Module 1

Introduction to R

Andrew Jaffe
Instructor
Welcome to class!

1. Introductions
2. Class overview
3. Getting R up and running
About Me

Investigator at the Lieber Institute for Brain Development

PhD in Epidemiology, MHS in Bioinformatics

Email: andrew.jaffe@libd.org
TAs

Andrew Azman

- PhD Candidate in Epidemiology
- Email: aazman@jhsph.edu

Kate Grabowski

- PhD Candidate in Epidemiology, ScM in Epidemiology
- Email: mgrabows@jhsph.edu
Introductions

What do you hope to get out of the class?

Why R?
Course Website

http://biostat.jhsph.edu/~ajaffe/rsummer2013.html

Materials will be uploaded the night before class
Learning Objectives

- Reading data into R
- Recoding and manipulating data
- Writing R functions and using add-on packages
- Making exploratory plots
- Performing basic statistical tests
- Understanding basic programming syntax
Course Format

3 modules per class session, each approximately 1 hour

- “Interactive” Lecture with RStudio + slides
- Lab/Practical experience
Grading

1. Attendance/Participation: 20%
2. Nightly Homework: 3 x 15%
3. Final "Project": 35%
Grading

Homework 1: Due Wednesday 6/12 by class
Homework 2: Due Thursday 6/13 by class
Homework 3: Due Friday 6/14 by class
Project: Due Sunday 6/16 by 5pm
What is R?

- R is a language and environment for statistical computing and graphics
- R is the open source implementation of the S language, which was developed by Bell laboratories
- R is both open source and open development

(source: http://www.r-project.org/)
Why R?

- Powerful and flexible
- Free (open source)
- Extensive add-on software (packages)
- Designed for statistical computing
- High level language
Why not R?

- Fairly steep learning curve
 - "Programming" oriented
 - Minimal interface
- Little centralized support, relies on online community and package developers
- Annoying to update
- Slower, and more memory intensive, than the more traditional programming languages (C, Java, Perl, Python)
Installing R

Install the latest version from: http://cran.r-project.org/

Note that you must manually update R, often at your own peril...
R Studio

- Integrated Development Environment (IDE) for R
 - Syntax highlighting, code completion, and smart indentation
 - Execute R code directly from the source editor
 - Easily manage multiple working directories using projects
 - Workspace browser and data viewer
 - Plot history, zooming, and flexible image and PDF export
 - Integrated R help and documentation
 - Searchable command history

- http://www.rstudio.com/
```r
# this is an example of R studio

1. data(cars)
2. plot(cars)
```
Working with R

- The R Console "interprets" whatever you type
 - Calculator
 - Creating variables
 - Applying functions

- "Analysis" Script + Interactive Exploration
 - Static copy of what you did (reproducability)
 - Try things out interactively, then add to your script

- R revolves around functions
 - Commands that take input, performs computations, and returns results
 - Many come with R, but people write external functions you can download and use
Useful R Studio Shortcuts

- Ctrl + Enter (Cmd + Enter on OS X) in your script evaluates that line of code
- Ctrl+1 takes you to the script page
- Ctrl+2 takes you to the console
- http://www.rstudio.com/ide/docs/using/keyboard_shortcuts
Useful (+Free) Resources

- The homework will involve working through: http://tryr.codeschool.com/
- UCLA Institute for Digital Research and Education: http://www.ats.ucla.edu/stat/r/
- R reference card: http://cran.r-project.org/doc/contrib/Short-refcard.pdf
- Undergrad Guide to R: https://sites.google.com/site/undergraduatetor/
- Quick R: http://statmethods.net/