vector of unexplained
error values.

For most statistical analysis the use of a LTI system is considered a
reasonable assumption that provides for valid statistical inference.
Therefore, in this work we assume an LTI system, and our main focus
will be finding flexible models for the impulse function in the LTI
system, i.e. the HRF. A number of models, varying greatly in their
flexibility, have been suggested in the literature. In the most rigid
model, the shape of the HRF is completely fixed and the height (i.e.,
amplitude) of the response alone is allowed to vary (Worsley and
Friston, 1995). By contrast, one of the most flexible models, a finite
impulse response (FIR) basis set, contains one free parameter for every
time-point within a given window of time following stimulation in
every cognitive event type modeled (Glover, 1999; Goutte et al., 2000;
Ollinger et al., 2001). Thus, the model is able to estimate an HRF of
arbitrary shape for each event type in every voxel of the brain. There
are a number of models that fall somewhere between these two
extremes. A popular choice is to use a combination of the canonical
HRF and its derivatives with respect to time and dispersion (Friston
et al., 1998b; Henson et al., 2002). Other approaches include the use of
basis sets composed of principal components (Aguirre et al., 1998;
Woolrich et al., 2004), cosine functions (Zarahn, 2002), radial basis
functions (Riera et al., 2004), spline basis sets, a Gaussian model
(Rajapakse et al., 1998) and spectral basis functions (Liao et al., 2002).
Also, a number of researchers have used nonlinear fitting of a
canonical function with free parameters for magnitude and onset/
peak delay (Kruggel and von Cramon, 1999; Kruggel et al., 2000;
Lindquist and Wager, 2007; Miezin et al., 2000).

In general, the more basis functions used in a linear model or the
more free parameters in a nonlinear one, the more flexible the model
is in measuring the parameters of interest. However, including more
parameters also means more potential for error in estimating them,
fewer degrees of freedom, and decreased power and validity if
regressors are collinear. It is also easier and statistically more
powerful to interpret differences between task conditions on a single
parameter such as height than it is to test for differences in multiple
parameters — conditional, of course, on the interpretability of those
parameter estimates. Together these problems suggest using a single,
canonical HRF and it does in fact offer optimal power if the shape is
specified exactly correctly. However, the shape of the HRF varies as a
function of both task and brain region, and any fixed model will be
misspecified for much of the brain (Birn et al., 2001; Handwerker
et al., 2004; Marrelec et al., 2003; Wager et al., 2005). If the model is
incorrectly specified, statistical power will decrease, and the results
may be invalid and biased. In addition, using a single canonical HRF
does not provide a way to assess latency and duration—in fact,
differences between conditions in response latency will be confused
for differences in amplitude (Calhoun et al., 2004; Lindquist and
Wager, 2007).

HRF models

In this work we study seven HRF models in a series of simulation
studies and an application to real data. We briefly introduce each
model below, but leave a more detailed description for Section A of
the Appendix. The first model under consideration is SPMs
canonical HRF (Here denoted GAM), which consists of a linear
combination of two gamma functions (Eq. (A1) in the Appendix). To
increase its ability to fit responses that are shifted in time or have
extended activation durations, we also consider models using the
canonical HRF plus its temporal derivative (TD) and the canonical
HRF plus its temporal and dispersion derivatives (DD). The next
class of models is based on the use of the finite impulse response
(FIR) basis set, which is the most flexible basis set that can be
applied directly in a linear regression framework. In this work, we
study both the standard FIR model and a semi-parametric smooth
FIR model (sFIR). Finally, we also consider two models fit using non-
linear techniques. These include one with the same functional form
as the canonical HRF but with 6 variable parameters (NL) and the
inverse logit model (IL), which consists of the superposition of three
separate inverse logit functions.

Estimating parameters

After modeling the HRF we seek to estimate its height (H), time-to-
peak (T) and width (W). Several of the models have closed form
solutions describing the fits (e.g., the gamma based models and IL),
and hence estimates of H, T and W can be derived analytically. A lack
of closed form solution (e.g., for FIR models) does not preclude
estimating values from the fitted HRFs, and procedures for doing so
are described in Section B of the Appendix. However, when possible
we use the parameter estimates to calculate H, T and W. Estimates for
IL have been derived in Lindquist and Wager (2007). When using
models that include the canonical HRF and its derivatives it is common
to only use the non-derivative term as an estimate of the HRF
amplitude. However, this solution will be biased and therefore for TD
and DD we use a “derivative boost” to counteract anticipated delay-
induced negative amplitude bias (Calhoun et al., 2004). For TD this
estimate is

H = sign β̂1

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β̂
2
1 + β̂

2
2

q
ð4Þ

where β̂1 and β̂2 are the regression parameters for the canonical HRF
and first derivative term respectively. For DD it is

