Module 12
R Programming

Andrew Jaffe
Instructor
R 'programming'

Now we are going to switch gears a little bit, and talk about some of the more traditional programming that you can do in R.

You can do very flexible things, but at a cost of more difficult notation, and having to actually write programming statements. There are slight notation differences as well, including the use of curly {} brackets

We are going to cover for loops and if statements
'for' Loops

These allow you to iterate over certain observations or subsets of observations.

The syntax is:

```r
for(*var* in seq) {
  do something
}
```

Typically they look something like:

```r
for(i in 1:nrow(dat)) {
  something(dat[i,])
}
```
'for' loops

These are essentially fancier apply statements

For example,

```r
> for(i in 1:10) {
+   print(i)
+ }
```

```
[1] 1
[1] 2
[1] 3
[1] 4
[1] 5
[1] 6
[1] 7
[1] 8
[1] 9
[1] 10
```
'for' loops

Here's how they can be more flexible:

```r
> Index = c(3,6,7,20,32,100,234,1000,6543)
> for(i in 1:length(Index)) {
>       print(Index[i])
> }
```

```
[1]  3
[1]  6
[1]  7
[1] 20
[1] 32
[1] 100
[1] 234
[1] 1000
[1] 6543
```

Note that the first time through the body of the loop, \(i \) takes the value 1, then evaluates the body. Then, \(i \) takes the value 2, and evaluates the body, until \(i = \text{length}(\text{Index}) \), then it stops.
'for' loops

They are essentially more useful than apply statements when you are working with two sets of matching datasets or vectors.

```r
> myList = vector("list", length=4)
> mat1 = matrix(rnorm(8), nc = 4)
> mat2 = matrix(rnorm(8), nc = 4)
> mat1

[1,] -0.2854 -0.01147 -0.3855 -0.3403  
[2,] -0.9100  0.52103  1.1067 -1.7502  

> mat2

[1,]  1.429  0.02987 -0.6456  0.5449  
[2,]  1.775  0.30341 -0.3780 -0.6708  
```
> for(i in seq(along=myList)) {
+ myList[[i]] = cbind(mat1[,i],mat2[,i])
+ }
> myList

[[1]]
 [,1] [,2]
[1,] -0.2854 1.429
[2,] -0.9100 1.775

[[2]]
 [,1] [,2]
[1,] -0.01147 0.02987
[2,] 0.52103 0.30341

[[3]]
 [,1] [,2]
[1,] -0.3855 -0.6456
[2,] 1.1067 -0.3780

[[4]]
 [,1] [,2]
[1,] -0.3403 0.5449
[2,] -1.7502 -0.6708
'for' loops

```r
> i=1
> cbind(mat1[,i],mat2[,i])
```

```
[,1]  [,2]
[1,] -0.2854 1.429
[2,] -0.9100 1.775
```

```r
> i=2
> cbind(mat1[,i],mat2[,i])
```

```
[,1]  [,2]
[1,] -0.01147 0.02987
[2,] 0.52103 0.30341
```

```r
> i=3
> cbind(mat1[,i],mat2[,i])
```

```
[,1]  [,2]
[1,] -0.3855 -0.6456
[2,] 1.1067 -0.3780
```
'for' loops

These are useful for making many columns worth of density plots

```
> mat = matrix(rnorm(1000*50), nc = 50)
> plot(density(mat[,1]), ylim = c(0, 0.45))
> for(i in 2:ncol(mat)) {lines(density(mat[,i]))}
```
'for' loops

You can also integrate with lists.

```r
> outList = vector("list",10)
> start=1:10
> end = sample(1:100, 10)
> for(i in seq(along=outList)) {
+   outList[[i]] = start[i]:end[i]
+ }
> outList

[[1]]
 [1]  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
[24] 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
[47] 47 48 49 50 51 52 53 54 55 56 57 58 59

[[2]]
 [1]  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
[24] 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
[47] 48 49 50 51 52 53 54

[[3]]
 [1]  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

[[4]]
 [1]  4  5  6  7  8  9 10 11 12 13 14 15 16 17

[[5]]
 [1]  5  6  7  8  9 10
```
'if' statements

