Greetings from JPSM,

JPSM will offer four online courses in the March-May 2015 term. We would appreciate it if you distribute this to interested staff at your agencies. As for regular onsite courses, staff at sponsoring agencies will pay tuition at the in-state rate regardless of where they reside. (Note that the in-state rate is slightly lower than the $680 per credit hour quoted below.)

We are running a pilot offering of SURV 400 Fundamentals of Survey Methodology now to make sure that the communications software we have selected works well. It is.

The Mar-May courses are the first that will be widely advertised to the public. So, it is very important that we get adequate enrollment for these courses.

If you have other contacts that may be interested, feel free to pass this announcement along. If you are on other listservs like AAPOR, SRMSnet, APA, etc., you will probably receive this announcement through those sources also.

If you have any questions, please contact Jennifer Sinibaldi (jsinibal@umd.edu) or Jody (jodywill@umd.edu).

Thank you for your help,

Richard Valliant, PhD
Assoc. Director, Joint Program in Survey Methodology
Universities of Maryland and Michigan
1218 Lefrak Hall
College Park MD 20742
Tel. 301-405-0932
Fax 301-314-7912
rvallian@umd.edu

Thinking of picking up some extra training in survey methodology or statistics?

The Joint Program in Survey Methodology (JPSM) at the University of Maryland is launching an online Certificate degree program specializing in either Survey Statistics or Survey Methodology. The program will offer courses entirely online, with no obligation to travel to campus. Students will view the recorded lectures at their convenience and then the class will meet with the instructor online, at a set time, for one hour each week. The courses run on a term schedule, which is 12 weeks per term.

For the spring term, which runs from March 1 – May 31, 2015, we will offer four online courses:

1. Fundamentals of Survey Methodology, SURV 400 section 0101
 Instructor: Florian Keusch
 Fridays 12:00 – 1:00pm
2. Applied Sampling, SURV 625 section 0201
 Instructors: Louis Rizzo and James Lepkowski
 Wednesdays 2:00 – 3:00pm

3. Questionnaire Design and Evaluation, SURV 630 section 0201
 Instructors: Florian Keusch and Frauke Kreuter
 Mondays 12:00 – 1:00pm

4. Analysis of Complex Survey Data, SURV 701 section 0101
 Instructors: Robert Baskin and Steven Heeringa
 Fridays 11:00am – 12:00pm

Descriptions of these courses are at the bottom of this message.

Students interested in completing the Certificate or simply taking a single course will enroll at the
University of Maryland as a Non-Degree student and receive 3 credits per course. The Questionnaire
Design and Analysis of Complex Data courses can also be counted towards a Master’s degree for
students in the social science concentration. The cost of the courses are $680 per credit hour regardless
of residency. International students are welcome to apply as well.

If you are interested in enrolling in one of these courses, please visit
http://jpsm.umd.edu/graduate/graduate-certificate-program-intermediate-survey-methodology and
complete the application form (the link is at the top of the page). You must also apply to the graduate
school as an Advanced Special Student (or Non-Degree seeking). See
http://www.jpsm.umd.edu/graduate/non-degree-students-how-enroll for instructions on how to do
this. Note that you do NOT need to submit letters of recommendation, statement of goals, or GRE test
scores to enroll in a Certificate program.
Please direct questions to Jennifer Sinibaldi (jsinibal@umd.edu) or Jody Williams (jodywill@umd.edu),
or contact JPSM at 301-314-7911.

Course Descriptions and Pre-requisites

1. **Fundamentals of Survey Methodology (SURV 400)**

 This course introduces the student to a set of fundamental principles of survey design that are the basis of
 standard practices in the field. The course exposes the student to research literatures that use both
 observational and experimental methods to test key hypotheses about the nature of human behavior that
 affect the quality of survey data. It will also present important statistical concepts and techniques in
 sample design, execution, and estimation, as well as models of behavior describing errors in responding to
 survey questions. Thus, both social science and statistical concepts will be presented.

 The course uses the concept of total survey error as a framework to discuss coverage properties of
 sampling frames, alternative sample designs and their impacts on standard errors of survey statistics,
 alternative modes of data collection, field administration operations, the role of the survey interviewer,
 impacts of nonresponse on survey statistics, the effect of question structure, wording and context on
 respondent behavior, models of measurement error, postsurvey processing, and estimation in surveys.

 The course is intended as an introduction to the field, taught at a graduate level. Lectures and course
 readings assume that students understand basic statistical concepts (at the level of an undergraduate
course) and have exposure to elements of social science perspectives on human behavior. For those
lacking such a background, supplementary readings are recommended.
2. Applied Sampling (SURV 625)

Applied Sampling is an applied statistical methods course, but differs from most statistical methods courses because it is concerned almost exclusively with the design of data collection. The course examines problems of applying sampling methods to human populations, particularly the principles of sample selection and basic estimation. The course is at a moderately advanced statistical level, and while not developing the mathematical aspects of sampling theory, statistical notation and outlines of algebraic proofs will be given. The course will cover the main techniques used in sampling practice: simple random sampling, stratification, systematic selection, cluster sampling, multistage sampling, and probability proportional to size sampling. These methods will be elaborated in two types of sample designs, area probability and telephone sampling. The course will also cover sampling frames, cost models, sampling error estimation techniques, non-sampling errors, and compensating for missing data.

Prerequisite: Completion of a graduate course in statistics approved by the instructor.

3. Questionnaire Design and Evaluation (SURV 630)

This course examines the stages of questionnaire design: developmental interviewing, question writing, question evaluation, pretesting, and questionnaire ordering and formatting. It reviews the literature on questionnaire construction, the experimental literature on question effects, and the psychological literature on information processing. In addition, the course reviews the effects of essential design features on questions and questionnaires, including mode of data collection, the use of computer assisted interviewing techniques, and self vs. proxy respondent selection. Students will both critique existing questions and questionnaires and follow the stages of questionnaire design in developing their own questionnaire.

4. Analysis of Complex Survey Data (SURV 701)

This introductory course on the analysis of data from complex sample designs covers: the development and handling of selection and other compensatory weights; methods for handling missing data; the effect of stratification and clustering on estimation and inference; alternative variance estimation procedures; methods for incorporating weights, stratification, clustering, and imputed values in estimation and inference procedures for complex sample survey data; and generalized design effects and variance functions. The course will utilize exercises on real survey data to illustrate the methods addressed in class. Students will learn the use of computer software that takes account of complex sample design in estimation.

Prerequisites: A course in Applied Sampling and at least two graduate level statistical methods course covering topics including linear regression and logistic regression; or comparable work experience; or permission from instructor.