
Lecture 3
Lists and Data Cleaning

Andrew Jaffe, John Muschelli

Dynamic Duo

More resources
UCLA Institute for Digital Research and Education: http://www.ats.ucla.edu/stat/r/

R reference card: http://cran.r-project.org/doc/contrib/Short-refcard.pdf

Undergrad Guide to R: https://sites.google.com/site/undergraduateguidetor/

Quick R: http://statmethods.net/

·

·

·

·

2/57

http://www.ats.ucla.edu/stat/r/
http://cran.r-project.org/doc/contrib/Short-refcard.pdf
https://sites.google.com/site/undergraduateguidetor/
http://statmethods.net/

Extra Credit
Completing all 7 levels of the "Try R" course on Code School will replace your lowest homework score

with a 100%

http://www.codeschool.com/courses/try-r

Just save a screenshot of this page with the challenges completed:

http://tryr.codeschool.com/levels/7/challenges/1

3/57

http://www.codeschool.com/courses/try-r
http://tryr.codeschool.com/levels/7/challenges/1

Quiz!
"Open Book" quiz, you have 10 minutes.

We will go over the answers after everyone turns it in

4/57

Review of Days 1 and 2

You should feel comfortable doing most of the above

Reading data into R {read.table()}

Subsetting vectors {[ind]} and data frames {[row,col]}

Creating logical tests for variables in your dataset

Creating new variables

Summarizing variables

·

·

·

·

Binary

Categorical

Transforming, e.g. log(), exp(), sqrt()

-

-

-

·

Basic statistics, e.g. mean(), sum(), sd()

One variable by levels of another variable: tapply()

Basic exploratory plots

-

-

-

5/57

Data
We will be using multiple data sets in this lecture:

Let us know if you have data that is much more complicated

·

Salary, Monument, Circulator, and Restaurant from OpenBaltimore:

https://data.baltimorecity.gov/browse?limitTo=datasets

Gap Minder - very interesting way of viewing longitudinal data

http://spreadsheets.google.com/pub?key=rMsQHawTObBb6_U2ESjKXYw&output=xls

Also located at http://biostat.jhsph.edu/~ajaffe/indicator_estimatedincidencealltbper100000.xlsx

-

-

Data is here - http://www.gapminder.org/data/-

-

-

·

6/57

https://data.baltimorecity.gov/browse?limitTo=datasets
http://spreadsheets.google.com/pub?key=rMsQHawTObBb6_U2ESjKXYw&output=xls
http://biostat.jhsph.edu/~ajaffe/indicator_estimatedincidencealltbper100000.xlsx
http://www.gapminder.org/data/

Lists
One other data type that is the most generic are lists.

Can be created using list()

Can hold vectors, strings, matrices, models, list of other list, lists upon lists!

Can reference data using $ (if the elements are named), or using [], or [[]]

·

·

·

·

> mylist <- list(letters = c("A", "b", "c"), numbers = 1:3, matrix(1:25, ncol = 5))

7/57

List Structure
> head(mylist)

$letters
[1] "A" "b" "c"

$numbers
[1] 1 2 3

[[3]]
 [,1] [,2] [,3] [,4] [,5]
[1,] 1 6 11 16 21
[2,] 2 7 12 17 22
[3,] 3 8 13 18 23
[4,] 4 9 14 19 24
[5,] 5 10 15 20 25

8/57

List referencing
> mylist[1] # returns a list

$letters
[1] "A" "b" "c"

> mylist["letters"] # returns a list

$letters
[1] "A" "b" "c"

9/57

List referencing
> mylist[[1]] # returns the vector 'letters'

[1] "A" "b" "c"

> mylist$letters # returns vector

[1] "A" "b" "c"

> mylist[["letters"]] # returns the vector 'letters'

[1] "A" "b" "c"

10/57

List referencing
You can also select multiple lists with the single brackets.

