
An Introduction to the Interactive Debugging Tools in R

Roger D. Peng
UCLA Department of Statistics

August 28, 2002

1 Introduction

The purpose of this document is to provide a brief introduction to the built-in program
debugging tools in the R statistical computing environment. The five functions that will
mainly be covered are traceback, debug, browser, trace, and recover. Throughout, the
typewriter font will be used to indicate R code.

It is important to note that debugging is a practice which gets considerably easier as one’s
familiarity with the language increases. In some ways it can be more “art” than “science”.
For example, knowing where to look in a 500 line program after it has just halted execution
is sometimes just a “feeling” one develops after much previous suffering.

2 Trouble with your Droids?

R has a very rich language with which users can write very useful but potentially complex
functions. As with programs written in any other language, functions written in R can
contain unforseen problems which lead to failure. The purpose of the debugging tools is to
help the programmer find these problems quickly and efficiently. R is a generally friendly
language and the problems which arise are typically unlike those found in a language such as
C or C++. For example, in C, memory management can be the source of the most malicious
bugs; in R memory management is not even an issue.

The R system has two main ways of reporting a problem in executing a function. One
is a warning while the other is a simple error. The main difference between the two is that
warnings do not halt execution of the function. The purpose of the warning is to tell the
user “Something unusual happened during the execution of this function, but the function
was nevertheless able to execute to completion.” One example of getting a warning is when
you take the log of a negative number:

> log(-1)

[1] NaN

Warning message:

1

NaNs produced in: log(x)

Here, the log function returned a value (in this case, it returned NaN), but produced a
warning also.

An error is usually a problem that is fatal and results in a complete halt in execution of
the function. That is, because of some problem in the function, the function simply cannot
execute to completion. Consider the following function:

message <- function(x) {

if(x > 0)

print(‘‘Hello’’)

else

print(‘‘Goodbye’’)

}

This function simply prints “Hello” or “Goodbye” depending on whether x is greater than or
less than 0. On the surface, it would seem that this function should never fail (!). However,
observe this R session:

> x <- log(-1)

Warning message:

NaNs produced in: log(x)

> message(x)

Error in if (x > 0) { : missing value where logical needed

Notice, that the first operation (taking the log) only produced a warning, but passing the
resulting value of x into message ended in a fatal error. The message function died at the
if statement. The reason is that value of x was NaN, which was the result of taking the
log of −1. NaN is a special value used to indicate undefined operations. For example, 0/0 is
NaN. When x is passed to message, message tries to compare NaN with 0, which is clearly
undefined. Since the function doesn’t specify what to do in this situation, the execution
must stop.

Changing the value of x here “fixes” the problem:

> x <- 4

> message(x)

[1] "Hello"

However, the problem is not really fixed because there is nothing stopping another user (or
even yourself!) from passing log(-1) into message at some later date. Writing robust code
(i.e. code which checks for imput errors) is important for larger programs, but since it is a
general problem of programming, it will not be discussed here.

2

3 Debugging Tools

3.1 Printing the Call Stack with traceback

In Section 2 we showed some possible messages that can result from a buggy program.
What can you do when your program produces such messages? For now, let’s assume you’ve
received a fatal error, not a warning. The first thing you might want to do is print the call
stack, i.e. print the sequence of function calls which led to the error. This can be done using
the traceback function. The traceback function prints the list of functions which were
called before the error occurred. This can be uninteresting if the error occurred at a top
level function. For example, recall the message function from Section 2. An example of the
usage of traceback is in the following R session:

> message(log(-1))

Error in if (x > 0) { : missing value where logical needed

In addition: Warning message:

NaNs produced in: log(x)

> traceback()

1: message(log(-1))

Here, traceback shows in which function the error occurred. However, since only one function
was in fact called, this information is not very useful. It’s clear that the error occurred in
the message function. Now, consider the following function definitions:

f <- function(x) {

r <- x - g(x)

r

}

g <- function(y) {

r <- y * h(y)

r

}

h <- function(z) {

r <- log(z)

if (r < 10)

r^2

else r^3

}

Suppose the function we are interested in is f. In this case, f calls g, which calls h, and then
returns a result. You should recognize immediately that there may be a problem with the
if statement in the h function. Here is where traceback may be useful:

3

> f(-1)

Error in if (r < 10) r^2 else r^3 : missing value where logical needed

In addition: Warning message:

NaNs produced in: log(x)

What happened here? First, the function f was halted somewhere because of a bug. Fur-
thermore, we got a warning from taking the log of a negative number. However, it’s not
immediately clear where the error occurred during the execution. Did f fail at the top
level or at some lower level function? Upon receiving this error, we could immediately run
traceback to find out:

> traceback()

3: h(y)

2: g(x)

1: f(-1)

traceback prints the sequence of function calls in reverse order from the top. So here, the
function on the bottom, f, was called first, then g, then h. From the traceback output, we
can see that the error occurred in h and not in f or g.