H = sign β̂1

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β̂
2
1 + β̂

2
2 + β̂

2
3

q
ð5Þ

where β̂3 is the regression parameter corresponding to the second
derivative term.
Inference

We also seek to compare several techniques for performing
population inference on the estimated amplitude. Let Hi be the
estimated amplitude for subject i, i=1,….M, defined for hypothesis
testing purposes to be the global extreme point for the HRF, i.e. either
a minimum or a maximum. The goal is to test whether H significantly
differs from 0 in the population. In this work we compare three
statistical techniques: the standard summary statistics approach
(Holmes and Friston, 1998), a bootstrap procedure (Efron and
Tibshirani, 1993) and a sign permutation test (Nichols and Holmes,
2002). Each of these methods has received extensive attention in the
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neuroimaging literature, and is described in detail in Section C of the
Appendix.

Detecting model misspecification

Each of the models presented in this paper differ in their ability to
handle unexpected HRF shapes. Using an ill-fitting model will violate
the assumptions (e.g., mean 0 noise) required for valid inference and
even a small amount of mis-modeling can result in severe power loss
and inflate the false positive rate beyond the nominal value. Due to the
massive amount of data, performing model diagnostics is challenging,
and only limited attention has been given to this problem (e.g., Luo
and Nichols, 2003). We have recently introduced a procedure (Loh
et al., 2008) that uses model residuals to identify voxels where model
misfit (e.g. mis-specification of onset, duration, or response shape)
may be present. The key idea is that residuals will be systematically
larger in mis-modeled segments of the time series.

Suppose r(i), i =1,…T are the whitened residuals and K(t) a kernel
function. Let,

Zw tð Þ = ∑
t + w−1

i=t
r ið ÞK t−ið Þ ð6Þ

be the moving average of w consecutive observations, starting at time
t. Under the null hypothesis that the model is correct, Zw is mean 0 for
all values of t. Thus a large value of Zw indicates that model mis-fit
might be present and the statistic S=max Zw (t) measures the
strongest evidence against the null hypothesis. Choosing a Gaussian
kernel allows Gaussian random field theory to be used to determine
the p-value (Worsley et al., 1992, 1996). The results can be used to
detect population wide mis-modeling in a voxel, by calculating the
test statistic Q = −2∑

i=1

M

log pið Þ, where pi is the p-value for subject i.
Under the null hypothesis of no effect, Q follows a chi-square
distribution with 2M degrees of freedom.

As a follow-up we have proposed techniques for determining
whether there is task-related signal remaining in the residuals and for
quantifying the amount of power-loss and bias directly attributable to
Fig. 2. Illustration of “ground truth” data used in the simulations. (A) A set of 25 squares we
created based on different stimulus functions which varied systematically across the squa
activation varied between the squares from the first to the fifth TR (i.e. Δ=1,…5). From top to
5, 7, 9). (B) An illustration of the assumed stimulus (second row) and the true stimulus co
repeated for 10 epochs (top row) with an inter-stimulus interval of 30 s. The TR was assumed
(ω) with a canonical HRF. The plot illustrates differences in time-to-peak and width attribu
model misspecification. Estimates of bias and power-loss can be
computed from the residuals for each voxel, and bias and power loss
maps can be constructed. The details of this procedure are beyond the
scope of this paper, and we refer the interested reader to Loh et al.
(2008).

Comparing HRF models: simulation studies

The simulations described below were designed to compare the
performance of the HRF modeling methods, specifically with respect
to the ability to model variations in stimulus onset and duration
relative to the assumed experimental reference (“neuronal”) signal
(Eq. (1)). We also assess the validity and power of each method using
different types of inference: the summary statistic, the bootstrap test,
and the sign permutation test.

Creation of “ground truth” data for simulation
As shown in Fig. 2A, inside a static brain volume of size 51×40, a

set of 25 squares of size 4×4 were placed to represent regions of
interest. In each square, we created “true” simulated BOLD signals
based on different stimulus functions, which varied systematically
across the squares in terms of the onset and duration of their
neuronal activation as outlined in Fig. 2. From left to right the onset
of activation varied between the squares from the first to the fifth
TR (i.e. Δ=1,…5 in Fig. 2B, third row). From top to bottom, the
duration of activation varied from one to nine TR in steps of two (i.e.
ω=1, 3, 5, 7, 9 in Fig. 2B, fourth row). To create the “true” response,
we convolved the stimulus function in each square with SPMs
canonical HRF; however, we used a modified nonlinear convolution
that includes an exponential decay to account for refractory effects
with stimulation across time, with the net result that the BOLD
response saturates with sustained activity in a manner consistent
with observed BOLD responses (Wager et al., 2005). The TR was
assumed to be 1 s long and the inter-stimulus interval was 30 s. This
simulated activation pattern was repeated to simulate 10 epochs.
Fig. 2C shows differences in the activation profiles across one
column of squares. To simulate a sample of subjects and simulate
re placed within a static brain slice to represent regions of interest. BOLD signals were
res in their onset and duration of neuronal activation. From left to right the onset of
bottom, the duration of activation varied from one to nine TR in steps of two (i.e. ω=1, 3,
rresponding to different values of Δ and ω (third and fourth rows). The stimulus was
to be 1 s long. (C) The convolution of the five stimulus functions with varying duration