> mylist[1:2] # returns a list

$letters
[1] "A" "b" "c"

$numbers
[1] 1 2 3

11/57

List referencing
You can also select down several levels of a list at once

> mylist$letters[1]

[1] "A"

> mylist[[2]][1]

[1] 1

> mylist[[3]][1:2, 1:2]

 [,1] [,2]
[1,] 1 6
[2,] 2 7

12/57

Data Cleaning
In general, data cleaning is a process of investigating your data for inaccuracies, or recoding it in a

way that makes it more manageable.

MOST IMPORTANT RULE - LOOK AT YOUR DATA!

Again - table, summarize, is.na, any, all are useful.

13/57

Data Cleaning
> table(c(0, 1, 2, 3, NA, 3, 3, 2, 2, 3), useNA = "ifany")

 0 1 2 3 <NA>
 1 1 3 4 1

> table(c(0, 1, 2, 3, 2, 3, 3, 2, 2, 3), useNA = "always")

 0 1 2 3 <NA>
 1 1 4 4 0

> tab <- table(c(0, 1, 2, 3, 2, 3, 3, 2, 2, 3), c(0, 1, 2, 3, 2, 3, 3, 4, 4, 3),
+ useNA = "always")
> margin.table(tab, 2)

 0 1 2 3 4 <NA>
 1 1 2 4 2 0

> prop.table(tab, 2) # tab x y, col in stata (1 for row), neither for cell

 0 1 2 3 4 <NA>
14/57

Data Cleaning
any - checks if there are any TRUES

all - checks if ALL are true

·

·

> any(is.na(Sal$Name))

[1] FALSE

> # remove leading $ off money amount
> sals <- as.numeric(gsub(pattern = "$", replacement = "", Sal$AnnualSalary, ,
+ fixed = TRUE))
> quantile(sals)

 0% 25% 50% 75% 100%
 377 31609 43614 59916 238772

15/57

Cross Tabs
xtabs allows you to look at multiple levels·

> warpbreaks$replicate <- rep(1:9, len = nrow(warpbreaks))
> print(xt <- xtabs(breaks ~ wool + tension + replicate, data = warpbreaks))

, , replicate = 1

 tension
wool L M H
 A 26 18 36
 B 27 42 20

, , replicate = 2

 tension
wool L M H
 A 30 21 21
 B 14 26 21

, , replicate = 3

 tension
wool L M H
 A 54 29 24
 B 29 19 24

, , replicate = 4

 tension
wool L M H
 A 25 17 18

16/57

Flat Contingency Tables: ftable()
> ftable(xt)

 replicate 1 2 3 4 5 6 7 8 9
wool tension
A L 26 30 54 25 70 52 51 26 67
 M 18 21 29 17 12 18 35 30 36
 H 36 21 24 18 10 43 28 15 26
B L 27 14 29 19 29 31 41 20 44
 M 42 26 19 16 39 28 21 39 29
 H 20 21 24 17 13 15 15 16 28

17/57

Example of Cleaning:
For example, let's say gender was coded as Male, M, m, Female, F, f. Using Excel to find all of these

would be a matter of filtering and changing all by hand or using if statements.

In R, you can simply do something like:

data$gender[data$gender %in% c("Male", "M", "m")] <- "Male"

Sometimes though, it's not so simple. That's where functions that find patterns come in very useful.

> table(gender)

gender
 F FeMAle FEMALE Fm M Ma mAle Male MaLe MALE
 75 82 74 89 89 79 87 89 88 95
 Man Woman
 73 80

18/57

Find/Replace and Regular Expressions
R can do much more than find exact matches for a whole string

Like Perl and other languages, it can use regular expressions.

What are regular expressions?