3.2 Stepping Through with debug

Sometimes you want to interact with your function while it is running to get a better idea
of the function’s behavior. In the example in Section 3.1, we used traceback to figure out
where in the call stack an error occurred. However, traceback doesn’t tell you where in the
function the error occurred. We still need to do some work.

In the example in Section 3.1 with f, g, and h, using traceback was probably enough
because we could immediately go back into our code and just “figure out” where the problem
was. However, in most useful functions, it may not be clear where the problems are and we
might want to step through the function line-by-line to identify the specific location of a bug.
To do this we use the debug function.

debug takes a single argument — the name of a function. When you pass the name of
a function to debug, that function is flagged for debugging. In order to unflag a function,
there is the corresponding undebug function. When a function is flagged for debugging, it
does not execute on the usual way. Rather, each statement in the function is executed one
at a time and the user can control when each statement gets executed. After a statement is
executed, the function suspends and the user is free to interact with the environment. This
kind of functionality is what most programmers refer to as “using the debugger” in other
languages.

For the next example, we will set up the problem of estimating a Normal mean by
minimizing the sum of squared differences. Given a sample x1, . . . , xn, we need to compute

SS =
n∑
i=1

(xi − µ)2 .

4

First, we define the following function in R:

SS <- function(mu, x) {

d <- x - mu

d2 <- d^2

ss <- sum(d2)

ss

}

The function SS simply computes the sum of squares. It is written here in a rather drawn
out fashion for demonstration purposes only. Now we generate a Normal random sample:

> set.seed(100) ## set the RNG seed so that the results are reproducible

> x <- rnorm(100)

Here, x contains 100 Normal random deviates with (population) mean 0 and variance 1. We
can run SS to compute the sum of squares for x and a given value of mu. For example,

> SS(1, x)

[1] 208.1661

But suppose we wanted to interact with SS and see how it operates line by line. We need to
flag SS for debugging:

> debug(SS)

The following R session shows how SS runs in the debugger:

> SS(1, x)

debugging in: SS(1, x)

debug: {

d <- x - mu

d2 <- d^2

ss <- sum(d2)

ss

}

Browse[1]> n

debug: d <- x - mu

Browse[1]> n

debug: d2 <- d^2

Browse[1]> n

debug: ss <- sum(d2)

Browse[1]> n

debug: ss

Browse[1]> n

exiting from: SS(1, x)

[1] 208.1661

5

The first thing that happens when you execute a function in the debugger is the body of
the function is printed. Nothing is actually executed, just the code is printed to the screen.
After the function body is printed you are confronted with the following prompt:

Browse[1]>

You are now in what is called the “browser”. Here you can enter one of four basic debug
commands. Typing n executes the current line and prints the next one. At the very beginning
of a function there is nothing to execute so typing n just prints the first line of code. Typing
c executes the rest of the function without stopping and causes the function to return. This
is useful if you are done debugging in the middle of a function and don’t want to step
throught the rest of the lines. Typing Q quits debugging and completely halts execution of
the function. Finally, you can type where to show where you are in the function call stack.
This is much like running a traceback in the debugger (but not quite the same).

Besides the four basic debugging commands mentioned above, you can also type other
relevant commands. For example, typing ls() will show all objects in the local environment.
You can also make assignments and create new objects while in the debugger. Of course,
any new objects created in the local environment will disappear when the debugger finishes.
If you want to inspect the value of a particular object in the local environment, you can
print its value, either by using print or by simply typing the name of the object and hitting
return. If you have objects in your environment with the names n, c, or Q, then you must
explicitly use the print function to print their values (i.e. print(n) or print(c)).