table to changes in duration.
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group “random effects” analysis, we generated 15 subject datasets
for each simulation, which consisted of the “true” BOLD time series
at each voxel plus white noise, creating a plausible effect size
(Cohen's d=0.5) based on observed effect sizes in the visual and
motor cortex (Wager et al., 2005). In addition, a random between-
subject variation with a standard deviation of size one third of the
within-subject variation was added to each subject’s time course.
This basic data set of size 51×40×300 was used in two separate
simulation studies. The first studied bias and mis-modeling in the
estimates of H, W and T. The second studied the ability to perform
multi-subject inference using the estimated values of H.

Simulation 1
An event-related stimulus function with a single spike (see Fig. 2B,

second row) repeated every 30 s was used for fitting the 7 HRFmodels
to the data set described above. This implies that the square in the
upper left-hand corner of Fig. 2A is correctly specified while the
remaining squares have activation profiles that are mis-specified to
various degrees. After fitting eachmodel, estimates of H, T andWwere
obtained. The average values across the 15 subjects were compared
with the true values of H, T and W to assess model dependent bias in
the estimates. A Gaussian kernel (4 s FWHM)was used to calculate the
misspecification statistic S, and p-values were calculated for each
subject using 1D Gaussian random field theory and combined across
subjects to obtain population level p-values for each voxel. Finally, the
distribution ofH in non-active voxels (i.e. for voxels inside of the brain,
but outside of the 25 squares) was used to find the distribution of H
when the null hypothesis that the amplitude is equal to 0 is true. This
was done to determine the validity of the summary statistics approach.
Fig. 3. Results of Simulation 1. The first three rows illustrate the average bias in the estimates o
with significant model misspecification (p-valueb0.05).
Simulation 2
Data were simulated for 15 subjects in the same manner as in

Simulation 1. After fitting each of the 7 methods, the value of H was
estimated for each voxel and subject. Population inference was
performed using the three testing procedures to determine whether
the population height differed significantly from zero. The whole
procedure was repeated 30 times and the number of times each voxel
was deemed significant at the α=0.001 level was recorded.

Experimental procedures: thermal pain

Participants (n=20) provided informed consent and all procedures
were approved by the Columbia University IRB. During fMRI scanning,
48 thermal stimuli, 12 at each of 4 temperatures, were delivered to the
left forearm. Temperatures were calibrated individually for each
participant before scanning to be warm, mildly painful, moderately
painful, and near tolerance. Heat stimuli, preceded by a 2 s warning
cue and 6 s anticipation period, lasted 10 s in duration followed by a
30 s inter-trial interval. Functional T2⁎-weighted EPI-BOLD images
(TR=2 s, 3.5×3.5×4 mmvoxels) were collected during functional runs
of length 6 min. 8 s. Gradient artifacts were removed from
reconstructed images prior to preprocessing. Images were slice-time
corrected and adjusted for head motion using SPM5 software (http://
www.fil.ion.ucl.ac.uk/spm/). A high-resolution anatomical image (T1-
weighted spoiled-GRASS [SPGR] sequence, 1×1×1 mm voxels,
TR=19 ms) was coregistered to the mean functional image using a
mutual information cost function, and segmented and warped to the
MNI template. Warps were also applied to functional images, which
were smoothed with a 6 mm-FWHM Gaussian kernel, high-pass
f H, T andW across the brain for each of the 7 fitting methods. The last row shows voxels

http://www.fil.ion.ucl.ac.uk/spm/
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filtered with a 120 s (.0083 Hz) discrete cosine basis set, and
Winsorized at 3 standard deviations prior to analysis. Each of the 7
models were fit to data voxel-wise in a single axial slice (z=−22 mm)
covering several pain-related regions of interest, including the
anterior cingulate cortex. Separate HRFs were estimated for stimuli
of each temperature, though we focus on the responses to the highest
heat level in the results. The misspecification statistic was calculated
using a Gaussian kernel (8 s FWHM) and p-values determined using
Gaussian random field theory.

Results

Simulation studies

Simulation 1
The results of Simulation 1 are summarized in Figs. 3 and 4. Fig. 3

shows maps of bias and mis-modeling for each of the 7 methods. In
each square, black indicates a lack of bias/mismodeling, gray indicates
some bias, and blue/yellow-red indicate negative or positive bias,
respectively. Colors in the bottom row of Fig. 3 show p-values for the
test for mis-modeling, where significance (colored in plots) indicates
severe detectable mis-specification of the HRF. Note that substantial
bias and power loss may exist before the mis-modeling test statistic
reaches a significant p-value.