Ways to search for specific strings

Can be very complicated or simple

Highly Useful

·

·

·

·

·

·

19/57

'Find' functions
grep: grep, grepl, regexpr and gregexpr search for matches to argument pattern within each element of

a character vector: they differ in the format of and amount of detail in the results.

grep(pattern, x, fixed=FALSE), where:

grep() returns something similar to which() on a logical statement

pattern = character string containing a regular expression to be matched in the given character

vector.

x = a character vector where matches are sought, or an object which can be coerced by

as.character to a character vector.

If fixed=TRUE, it will do exact matching for the phrase anywhere in the vector (regular find)

·

·

·

> grep("Rawlings", Sal$Name) # These are the indices/elements where the pattern match occurs

[1] 10554 10555 10556

20/57

grep() as indices

grepl() returns something analagous to logical tests we covered yesterday.

> head(grep("Rawlings", Sal$Name))

[1] 10554 10555 10556

> head(grepl("Rawlings", Sal$Name))

[1] FALSE FALSE FALSE FALSE FALSE FALSE

> head(Rawlings <- Sal[grepl("Rawlings", Sal$Name), c("Name", "JobTitle")], 2)

 Name JobTitle
10554 Rawlings,Kellye A EMERGENCY DISPATCHER
10555 Rawlings,Paula M COMMUNITY AIDE

21/57

Grep Options
> head(grep("Tajhgh", Sal$Name, value = TRUE))

[1] "Reynold,Tajhgh J"

> grep("Jaffe", Sal$Name)

integer(0)

> length(grep("Jaffe", Sal$Name))

[1] 0

22/57

A bit on Regular Expressions
http://www.regular-expressions.info/reference.html

They can use to match a large number of strings in one statement

. matches any single character

* means repeat as many (even if 0) more times the last character

? makes the last thing optional

·

·

·

·

·

23/57

http://www.regular-expressions.info/reference.html

Using Regular Expressions
We will look for any instance that starts with:·

Payne at the beginning,

Leonard and then an S

Spence then a capital C

-

-

-

> grep("Payne.*", x = Sal$Name, value = TRUE)

 [1] "Payne,Alexandra" "Payne-Cooke,Shelley F"
 [3] "Payne,Denise I" "Payne El,Jackie"
 [5] "Payne,James R" "Payne,Jasman T"
 [7] "Payne Johnson,Nickole A" "Payne,Joseph"
 [9] "Payne,Karen V" "Payne,Leonard S"
[11] "Payne,Marvin C" "Payne,Mary A"
[13] "Payne,Micah W" "Payne,Michael N"
[15] "Payne,Walter" "Ray Payne,Marion J"

> grep("Leonard.?S", x = Sal$Name, value = TRUE)[1:5]

[1] "Payne,Leonard S" "Szumlanski,Leonard S" NA
[4] NA NA

> grep("Spence.*C.*", x = Sal$Name, value = TRUE)
24/57

Replace
So we must change the annual pay into a numeric:

R didn't like the $ so it thought turned them all to NA.

sub and gsub now do the replacing part.

> head(as.numeric(Sal$AnnualSalary), 4)

[1] NA NA NA NA

25/57

Replacing and subbing
Now we can replace the $ with nothing (used fixed=TRUE because $ means something in regular

expressions):

> Sal$AnnualSalary <- as.numeric(gsub(pattern = "$", replacement = "", Sal$AnnualSalary,
+ fixed = TRUE))
> Sal <- Sal[order(-Sal$AnnualSalary),] # use negative to sort descending
> head(Sal[, c("Name", "AnnualSalary", "JobTitle")])

 Name AnnualSalary JobTitle
881 Bernstein,Gregg L 238772 STATE'S ATTORNEY
734 Bealefeld III,Frederick H 193800 EXECUTIVE LEVEL III
4561 Gallagher,Edward J 181472 EXECUTIVE LEVEL III
589 Barbot,Oxiris 170000 EXECUTIVE LEVEL III
13920 Williams Jr,Henry 166400 CONTRACT SERV SPEC II
4384 Foxx,Alfred 160000 DIRECTOR PUBLIC WORKS