Here’s another session with SS:

> SS(2, x)

debugging in: SS(2, x)

debug: {

d <- x - mu

d2 <- d^2

ss <- sum(d2)

ss

}

Browse[1]> n

debug: d <- x - mu

Browse[1]> d[1] ## Print the value of first element of d

[1] -0.4856523

Browse[1]> n

debug: d2 <- d^2

Browse[1]> hist(d2) ## Make a histogram (not shown)

Browse[1]> n

debug: ss <- sum(d2)

Browse[1]> n

debug: ss

6

Browse[1]> print(ss) ## Show value of ss; using print() is optional here

[1] 503.814

Browse[1]> ls()

[1] "d" "d2" "mu" "ss" "x"

Browse[1]> where

where 1: SS(2, x)

Browse[1]> y <- x^2 ## Create new object

Browse[1]> ls()

[1] "d" "d2" "mu" "ss" "x" "y"

Browse[1]> y

[1] 2.293249e+00 1.043871e+00 5.158531e-01 3.677514e-01 1.658905e+00

[... omitted ...]

Browse[1]> c ## Execute rest of function without stepping

exiting from: SS(2, x)

[1] 503.814

> undebug(SS) ## Remove debugging flag for SS

One last thing worth mentioning is that you can flag functions for debugging while you
are debugging another function. That is, you do not need to flag every function you want to
debug before you execute the top level function. You can set debugging flags on the fly. For
example, with the SS examle above, we could have flagged the sum function for debugging
while we were debugging SS (this would have been rather uninteresting, though). Of course,
you must flag the function for debugging before it is called in the code. One final example:

> debug(SS)

> SS(2, x)

debugging in: SS(2, x)

debug: {

d <- x - mu

d2 <- d^2

ss <- sum(d2)

ss

}

Browse[1]> n

debug: d <- x - mu

Browse[1]> n

debug: d2 <- d^2

Browse[1]> n

debug: ss <- sum(d2)

Browse[1]> debug(sum) ## Flag sum for debugging

Browse[1]> n

debugging in: sum(d2)

7

debug: .Internal(sum(..., na.rm = na.rm))

Browse[1]> where ## Print the call stack; there are 2 levels now

where 1: sum(d2)

where 2: SS(2, x)

Browse[1]> n

exiting from: sum(d2)

debug: ss

Browse[1]> n

exiting from: SS(2, x)

[1] 503.814

> undebug(SS); undebug(sum)

3.2.1 Explicit Calls to browser

It is possible to do a kind of “manual debugging” if you don’t feel like stepping through a
function line by line. The function browser can be used to suspend execution of a function
so that the user can browse the local environment. Suppose we edited the SS function from
above to look like:

SS <- function(mu, x) {

d <- x - mu

d2 <- d^2

browser()

ss <- sum(d2)

ss

}

Now, when the function reaches the third statement in the program, execution will suspend
and you will get a Browse[1]> prompt, much like in the debugger.

> SS(2, x)

Called from: SS(2, x)

Browse[1]> ls()

[1] "d" "d2" "mu" "x"

Browse[1]> print(mu)

[1] 2

Browse[1]> mean(x)

[1] 0.02176075

Browse[1]> n

debug: ss <- sum(d2)

Browse[1]> c

[1] 503.814

8

Notice that the first two lines in the function were not printed. This kind of use of browser
can be useful if you have a vague idea as to where a bug may be in your program.

3.3 Inserting Code with trace

The trace function is very useful for making minor modifications to functions “on the fly”
without having to modify functions and re-sourcing them. It is especially useful if you need
to track down an error which occurs in a base function. Since base functions cannot be
edited by the user, trace may be the only option available for making modifications.

Note that trace has an extensive help page which should be read in its entirety. We will
try to summarize the highlights here.

The example we will use here is fitting a point process model via maximum likelihood.
The point process model here is specified by it’s conditional intensity, λ(t;µ), where µ is the
unknown parameter we want to estimate. For this example our model will be

λ(t) = µt.

The log-likelihood of the model is

`(µ) =
n∑
i=1

log λ(ti;µ)−
∫ T

0
λ(s;µ) ds

where n is the number of events we observe and T is the upper time boundary over which we
observe the events. Rather than maximize this log-likelihood, we will minimize the negative
log-likelihood; this is slightly more natural to do in R.

