Intro to plotting in R

Martin Aryee
Graphics in R

• Introduction to plotting in R
• Basic plotting functions and common options
 • Scatter (XY) plots
 • histograms
 • bar charts
• A more complex example using the dog data
Example Data

```
> load("for_lec6.rda")
> head(people)

<table>
<thead>
<tr>
<th>age</th>
<th>weight</th>
<th>height</th>
<th>gender</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>21</td>
<td>65.6</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>23</td>
<td>71.8</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>28</td>
<td>80.7</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>23</td>
<td>72.6</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>22</td>
<td>78.8</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>21</td>
<td>74.8</td>
<td>1</td>
</tr>
</tbody>
</table>
```

Age (years)

Weight (kg)

Height (cm)

Gender: 1 = Male, 2 = Female
Basic plotting functions

- `plot()`
- `hist()`
- `barplot()`
- `points()`
- `lines()`
plot()

- Can be used for two-dimensional scatter (XY) plots
- Takes two vectors as input

```r
> x <- c(2, 4, 6, 8, 10)
> y <- c(1.5, 3, 7, 8, 15)
> plot(y ~ x)
> plot(x, y) ## equivalent to line above
```
Basic formatting options

- **main**: The title
- **xlab, ylab**: X/Y axis labels
- **xlim, ylim**: X/Y axis range
- **type**: points or lines
- **pch**: point type (circle, square, filled circle etc.)
- **Many more! Use** `help()`
plot() example
example(points)
example(points)

```
plot(..., type="o", pch=21, bg=par("bg"))
```
example(points)

plot symbols: points (... pch = *, cex = 3)
barplot()

- Produces bar charts

- Common options include:
 - `names.arg`: the bar labels
 - `horiz`: make the bars horizontal (TRUE/FALSE)
 - `main`, `xlim`, `xlab` etc. function as in `plot()`
barplot()

Number of men and women

- Men: 250
- Women: 250
hist()

- Produces histograms
- Common options include:
 - `breaks`: Specifies how to bin values
 - `main`, `xlim`, `xlab` etc. `function as in plot()`
Example: BMI

- Body Mass Index
- $\text{BMI} = \frac{\text{weight}}{\text{height}^2}$

```r
> bmi = people$weight / (people$height/100)^2
```
lines()

- Draw straight lines
- Specify start and end coordinates
- Main options include:
 - \(x \): a vector of start and end x-coordinates (e.g. \(x = c(1, 4) \))
 - \(y \): a vector of start and end y-coordinates
abline()

- A simple way to draw straight lines
- **Horizontal lines:**
 \[\text{abline}(h=10)\]
- **Vertical lines**
 \[\text{abline}(v=5)\]
• Add text to a plot

```r
> text(21, 67, "Ideal BMI range")
```

x-coordinate y-coordinate text to display

• Can use `\n` for a new line.
 e.g. "Ideal\nBMI range"
Example:
hist(), abline() and text()

```r
> hist(bmi, breaks=20)
> abline(v=18.5, col="red")
> abline(v=25, col="red")
> text(21, 67, "Ideal BMI range")
```
boxplot()

- Visual summary of:
 - Median
 - Quartiles (Q1, Q3)
 - Outliers

> boxplot(bmi ~ people$gender, main="BMI",
 names=c("Male", "Female"), col=c("lightblue", "lightgreen"))
An aside:
Subsetting a data frame

\[m = \text{subset}(\text{people}, \text{gender}==1) \]

A data frame

The inclusion criteria

\[f = \text{subset}(\text{people}, \text{gender}==2) \]
Multiple plots

Male

Female

Height

Frequency

Frequency
Multiple plots

- Set the number of rows and columns in the plot window.

- E.g. 2 rows, 1 column:
 \[\text{par(mfrow}=c(2,1)) \]
Example: Had a dog?

Original data set:

\[
\text{head(dat)}
\]

```
id age sex height weight dog_0 dog_1 dog_2 dog_3 dog_4 dog_5 dog_6 dog_7 dog_8 ...
1  1  40   F   63.5  134.5    no    no   yes   yes    no    no   yes   yes    no ...
2  2  36   M   65.6  191.6    no   yes    no    no    no   yes  <NA>   yes    no ...
3  3  69   M   68.2  170.0    no   yes   yes <NA>  <NA>  yes   yes   yes   yes ...
4  4  56   F   62.9  134.5    no    no    no    no  <NA>  <NA>   yes   no   yes ...
5  5  66   F   63.7  133.4    no  <NA>  <NA>    no   yes   yes    no    no    no ...
6  6  84   M   70.8  200.6    no   yes   yes    no   yes    no    no    no    no ...
```

Data reformatted for plotting:

\[
\text{out2[1:10,]}
\]

```
id exp start end
1  1  1    0   1
2  1  2    1   3
3  1  1    3   5
4  1  2    5   7
5  1  1    7   8
6  1  2    8   9
7  1  1   10  12
8  2  1    0   0
9  2  2    0   1
10 2  1    1   4
```

Had a dog in the past month?
1 - No
2 - Yes
Plotting the data

- Set up an empty plot window with title and labels
- Loop through the data one person at a time to construct their plot.
Plotting the data:

The empty plot window:

```r
plot(0 ~ 0, type = "n",
     ylim = c(1, 20), # first 20 people
     xlim = c(0, 12), # 12 months
     main = "Had a dog?",
     xlab = "Month",
     ylab = "Person")
```
Plotting the data:

Loop through the data, processing one person at a time:

```r
for(i in 1:20) { # first 20
    Index = Indexes[[i]]
    tmp = out2[Index,]
    for(j in 1:nrow(tmp)) {
        lines(x = as.numeric(tmp[j,c("start", "end")]),
             y = c(i,i), col = tmp$exp[j], lwd = 4)
    }
}
```

```r
> out2[1:10,]
 id exp start end
  1   1   1     0   1
  2   1   2     1   3
  3   1   1     3   5
  4   1   2     5   7
  5   1   1    10  12
  6   1   2     8   9
  7   1   1    10  12
  8   2   1     0   0
  9   2   2     0   1
 10  2   1     1   4
```

```r
> Indexes[1:2]
$'1`
 [1] 1 2 3 4 5 6 7

$'2`
 [1] 8 9 10 11 12 13 14 15
```
Summary

- Many, many plot types and options
- **Use** `help()`, `example()` **and the google.**