The GAMmodel (first column) gives reasonable results for delayed
onsets within 3 s and widths up to 3 s (squares in the upper left-hand
Fig. 4. Histograms depicting estimates of H in non-active voxels (inside the brain, but
outside of the 25 squares). They illustrate the shape and location of the null hypothesis
distributions needed for hypothesis testing. Normal curves are superimposed for
reference purposes.
corner), but under-estimates amplitude dramatically as onset and
duration increase. This is natural as the GAM model is correctly
specified for the square in the upper left-hand corner (and thus
optimal), but not well equipped to handle a large amount of model
misspecification. Of special interest is the fact that there is no bias in
the squares contained in the first two columns of the W map. This is
true because in these cases the fixed width of the canonical HRF
exactly coincides with the width of the simulated data. The same is
true for the square in the upper left-hand corner of the T map.
However, studying the results in the bottom row indicates severe mis-
modeling present for voxels in the lower right-hand corner.

The second and third column show equivalent results for TD and
DD, which show that the inclusion of derivative terms provide a slight
improvement over GAM for squares where there is a minor amount of
mis-modeling of the onset and duration. However, there is again a
drastic decrease in model fit with delayed onsets greater than about
3 s or extended durations greater than 3 s. Interestingly enough, there
appear to be only minor differences between the results for DD and
TD, which indicates that the inclusion of the dispersion derivative
does not lead to an improvement in themodel robustness across onset
and duration shifts. Also it is interesting to note that for each of the
gamma-basedmodels (GAM, TD and DD) there is a consistent negative
bias in the estimates of T and W (all voxels are blue). The estimation
procedure was repeated using only the non-derivative term as an
estimate of the HRF amplitude as is the common practice in the field.
The results (not presented here) showed that the “derivative boost”
resulted in a slight decrease in reported bias.

Both models based on the use of FIR basis sets (FIR and sFIR) give
rise to some bias in all three model parameters, with estimates
tending to be negatively biased (e.g., shrunk towards zero for positive
activations). The results for sFIR are consistent with similar simula-
tions performed in Lindquist and Wager (2007). Of special interest is
that for FIR, the W map shows a strong, systematic negative bias (all
squares are blue), because the full response width is almost never
captured due to the roughness of the FIR estimates. The sFIR model
performs substantially better in estimating width, with substantial
bias only with 4–5 s onset shifts, at a small cost in under-estimating H.
This cost is likely due to the fact that the Gaussian prior term leads to
shrinkage of the amplitude of the fitted HRF. Both methods showed
some bias in estimates of T, but without a clear, consistent
directionality. Finally, it appears that the sFIR model has some minor
(occasional) problems with model mis-specification, while the FIR
shows no significant model misspecification.

The NL model shows reasonable results with respect to bias,
except for a strong tendency to under-estimate duration, but shows
severe problems with model mis-specification. This can further be
seen in Fig. 4, which shows the null hypothesis data for NL is biased
away from zero. Hence, it appears that the NL model is not appro-
priate for fitting noisy data and should only be used on regions where
it is known that there is signal present. Finally, the IL model shows
very little bias in H, with some unsystematic bias in T and W. In each
of the maps there is a seemingly random scattering of positive and
negative bias (yellow and cyan) indicating that there is no systematic
bias present in the estimation of H, T and W. T appears to be the most
difficult parameter to estimate accurately, with performance compa-
rable to the FIR and sFIR models. In addition, there is no significant
model mis-specification.

Fig. 4 shows summary results for non-active voxels (inside the
brain, but outside of the active squares) that provide information
about bias and estimation efficiency under the null hypothesis.
Histograms for the estimates of H from each model are shown.
These can be used to assess some assumptions required for standard
parametric inference (e.g., obtaining p-values using the summary
statistics approach to group analysis). In each case the results look
roughly normal, indicating the normality assumption is met. However,
it appears that the estimates obtained using NL are biased (non-zero



Fig. 5. Results of Simulation 2. Population inference was performed using three different testing procedures (summary statistic, bootstrap and sign permutation tests) to test for
significant non-zero amplitude (p-valueb0.001). The procedure was repeated 30 times and the proportion of times each voxel was deemed significant is summarized in maps for
each statistical test and fitting technique.

Fig. 6. The location of the slice used in the experiment and an illustration of areas of
interest. Both rdACC and S2 are regions known to process pain intensity.
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under the null); thus, it appears that this model will give rise to many
false positives. Some of this bias is undoubtedly implementation-
specific and depends on the optimization algorithm and choices;
however, as the methods we used are standard choices implemented
in Matlab R2007b software, these results suggest that caution and
validation is in order when using these models.