First we will simulate a point process over [0, 1] according to the given model:

> set.seed(100)

> p <- sort(runif(200))

> thin <- rbinom(200, 1, p)

> pp <- p[thin == 1]

> hist(pp, nclass = 20) ## Not shown

Now we write out the negative log-likelihood function which takes two arguments: mu the
unknown parameter and x the vector of event times.

nLL <- function(mu, x) {

z <- mu * x

lz <- log(z)

L1 <- sum(lz)

L2 <- mu/2

LL <- -(L1 - L2)

LL

}

9

In order to minimize the negative log-likelihood, we will have to pass nLL to an optimization
routine. In R, there are two such routines: nlm and optim. Here we will use optim, which
allows the user to choose from a variety of different optimization procedures. optim requires
a starting value, the function to be optimized, the method for optimization and other argu-
ments that are necessary for the function to be optimized (typically data). In this example,
we use a starting value (albeit not a wise one) of 100, 000 and a quasi-Newton optimization
procedure due to Broyden, Fletcher, Goldfarb, and Shanno.

> optim(100000, nLL, method = "BFGS", x = pp)

$par

[1] 188.0121

$value

[1] -365.7472

$counts

function gradient

41 19

$convergence

[1] 0

There were 21 warnings (use warnings() to see them)

Here we see the optimizer does converge on the value of 188.0121. However, there were
warnings set off during the optimization and we can use warnings to view them.

> warnings()

Warning messages:

1: NaNs produced in: log(x)

2: NaNs produced in: log(x)

3: NaNs produced in: log(x)

[... omitted ...]

21: NaNs produced in: log(x)

All of the warnings come from the log function which is of course used in the negative
log-likelihood function. In this situation, using debug would be problematic because as the
original optim output shows, the optimizer makes 41 calls to the nLL function. However,
there were only 21 warnings, so some of the calls to nLL were fine and did not cause a warning.
It would be tedious to have to step through the nLL function line by line 41 times. In larger
optimization problems this could be hundreds of function calls and stepping through each
one would take forever.

Rather, we would like only to suspend execution when it looks like something might be
wrong. In this example, we see that the log function is producing NaN’s. Why don’t we

10

just suspend execution when the log function has produced an NaN? We can use trace to do
exactly this.

In the nLL function, there is the line

lz <- log(z)

What we want to do is insert some code after this line which essentially implements the fol-
lowing logic: “If lz contains an NaN’s, suspend execution and let me browse the environment
to see what went wrong.” We can do this with the following call to trace:

> trace("nLL", quote(if(any(is.nan(lz))) { browser() }), at=4, print=F)

There are many arguments that need explanation here. The first argument to trace is the
name of a function. This can be a quoted or a non-quoted string – here we have used a
quoted string. The second argument is the code you want to insert. This can either be the
name of a function or it can be an unevaulated expression. In this example we have chosen
to use an unevaluated expression. The expression we have inserted into nLL is the following
conditional statement:

if(any(is.nan(lz))) {

browser()

}

The code we’ve decided to insert simply invokes the browser function (see Section 3.2.1) if
any elements of lz have the value NaN. This expression has to be put into the quote function
so that R does not evaluate the code, rather it simply inserts the statements in to the nLL

function. Without the quote function, R would try to evaluate the if statement within the
trace function and it wouldn’t make any sense.

The at argument tells trace were to insert the new code. Here we’ve instructed trace

to insert the code before the fourth statement. There’s no need to worry about counting
statements in your function. This can be done with the following trick.

> as.list(body(nLL))

[[1]]

{

[[2]]

z <- mu * x

[[3]]

lz <- log(z)

[[4]]

L1 <- sum(lz)

11

[[5]]

L2 <- mu/2

[[6]]

LL <- -(L1 - L2)

[[7]]

LL

Here we see that we would like to insert the conditional statement into the place were the
[[4]] is. That way we can test to see if any elements of lz are of value NaN. Notice also
that the first real line of code is actually the second statement in the function.

What trace does is copy the original function code into a temporary location and replaces
the original function with a new function containing the inserted code. Now when we print
the code to nLL we see that there are two versions stored:

> nLL

An object of class "functionWithTrace"

function (mu, x)

{

z <- mu * x

lz <- log(z)

{

if (any(is.nan(lz))) {

browser()

}

L1 <- sum(lz)

}

L2 <- mu/2

LL <- -(L1 - L2)

LL

}

Slot "original":

function(mu, x) {

z <- mu * x

lz <- log(z)

L1 <- sum(lz)

L2 <- mu/2

LL <- -(L1 - L2)

LL

}

The top version is our modified function and the bottom version is the original code. It is
the top version that gets executed now.

12

Let’s run the traced version of nLL through the optimizer.

> optim(100000, nLL, method = "BFGS", x = pp)

Called from: fn(par, ...)