26/57

Useful String Functions
Useful String functions

toupper(), tolower() - uppercase or lowercase your data:

str_trim() (in the stringr package) - will trim whitespace

nchar - get the number of characters in a string

substr(x, start, stop) - substrings from position start to position stop

strsplit(x, split) - splits strings up - returns list!

paste() - paste strings together - look at ?paste

·

·

·

·

·

·

27/57

Paste
Paste can be very useful for joining vectors together:

> paste("Visit", 1:5, sep = "_")

[1] "Visit_1" "Visit_2" "Visit_3" "Visit_4" "Visit_5"

> paste("Visit", 1:5, sep = "_", collapse = " ")

[1] "Visit_1 Visit_2 Visit_3 Visit_4 Visit_5"

> paste("To", "is going be the ", "we go to the store!", sep = "day ")

[1] "Today is going be the day we go to the store!"

28/57

Writing your own functions
This is a brief introduction - we will cover more on Friday. The syntax is:

Then you would run the 4 lines of the code, which adds it to your workspace.

functionName = function(inputs) {
function body
return(value)
}

29/57

Writing your own functions
Here we will write a function that returns the second element of a vector:

> return2 = function(x) {
+ return(x[2])
+ }
> return2(c(1, 4, 5, 76))

[1] 4

30/57

Writing your own functions
Note that your function will automatically return the last line of code run:

And if your function is really one line or evaluation, like here, you do not need the curly brackets, and

you can put everything on one line:

> return2a = function(x) {
+ x[2]
+ }
> return2a(c(1, 4, 5, 76))

[1] 4

> return2b = function(x) x[2]
> return2b(c(1, 4, 5, 76))

[1] 4

31/57

Strsplit
> x <- c("I really", "like writing", "R code")
> ss <- strsplit(x, split = " ")
> ss[[2]]

[1] "like" "writing"

> sapply(ss, return2b) # use your own function

[1] "really" "writing" "code"

> sapply(ss, function(x) x[2]) # on the fly

[1] "really" "writing" "code"

32/57

General comments on apply()
Apply functions are like 'for' loops. They 'go over' each element and perform a function on that element

Here, each element of the list 'ss' temporarily takes the value of 'x', and then evaluated.

> x = ss[[1]]
> x[2]

[1] "really"

> x = ss[[2]]
> x[2]

[1] "writing"

33/57

Data Merging/Append
Merging - joining data sets together - usually on key variables, usually id

merge is the most common way to do this with data sets

rbind/cbind - row/column bind, respectively

reshape2 package also has a lot of information about different ways to reshape data (wide to long,

etc) - but has a different (and sometimes more intuitive syntax)

t() is a function that will transpose the data

·

·

·

rbind is the equivalent of "appending" in Stata or "setting" in SAS

cbind allows you to add columns in addition to the previous ways

-

-

·

·

34/57

Merging
> base <- data.frame(id = 1:10, Age = rnorm(10, mean = 65, sd = 5))
> visits <- data.frame(id = rep(1:8, 3), visit = rep(1:3, 8), Outcome = rnorm(2 *
+ 3, mean = 4, sd = 2))
> merged.data <- merge(base, visits, by = "id")
> table(merged.data$id)

1 2 3 4 5 6 7 8
3 3 3 3 3 3 3 3

> all.data <- merge(base, visits, by = "id", all = TRUE)
> table(all.data$id)

 1 2 3 4 5 6 7 8 9 10
 3 3 3 3 3 3 3 3 1 1

35/57

Problems with partial merges?

Anything not merged is considered missing. No ''Merge'' variable is generated, but you can.