Simulation 2
Simulation 2 assessed two nonparametric alternatives to the

standard parametric summary statistics approach. The results are
summarized in Fig. 5, in the same basic format as in Fig. 3. Color
indicates the proportion of the 30 tests in each voxel that were
significant; Thus, higher values within the squares indicate higher
true positive rates (TPR), and higher values outside the squares but
within the brain outline indicate higher false positive rates (FPRs).
Black indicates no significant tests, blue hues indicate ∼0.01–.4
positive test rates, and yellow-red indicates ∼0.6–1 positive test
rates.

In summary, the results are consistent across the three inference
techniques (each shown in one row in Fig. 5), with no obvious
differences in sensitivity. This is natural as the simulated data
conformed to the assumptions of the summary statistics approach,
and assumptions checked from the model estimates appeared valid
for all models but the NL model. Due to bias in the null hypothesis
data for NL, it suffers from a radically inflated FPR, shown by bright
blue areas in the null-hypothesis regions, reaching an average value
of roughly 30%. These results are consistent with those of
Simulation 1 (Fig. 4). We note that some differences in sensitivity
may exist, as the parametric approach is thought to be the most
sensitive one if all model assumptions are met.

From Fig. 5 it is clear that each of the gamma basedmodels provide
excellent control of the true positive rate (TPR) when only minor
amounts of model misspecification are present (e.g. squares in the
upper left hand corner), but the TPR quickly decreases as the amount
of model misspecification increases (e.g. squares in the lower right
hand corner). In contrast, the sFIR and IL models provide uniform
control of the true positive rate (TPR) across each of the 25 squares.
While, the TPR is slightly lower than the gamma based models in
squares with minor model misspecification, both of these methods
provide a clear improvement with increasing model misspecification.

Experiment

The results of the pain experiment are summarized in Figs. 6–7.
The location of the slice used and an illustration of areas of interest
(rdACC and S2, two brain regions known to process pain intensity
(Ferretti et al., 2003; Peyron et al., 2000) are shown in Fig. 6. In
Fig. 7A, we show results obtained after estimating the height
parameter on the 12 high-pain trials for each participant using the
TD model, and testing for a population effect using the summary
statistics approach (pb0.01). In addition, we show a map of model
misspecification in Fig. 7B. Here red corresponds to values with
increased mis-modeling. In particular note the relatively large
amount of mis-modeling present in the regions corresponding to
S2. Figs. 7C, D shows results obtained after fitting the height
parameter using the sFIR and IL models, and testing for a population



Fig. 7. (A) A statistical map obtained using the summary statistics approach and the TD model. (B) A map of model misspecification, with red indicating areas with a higher degree of
mis-modeling. In particular note mis-modeling present in areas corresponding to S2. (C) A statistical map obtained using the summary statistics approach and the smooth FIR model.
(D) Same results using the IL model. (E) Estimates of the HRF over the rdACC obtained using the TD, sFIR and IL models.
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effect using the summary statistics approach. The IL model is the
only model that shows significant activation in S2 contralateral to
noxious stimulation. Fig. 7E shows the estimated HRFs from the
rdACC obtained using each of the three models described above.
Note the relative similarity between the estimates obtained using
sFIR and IL, while TD peaks at an earlier time point. In general the
estimates obtained using TD peak earlier (on average after 7 s) and
are narrower (W is on average equal to 6 s), than for sFIR (10 and
8 s, respectively) and the IL model (9 and 8 s, respectively).
Discussion

Though most brain research to date have focused on studying the
amplitude of evoked activation, the onset and peak latencies of the
HRF can provide information about the timing of activation for various
brain areas and the width of the HRF provides information about the
duration of activation. However, the independence of these parameter
estimates has not been properly assessed, as it appears that even if
basis functions are independent (or a nonlinear fitting procedure
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provides nominally independent estimates), the parameter estimates
from real data may not be independent. The present study extends
work originally presented in Lindquist andWager (2007) that seeks to
bridge this gap in the literature. To assess independence, we
determine the amount of confusability between estimates of height
(H), time-to-peak (T) and full-width at half-maximum (W) and actual
manipulations in the amplitude, time-to-peak and duration of the
stimulus. This was investigated using a simulation study that
compares model fits across a variety of popular methods. Evenmodels
that attempt to account for delay such as a gamma function with
nonlinear fitting (e.g., Miezin et al., 2000) or temporal and dispersion
derivatives (e.g., Calhoun et al., 2004; Friston et al., 1998a,b) showed
dramatic biases if the true HRF differed in onset or duration from the
canonical gamma function by more than a few seconds. As might be
expected, the derivative models and related methods (e.g., Liao et al.,
2002; Henson et al., 2002) may be quite accurate for very short shifts
in latency (b1 s) but become progressively less accurate as the shift
increases. The IL model and the smooth FIR model did not show large
biases, and the ILmodel showedby far the least amount of confusability
of all the models that were examined. Both these methods are clearly
able to handle even large amounts of model misspecification and
uncertainty about the exact timing of the onset and duration of
activation. However, for situations when the exact timing and duration
of activation are not known a priori (e.g. certain studies of emotion and
stress) we recommend using alternative methods based on change-
point analysis (Lindquist and Wager, 2008; Lindquist et al., 2007).