Browse[1]> where

where 1: fn(par, ...)

where 2: function (par)

fn(par, ...)(-68361335.1446888)

where 3: optim(1e+05, nLL, method = "BFGS", x = pp)

Browse[1]> ls() ## What objects are in our environment?

[1] "lz" "mu" "x" "z"

Warning message:

NaNs produced in: log(x)

Browse[1]> str(lz) ## Give a compact representation of lz

num [1:94] NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ...

Browse[1]> mu

[1] -68361335

Browse[1]> Q ## We found the problem!

Now we can see that the problem is the optimizer was using negative values for mu. Since
the conditional intensity of a point process can never be negative, negative values of mu are
not valid. However, the optimizer does not know this and simply chooses values based on a
deterministic search algorithm.

3.4 Browse Function Calls with recover

When using browser, you can only browse the environment in the current function call.
You cannot poke around in the environments for previous function calls. There may be a
situation where you want to suspend execution of a function in one location, but then browse
a previous function call to hunt down the bug. In other words, you may want to “jump up”
to a higher level in the function call stack.

The recover function can help you in this situation. Let us go back to the three functions
f, g, and h defined in Section 3.1. Recall that f calls g, which in turn calls h. The h function
has a potential problem because it takes the log of a number then compares the result to
another number (in this case 10). If log returns NaN, then h will suffer a fatal error.

The statements in the function body of h can be listed using the trick mentioned in
Section 3.3:

> as.list(body(h))

[[1]]

{

13

[[2]]

r <- log(z)

[[3]]

if (r < 10) r^2 else r^3

We want to insert some debugging code in the [[3]] location and we do this using trace:

> trace("h", quote(if(is.nan(r)) { recover() }), at = 3, print = F)

Notice that here we check for NaN’s in r but instead of invoking browser, we use recover.
The results of this are best shown through an example:

> f(23)

[1] -203.1205

> f(-10)

Enter a frame number, or 0 to exit

1:f(-10)

2:g(x)

3:h(y)

Selection: 1 ## Browse the f function

Called from: eval(expr, envir, enclos)

Browse[1]> ls()

[1] "x"

Warning message:

NaNs produced in: log(x)

Browse[1]> x

[1] -10

Browse[1]> c ## Exit the browser and return to recover menu

Enter a frame number, or 0 to exit

1:f(-10)

2:g(x)

3:h(y)

Selection: 2 ## Browse the g function

Called from: eval(expr, envir, enclos)

Browse[1]> ls()

[1] "y"

Browse[1]> y

[1] -10

Browse[1]> c

14

Enter a frame number, or 0 to exit

1:f(-10)

2:g(x)

3:h(y)

Selection: 3 # Browse the h function

Called from: eval(expr, envir, enclos)

Browse[1]> ls()

[1] "r" "z"

Browse[1]> r

[1] NaN

Browse[1]> z

[1] -10

Browse[1]> c

Enter a frame number, or 0 to exit

1:f(-10)

2:g(x)

3:h(y)

Selection: 0 ## Exit the recover function

Error in if (r < 10) r^2 else r^3 : missing value where logical needed

There is another common use of recover which does not require the use of trace. The
function options controls many global options pertaining to your R session. One of them
is the error option. The error option tells R what to do in the situation where a function
must halt execution. By default this is set to NULL and R does nothing when a function dies.
However, you can set this so that instead of the function quitting when an error occurs, it
calls recover exactly at the location where the error occurred. Typing in

> options(error = recover)

will do this for you. Now if we were to call f(-10) as in the above example, recover would
be invoked at exactly the place in the h function where the fatal error occurs. There is no
need to use trace in this case.

4 Final Thoughts

Debugging is typically what programmers do about 90% of the time. This is a sad but not
unrealistic fact of life. Given that fact, the creators of R have generously provided useful
debugging tools to make programmers’ lives a little easier. The debugging tools should be
used as much as necessary to minimize the time spent debugging and to maximize the time
spent, as John Chambers wrote, “turning ideas into software”. However, it is all to easy
for a programmer to develop an unhealthy relationship with his/her debugger. This is to
be avoided. The debugger should not replace common sense in programming and careful
design.

15

	Introduction
	Trouble with your Droids?
	Debugging Tools
	Printing the Call Stack with traceback
	Stepping Through with debug
	Explicit Calls to browser

	Inserting Code with trace
	Browse Function Calls with recover

	Final Thoughts