> all.data[all.data$id %in% c(9, 10),]

 id Age visit Outcome
25 9 58.47 NA NA
26 10 73.50 NA NA

> base$base <- 1
> visits$visits <- 1
> all.data <- merge(base, visits, by = "id", all = TRUE)
> all.data[is.na(all.data$visits),]

 id Age base visit Outcome visits
25 9 58.47 1 NA NA NA
26 10 73.50 1 NA NA NA

36/57

Table data frames and merging
You can make summaries in Table then merge them

> tab <- table(Agency = Sal$Agency, useNA = "ifany")
> head(tab <- as.data.frame(tab, responseName = "N_Employees", stringsAsFactors = FALSE),
+ 2)

 Agency N_Employees
1 Circuit Court 154
2 City Council 88

> Sal <- merge(Sal, tab, by = "Agency")
> head(Sal[, c("Name", "Agency", "N_Employees")], 2)

 Name Agency N_Employees
1 Elliott,Antoinella A Circuit Court 154
2 Hennigan,Mary L Circuit Court 154

37/57

Bind and t()
> head(all.data, 2)

 id Age base visit Outcome visits
1 1 56.78 1 1 2.995 1
2 1 56.78 1 3 2.690 1

> head(t(all.data)[, 1:2]) # data is transposed

 [,1] [,2]
id 1.000 1.00
Age 56.777 56.78
base 1.000 1.00
visit 1.000 3.00
Outcome 2.995 2.69
visits 1.000 1.00

> head(cbind(all.data, c("hey", "ho"))) #it will repeat to fill in the column

 id Age base visit Outcome visits c("hey", "ho")
1 1 56.78 1 1 2.9950 1 hey
2 1 56.78 1 3 2.6904 1 ho
3 1 56.78 1 2 0.5518 1 hey
4 2 60.90 1 2 3.3902 1 ho
5 2 60.90 1 1 4.5470 1 hey
6 2 60.90 1 3 3.0208 1 ho

38/57

Side note about Binding
R will wrap around elements to fill a column·

> cbind(c(0, 1, 2), c(3, 4))

Warning: number of rows of result is not a multiple of vector length (arg
2)

 [,1] [,2]
[1,] 0 3
[2,] 1 4
[3,] 2 3

39/57

Side note about Binding
> cbind(c(0, 1, 2), c(3, 4, 5))

 [,1] [,2]
[1,] 0 3
[2,] 1 4
[3,] 2 5

> cbind(c(1:10), c(1:5))[3:7,]

 [,1] [,2]
[1,] 3 3
[2,] 4 4
[3,] 5 5
[4,] 6 1
[5,] 7 2

40/57

Packages
Packages are add-ons that are commonly written by users comprised of functions, data, and vignettes

Use library() or require() to load the package into memory so you can use its functions

Install packages using install.packages("PackageName")

Use help(package="PackageName") to see what contents the package has

http://cran.r-project.org/web/packages/available_packages_by_name.html

foreign package - read data from Stata/SPSS/SAS

sas7bdat - read SAS data

xlsx - reads in XLS files

geepack - good for GEE analysis

lme4 - linear/generalized linear mixed models

survey - Survey data analysis (http://faculty.washington.edu/tlumley/survey/)

·

·

·

·

·

·

·

·

·

·

41/57

http://cran.r-project.org/web/packages/available_packages_by_name.html
http://faculty.washington.edu/tlumley/survey/

Data Reshaping
Disclaimer: the reshape command in R is not remarkably intuitive.

Wide - multiple measurements are variables / columns so that the data gets wider with more

measurements

Long - multiple measurements are rows so data gets longer with more measurements

One example would be many ids with multiple visits

·

·

·

42/57

Example of Long/Wide
> head(wide)

 id visit1 visit2 visit3
1 1 Good Good Bad

> head(long)

 id visit Outcome
1 1 1 Good
2 1 2 Good
3 1 3 Bad

43/57

Data Reshaping
Good resource: http://www.ats.ucla.edu/stat/r/faq/reshape.htm·

> times <- c("purple", "green", "orange", "banner")
> v.names <- c("Boardings", "Alightings", "Average")
> print(varying <- c(sapply(times, paste, sep = "", v.names)))