You can put 'if' statements inside of 'for' loops

```r
for(i in 1:nrow(dat)) {
  if(dat$x > num) {
    dat$y[i] = something
  } else {
    dat$y[i] = something else
  }
}
```
Example

```r
> makeIndexes = split(1:nrow(cars), cars$Make)
> lapply(makeIndexes, head, n=4)[1:3]

$ACURA
[1] 10039 13026 13631 14250

$BUICK
[1] 185 233 258 346

$CADILLAC
[1] 3372 4517 8500 9664
```
> pval = rep(NA,length(makeIndexes))
> for(i in 1:length(makeIndexes)) {
> ind = makeIndexes[[i]]
> if(length(ind)>1) {
> f = lm(VehBCost~VehOdo, data=cars,subset=ind)
> pval[i] = summary(f)$coef[2,4]
> }
> }
> names(pval)=names(makeIndexes)
>
> i = 1
> ind = makeIndexes[[i]]
> str(ind)

int [1:33] 10039 13026 13631 14250 16392 17289 17889 17979 18166 22044 ...

> f = lm(VehBCost~VehOdo, data=cars,subset=ind)
> summary(f)$coef[2,4]

[1] 0.4932
<table>
<thead>
<tr>
<th>Brand</th>
<th>pval</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACURA</td>
<td>4.932e-01</td>
</tr>
<tr>
<td>BUICK</td>
<td>1.877e-05</td>
</tr>
<tr>
<td>CADILLAC</td>
<td>1.064e-06</td>
</tr>
<tr>
<td>CHEVROLET</td>
<td>2.834e-06</td>
</tr>
<tr>
<td>CHRYSLER</td>
<td>1.128e-78</td>
</tr>
<tr>
<td>DODGE</td>
<td>1.494e-10</td>
</tr>
<tr>
<td>FORD</td>
<td>2.584e-27</td>
</tr>
<tr>
<td>GMC</td>
<td>1.626e-01</td>
</tr>
<tr>
<td>HONDA</td>
<td>2.490e-13</td>
</tr>
<tr>
<td>HUMMER</td>
<td>NA</td>
</tr>
<tr>
<td>HYUNDAI</td>
<td>1.072e-04</td>
</tr>
<tr>
<td>INFINITI</td>
<td>9.737e-04</td>
</tr>
<tr>
<td>ISUZU</td>
<td>2.697e-04</td>
</tr>
<tr>
<td>JEEP</td>
<td>2.723e-16</td>
</tr>
<tr>
<td>KIA</td>
<td>3.765e-18</td>
</tr>
<tr>
<td>LEXUS</td>
<td>5.014e-09</td>
</tr>
<tr>
<td>LINCOLN</td>
<td>7.061e-01</td>
</tr>
<tr>
<td>MAZDA</td>
<td>1.364e-41</td>
</tr>
<tr>
<td>MERCURY</td>
<td>2.953e-04</td>
</tr>
<tr>
<td>MINI</td>
<td>8.709e-02</td>
</tr>
<tr>
<td>MITSUBISHI</td>
<td>3.357e-26</td>
</tr>
<tr>
<td>NISSAN</td>
<td>3.594e-10</td>
</tr>
<tr>
<td>OLDSMOBILE</td>
<td>6.956e-08</td>
</tr>
<tr>
<td>PLYMOUTH</td>
<td>NaN</td>
</tr>
<tr>
<td>PONTIAC</td>
<td>3.305e-154</td>
</tr>
<tr>
<td>SATURN</td>
<td>4.363e-40</td>
</tr>
<tr>
<td>SCION</td>
<td>3.115e-07</td>
</tr>
<tr>
<td>SUBARU</td>
<td>8.062e-01</td>
</tr>
<tr>
<td>SUZUKI</td>
<td>4.285e-32</td>
</tr>
<tr>
<td>TOYOTA</td>
<td>1.395e-16</td>
</tr>
<tr>
<td>SCION</td>
<td>4.738e-06</td>
</tr>
<tr>
<td>VOLKSWAGEN</td>
<td>1.269e-02</td>
</tr>
<tr>
<td>VOLVO</td>
<td></td>
</tr>
</tbody>
</table>
Note you can also do with with `sapply`

```r
> pval2 = sapply(makeIndexes, function(ind) {
+   if(length(ind)>1) {
+     f = lm(VehBCost~VehOdo, data=cars,subset=ind)
+     summary(f)$coef[2,4]
+   } else NA
+ })
> all.equal(pval,pval2)

[1] TRUE
```
Example