In this work we also introduce procedures for performing
inference on the estimated summary statistics. In our simulations
we find that “nonparametric” bootstrap and sign permutation tests
perform adequately with each model, and are roughly comparable in
sensitivity to the standard parametric model when model assump-
tions hold. Use of these models may be advantageous when testing
effects that do not have clear parametric p-values, such as the
distribution of maxima used in multiple comparisons correction
(Nichols and Holmes, 2002), or for which parametric p-values are
insensitive (such as mediation tests; Shrout and Bolger, 2002).

A key point of this paper is that model misspecification can result
in bias in addition to loss in power. This bias may inflate the Type I
error rate beyond the nominal α level, so that p-values for the test are
inaccurate. For example, a statistical parametric map thresholded at
pb0.001 may actually only control the false positive rate at, for
example, pb0.004. We find that even relatively minor model mis-
specification can result in substantial power loss. In light of our results,
it seems important for studies that use a single canonical HRF or a
highly constrained basis set to construct maps of bias and power loss,
so that regions with low sensitivity or increased false positive rates
may be identified. We discuss a procedure for detecting deviations in
fMRI time series residuals. Using these ideas, it is possible to construct
whole-brain bias and power loss maps due to systematic mis-
modeling. Matlab implementations of the IL model and a mis-
modeling toolbox can be obtained by contacting the authors.
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Appendix A. Overview of the models

In this section we give a detailed overview of the seven models
included in our simulation study. The models under consideration are
the canonical HRF (SPMs double gamma function — here denoted
GAM), the canonical HRF plus its temporal derivative (TD), the
canonical HRF plus its temporal and dispersion derivatives (DD), a
finite impulse response (FIR) filter, a smooth FIR filter (sFIR), a gamma
function fit using non-linear fitting techniques (NL) and the inverse
logit (IL) model. Each model is described in greater detail below.

(i) Models using the canonical HRF and its derivatives — (GAM, TD
and DD)

The canonical HRF used in SPM consists of a linear combination of
two gamma functions, i.e.

h tð Þ = A tα1−1βα1
1 e−β1t

C α1ð Þ −c
tα2−1βα2

2 e−β2t

Γ α2ð Þ

 !
ðA1Þ

where t references time, α1=6, α2=16, β1=β2=1 and c=1/6. Here Γ
represents the gamma function, which acts as a normalizing
parameter, and the only unknown parameter in the model is the
amplitude A. This function is convolved with the stimulus function to
obtain a task related regressor to include in the design matrix. This
model is attractive due to its simplicity, but inflexible. To increase its
ability to fit responses that are shifted in time or have extended
activation durations, it is common practice to include either the
temporal derivative of h(t) or the dispersion derivative (Friston et al.,
1998b, 2002) as additional regressors in the model. Ultimately, the
number of unknown parameters depends on the number of basis sets
included in the model as there is one unknown amplitude parameter
for each regressor.

Heuristically, the temporal derivative allows the response to be
shifted slightly (b1 s or so) in time, while the dispersion derivative
provides some capacity to model prolonged activation. Intuition for
the inclusion of the temporal derivative term can be seen by assuming
that the actual response, y(t), is equal to the canonical hrf, h(t), shifted
in time by a small amount Δ. We can write this as y(t)=αh(t+Δ).
Taking the first order Taylor expansion of y(t), we can re-express this
as y(t)=α(h(t)+Δh′(t)), which illustrates that a simple linear equation
can be used to model small shifts in the onset of activation.

(ii) Finite impulse response models — (FIR and sFIR)

The FIR basis set is the most flexible basis set that can be applied
directly in a linear regression framework. In this work, we use both
the standard FIR model (Glover, 1999) and a semi-parametric
smooth FIR model (Goutte et al., 2000). In general, the FIR basis
set contains one free parameter for every time point within a
window of time following stimulation in every cognitive event type
modeled. Assuming that x(t) is a n-dimensional vector of stimulus
inputs, which is equal to 1 at time t if a stimuli is present at that
time point and 0 otherwise, we can define the design matrix
corresponding to the FIR filter of order d as,

X =

x 1ð Þ 0 N 0
x 2ð Þ x 1ð Þ N 0
⋮ ⋮ O ⋮

x dð Þ x d−1ð Þ N x 1ð Þ
⋮ ⋮

x nð Þ x n−1ð Þ N x n−d + 1ð Þ

2
6666664

3
7777775
: ðA2Þ

Further, if we assume Y is the vector of measurements, the FIR
solution can be obtained using a standard general linear model:

β̂FIR = XTX
� �−1

XTY ðA3Þ

Without high-quality data this solution tends to be very noisy, as
many separate parameters are estimated. To constrain the fit to be



1 Note the following estimation procedure for W corrects a series of type-setting
errors that appeared in Lindquist and Wager (2007).
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smoother (but otherwise of arbitrary shape), a Gaussian prior can be
placed on β. The resulting a posteriori estimate is then:

β̂sFIR = XTX + σ2∑−1� �−1
XTY ðA4Þ

where the elements of Σ are given by

∑ij = v exp −
h
2

i−jð Þ2
� �

: ðA5Þ

(defined below). This is equivalent to the solution of the least square
problem with a penalty function, i.e., βsFIR is the solution to the
problem:

max y−Xβð ÞT y−Xβð Þ + σ2∑sijβiβj

n o
ðA6Þ

where sij is the (i, j)th component of the matrix Σ−1.
Compared to the standard FIR model, the smoothed version has

three additional parameters h, v and σ. The parameter h controls the
smoothness of the filter and its value is set a priori to be:

h =
1

7=TR

� �2

: ðA7Þ

In estimating β̂sFIR, only the ratio of the parameters v and σ is of
interest and it is determined empirically that the ratio:

σ2

v
= 10 ðA8Þ

typically gives rise to adequately smooth FIR estimates, without
significant bias due to shrinkage (Goutte et al., 2000; Lindquist and
Wager, 2007).

(iii) Non-linear fit on two gamma functions — (NL)

This model takes the same functional form as the canonical HRF,
i.e.

h tð Þ = A tα1−1βα1
1 e−β1t

C α1ð Þ −c
tα2−1βα2

2 e−β2t

Γ α2ð Þ

 !
ðA9Þ

where A controls the amplitude, σ and β control the shape and scale,
respectively, and c determines the ratio of the response to undershoot.
In this model each of the 6 parameters are assumed to be unknown
and they are fit using the Levenberg–Marquardt algorithm. The
starting values for the algorithm are set to coincide with those of the
canonical HRF.

(iv) Inverse logit (IL) model

The inverse logit function, defined as L(x)= (1+e− x)−1, is an
increasing function of x taking values 0 and 1 in the limits. To derive
a model for the HRF that can efficiently capture details inherent in the
function (e.g. the positive rise and the post-activation undershoot), we
use a superposition of three separate inverse logit functions (Lindquist
andWager, 2007). The first describes the rise following activation, the
second the subsequent decrease and undershoot, while the third
describes the stabilization of the HRF (i.e., return to baseline). Our
model of the hemodynamic response function, h(t), can be written:

h tjθð Þ = α1L t−T1ð Þ=D1ð Þ + α2L t−T2ð Þ=D2ð Þ + α3L t−T3ð Þ=D3ð Þ: ðA10Þ

Here the α parameters control the direction and amplitude of the
curve. If αi is positive, αidL xð Þ will be an increasing function that takes
values between 0 and αi. The parameter Ti is used to shift the center of
the function Ti time units. Finally the parameter Di controls the angle
of the slope of the curve, and works as a scaling parameter.
In our implementationwe constrain the values of α2 and α3 so that
the fitted response begins at zero at the time point t=0 and ends at
magnitude 0. This leads to a model with 7 variable parameters that
can be fit either using a stochastic (e.g., simulated annealing, whichwe
use here) or a gradient descent solution. See Lindquist and Wager
(2007) for further details.

B. Estimating parameters

When H, T, and W cannot be calculated directly using a closed
form solution, we use the following procedure to estimate them from
fitted HRF estimates. Estimates of H and T are calculated by taking the
derivative of the HRF estimate h(t) and setting it equal to 0. In order to
ensure that this is a maximum, we check that the second derivative is
less than 0. If two or more peaks exist, we choose the first one. Hence,
our estimate of time-to-peak is T = min tjh V tð Þ = 0 &h″ tð Þb0f g, where t
indicates time and h′(t) and h″(t) denote first and second derivatives
of the HRF h(t). To estimate the peak we use H=h(T).

For hypothesis testing purposes, our goal is typically to determine
whether H significantly differs from 0. To ensure the estimate of H is
mean-zero under the null hypothesis, T is in this situation defined
based on the largest absolute deviation (either positive or negative).
This can be obtained with minor modifications of the procedure
outlined above.

Finally, to estimate the width we perform the following steps1:

(i) Find the earliest time point tu such that tuNT and h(tu)bH /2, i.e.
the first point after the peak that lies below half maximum.

(ii) Find the latest time point tl such that tlbT and h(tl)bH /2, i.e.
the last point before the peak that lies below half maximum.