 [1] "purpleBoardings" "purpleAlightings" "purpleAverage"
 [4] "greenBoardings" "greenAlightings" "greenAverage"
 [7] "orangeBoardings" "orangeAlightings" "orangeAverage"
[10] "bannerBoardings" "bannerAlightings" "bannerAverage"

44/57

http://www.ats.ucla.edu/stat/r/faq/reshape.htm

Data Reshaping
> circ$date <- as.Date(circ$date, "%m/%d/%Y") # creating a date for sorting
> ## important - varying, times, and v.names need to be in a correct order
> long <- reshape(data = circ, direction = "long", varying = varying, times = times,
+ v.names = v.names, timevar = "line", idvar = c("date"))
> rownames(long) <- NULL # taking out row names
> long <- long[order(long$date),]
> head(long)

 day date daily line Boardings Alightings Average
1 Monday 2010-01-11 952 purple NA NA NA
1026 Monday 2010-01-11 952 green NA NA NA
2051 Monday 2010-01-11 952 orange 1027 952 877
3076 Monday 2010-01-11 952 banner NA NA NA
2 Tuesday 2010-01-12 796 purple NA NA NA
1027 Tuesday 2010-01-12 796 green NA NA NA

45/57

Data Reshaping
> dim(long)

[1] 4100 7

> long <- long[!is.na(long$Boardings) & !is.na(long$Alightings) & !is.na(long$Average),
+]
> dim(long)

[1] 2290 7

46/57

Data Reshaping
> head(long)

 day date daily line Boardings Alightings Average
2051 Monday 2010-01-11 952 orange 1027 952 877
2052 Tuesday 2010-01-12 796 orange 815 796 777
2053 Wednesday 2010-01-13 1212 orange 1220 1212 1203
2054 Thursday 2010-01-14 1214 orange 1233 1214 1194
2055 Friday 2010-01-15 1644 orange 1643 1644 1645
2056 Saturday 2010-01-16 1490 orange 1524 1490 1457

47/57

Data Reshaping
If you've reshaped a data set - to get it back, just reshape it again·

> head(reshape(long, direction = "wide"), 2)

 day date daily purpleAlightings purpleAverage
2051 Monday 2010-01-11 952 1027 952
2052 Tuesday 2010-01-12 796 815 796
 purpleBoardings greenAlightings greenAverage greenBoardings
2051 877 NA NA NA
2052 777 NA NA NA
 orangeAlightings orangeAverage orangeBoardings bannerAlightings
2051 NA NA NA NA
2052 NA NA NA NA
 bannerAverage bannerBoardings
2051 NA NA
2052 NA NA

48/57

Data Reshaping - A Better Example
> library(xlsx, verbose = FALSE)
> TB <- read.xlsx(file = "~/Dropbox/WinterRClass/Datasets/indicator_estimatedincidencealltbper100000.xlsx"
+ sheetName = "Data")
> head(TB, 1)

 TB.incidence..all.forms..per.population.per.year. X1990 X1991
1 Afghanistan 168 168
 X1992 X1993 X1994 X1995 X1996 X1997 X1998 X1999 X2000 X2001 X2002 X2003
1 168 168 168 168 168 168 168 168 168 168 168 168
 X2004 X2005 X2006 X2007 NA.
1 168 168 168 168 NA

> TB$NA. <- NULL
> head(TB, 1)

 TB.incidence..all.forms..per.population.per.year. X1990 X1991
1 Afghanistan 168 168
 X1992 X1993 X1994 X1995 X1996 X1997 X1998 X1999 X2000 X2001 X2002 X2003
1 168 168 168 168 168 168 168 168 168 168 168 168
 X2004 X2005 X2006 X2007
1 168 168 168 168

49/57

Data Reshaping - A Better Example
> colnames(TB) <- c("Country", paste("Year", 1990:2007, sep = "."))
> head(TB, 1)