(iii) As both tu and tl take values below 0.5H, the distance d= tu− tl
overestimates the width. Similarly, both tu −1 and tl+1 take
values above 0.5H, so the distance d= tu−1− tl+1 underestimates
the width. We use linear interpolation to get a better
approximation of the time points between (tl, tl+1) and (tu−1,
tu) where h(t) is equal to 0.5H. According to this reasoning, we
find that

W = tu−1+Δuð Þ− tl + 1−Δlð Þ ðB1Þ

where

Δl =
h tl+1ð Þ−0:5H
h tl+1ð Þ−h tlð Þ ðB2Þ

and

Δu =
h tu−1ð Þ−0:5H
h tu−1ð Þ−h tuð Þ : ðB3Þ

For high-quality HRFs this procedure suffices, but if the HRF
estimates begin substantially above or below 0 (the session mean),
then it may be desirable to calculate local HRF deflections by cal-
culating H relative to the average of the first one or two estimates.

C. Inference

Let Hi be the estimated amplitude for subject i, i=1,….M. Note for
hypothesis testing purposes, we define Hi to be the global extreme
point for the HRF, i.e. either a minimum or a maximum. These values
can be obtained using the procedure outlined in the previous section.
Our goal is to test whether H significantly differs from 0 in the
population. Here we will discuss three simple statistical techniques:



S197M.A. Lindquist et al. / NeuroImage 45 (2009) S187–S198
the standard summary statistics approach, a bootstrap procedure and
a sign permutation test.

(i) Summary statistics approach

Our first inference technique is the classic single-summary-statistic
approach (Holmes and Friston,1998) commonly used in neuroimaging.
Herewe assume thatH is the samplemean and sH the sample standard
deviation of the M amplitude estimates (H1, H2, …HM). Using these
values we calculate the test statistic:

t =
H

sH=
ffiffiffiffiffi
M

p ðC1Þ

p-values are obtained by comparing the results with a t-distribution
with M−1 degrees of freedom.

There are a few important issues to keep in mind when applying
the summary statistic approach. First, the method assumes constant
within-subject variation of the height estimates across subjects,
though this assumption can be relaxed in a manner similar to that
outlined by Beckmann et al. (2003). However, in this work we simply
discuss the classic summary statistics approach with the caveat that
the conclusions are only valid if the within-subject variance is
homogenous across subjects. A second issue is that p-values are
only valid when the Hi are normally distributed. This will typically be
true when performing inference directly on the β values obtained
from least-squares (canonical HRF term only or FIR basis set).
However, when using the derivative boost, sFIR, NL or IL approach
assuming that the amplitudes follow a normal distribution may not
necessarily be reasonable.

(ii) Bootstrap

The bootstrap procedure (Efron and Tibshirani, 1993) provides a
non-parametric alternative to the summary statistics approach. Due to
its non-parametric nature, it is valid for each of the models under
consideration and no additional assumptions need to be made
regarding the distribution of the Hi. Our testing procedure can be
described as follows:

1. Select B (e.g. 5000–10,000) independent bootstrap samples, each
consisting ofM data values sampled with replacement from the set
(H1, H2,…HM).

2. Calculate the sample mean for each bootstrap sample.
3. Compute the bootstrap distribution for the sample mean using the

B replications.
4. Construct 100 (1–α)% confidence intervals and determinewhether

they contain 0.

For small sample sizes there may be problems with the accuracy of
the bootstrap confidence intervals. Thereforewe suggest the use of the
bootstrap bias-corrected accelerated (BCa) interval as a modification
that adjusts the percentiles to correct for bias and skewness. For more
details we refer the interested reader to Efron and Tibshirani (1993). It
is important to note that the bootstrap procedure is designed to
estimate the sample standard error of a statistic and can therefore be
used to construct confidence intervals. The bootstrap distribution is
not calculated with a specific null hypothesis in mind and for this we
need to use a permutation test. Also, for the specific problem of FWE-
control using the max distribution of a large number of tests with
small M, it has been shown (Troendle et al., 2004) that the Bootstrap
can be unstable and permutation tests are to be preferred.

(iii) Sign permutation test

The final method, the sign permutation procedure (Nichols and
Holmes, 2002), is another non-parametric test that is valid for each of
the models under consideration. The testing procedure can be
described as follows:

1. Randomly permute the sign of each value of Hi, i.e. take a resample
(x1, x2, …xM) where

xi =
Hi withprobability 0:5
−Hi withprobability 0:5 :

	

2. Calculate the sample mean x for each resample.
3. Repeat steps 1 and 2 a total of B (e.g. 5000–10,000) times and use

the collection of sample means to construct the permutation
distribution.

4. Use the permutation distribution to calculate the p-value. The p-
value for the one-sided test of H0: H=0 is given by

p‐value = # xNH

 �
N

:

If our data consists ofM different values of Hi there are a total of 2M

possible permutations of signed values. If M is reasonably small, an
exact p-value can be obtained by using each possible permutation
rather than by taking a random subset.
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