 Country Year.1990 Year.1991 Year.1992 Year.1993 Year.1994 Year.1995
1 Afghanistan 168 168 168 168 168 168
 Year.1996 Year.1997 Year.1998 Year.1999 Year.2000 Year.2001 Year.2002
1 168 168 168 168 168 168 168
 Year.2003 Year.2004 Year.2005 Year.2006 Year.2007
1 168 168 168 168 168

50/57

Data Reshaping - More is better!
> TB.long <- reshape(TB, idvar = "Country", v.names = "Cases", times = 1990:2007,
+ direction = "long", timevar = "Year", varying = paste("Year", 1990:2007,
+ sep = "."))
>
> head(TB.long, 4)

 Country Year Cases
Afghanistan.1990 Afghanistan 1990 168
Albania.1990 Albania 1990 25
Algeria.1990 Algeria 1990 38
American Samoa.1990 American Samoa 1990 21

> rownames(TB.long) <- NULL
> head(TB.long, 4)

 Country Year Cases
1 Afghanistan 1990 168
2 Albania 1990 25
3 Algeria 1990 38
4 American Samoa 1990 21

51/57

Data Reshaping - A common "bug?"
> TB.long2 <- reshape(TB, idvar = "Country", direction = "long", timevar = "Year",
+ varying = paste("Year", 1990:2007, sep = "."))
> head(TB.long2, 3) ### what happened?

 Country Year
Afghanistan.1990 Afghanistan 168
Albania.1990 Albania 25
Algeria.1990 Algeria 38

> TB.long2 <- reshape(TB, idvar = "Country", direction = "long", timevar = "Blah",
+ varying = paste("Year", 1990:2007, sep = "."))
> head(TB.long2, 3) ## Timevar can't be the stub of the original variable

 Country Blah Year
Afghanistan.1990 Afghanistan 1990 168
Albania.1990 Albania 1990 25
Algeria.1990 Algeria 1990 38

52/57

Reshaped - let's plot some Spaghetti
Spaghetti or "line" plots are relatively easy using the lattice package in R·

> library(lattice)
> xyplot(Cases ~ Year, groups = Country, data = TB.long, type = "l")

53/57

More Spaghetti
> ## Only keep a few countries
> xyplot(Cases ~ Year, groups = Country, data = TB.long, subset = Country %in%
+ c("United States of America", "United Kingdom", "Zimbabwe"), type = "l")

54/57

More Spaghetti
> ## plot things 'by' Country xyplot(Cases ~ Year | Country, data=TB.long,
> ## subset=Country %in% c('United States of America', 'United Kingdom',
> ## 'Zimbabwe'), type='l')
> TBC <- TB.long[TB.long$Country %in% c("United States of America", "United Kingdom",
+ "Zimbabwe"),]
> TBC$Country <- factor(TBC$Country)
> xyplot(Cases ~ Year, groups = Country, data = TBC, type = "l", key = simpleKey(levels(TBC$Country),
+ lines = TRUE, points = FALSE))

55/57

Reshaping Wide
> head(Indometh, 2)

 Subject time conc
1 1 0.25 1.50
2 1 0.50 0.94

> wide <- reshape(Indometh, v.names = "conc", idvar = "Subject", timevar = "time",
+ direction = "wide")
> head(Indometh, 2)

 Subject time conc
1 1 0.25 1.50
2 1 0.50 0.94

56/57

Lab
Salaries data:

Restaurants data:

Monuments data:

1. Make an object called health.sal using the salaries data set, with only agencies of those with "fire"

(or any forms), if any, in the name

2. Make a data set called trans which contains only agencies that contain "TRANS".

3. What is/are the profession(s) of people who have "abra" in their name for Baltimore's Salaries?

1. Reshape the restaurants data set to wide, on council district. You may need to create an id

variable by the code: rest$id <- 1:nrow(rest)

1. How many monuments contain the phrase "Monument" in them?

57/57