Now we can read in many files into a list

```r
> fn = list.files("Reports/", pattern=".txt", full.names=TRUE)
> name = list.files("Reports/", pattern=".txt", full.names=FALSE)
> head(fn)
```

```
[1] "Reports/April_2009_Report.txt"  "Reports/April_2010_Report.txt"
```
```r
> fileList = lapply(fn, read.delim, header=TRUE, as.is=TRUE)
> names(fileList) = name
> sapply(fileList,dim) [,1:5]

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>[1,]</td>
<td>287</td>
<td>324</td>
<td>359</td>
</tr>
<tr>
<td>[2,]</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>August_2009_Report.txt</th>
<th>August_2010_Report.txt</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1,]</td>
<td>353</td>
<td>369</td>
</tr>
<tr>
<td>[2,]</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

> lapply(fileList[1:5],head,n=2)

$April_2009_Report.txt

<table>
<thead>
<tr>
<th>id</th>
<th>sex</th>
<th>treat</th>
<th>age</th>
<th>bgDrugs</th>
<th>height</th>
<th>weight</th>
<th>block</th>
<th>recruitDate</th>
<th>bmi</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1072</td>
<td>Female</td>
<td>Control</td>
<td>51.00</td>
<td>asprin</td>
<td>63.84</td>
<td>131.3</td>
<td>d</td>
<td>21</td>
</tr>
<tr>
<td>2</td>
<td>1073</td>
<td>Female</td>
<td>Control</td>
<td>54.81</td>
<td>tylenol</td>
<td>66.10</td>
<td>117.2</td>
<td>b</td>
<td>1</td>
</tr>
</tbody>
</table>

$April_2010_Report.txt

<table>
<thead>
<tr>
<th>id</th>
<th>sex</th>
<th>treat</th>
<th>age</th>
<th>bgDrugs</th>
<th>height</th>
<th>weight</th>
<th>block</th>
<th>recruitDate</th>
<th>bmi</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4337</td>
<td>Female</td>
<td>Case</td>
<td>46.91</td>
<td>none</td>
<td>64.95</td>
<td>140.6</td>
<td>f</td>
<td>25</td>
</tr>
<tr>
<td>2</td>
<td>4338</td>
<td>Female</td>
<td>Case</td>
<td>47.95</td>
<td>none</td>
<td>66.47</td>
<td>143.3</td>
<td>f</td>
<td>14</td>
</tr>
</tbody>
</table>

$April_2011_Report.txt

<table>
<thead>
<tr>
<th>id</th>
<th>sex</th>
<th>treat</th>
<th>age</th>
<th>bgDrugs</th>
<th>height</th>
<th>weight</th>
<th>block</th>
<th>recruitDate</th>
<th>bmi</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7780</td>
<td>Male</td>
<td>Case</td>
<td>53.93</td>
<td>asprin</td>
<td>70.12</td>
<td>175.0</td>
<td>f</td>
<td>29</td>
</tr>
<tr>
<td>2</td>
<td>7781</td>
<td>Male</td>
<td>Control</td>
<td>62.77</td>
<td>tylenol</td>
<td>71.02</td>
<td>153.1</td>
<td>b</td>
<td>29</td>
</tr>
</tbody>
</table>

$August_2009_Report.txt

<table>
<thead>
<tr>
<th>id</th>
<th>sex</th>
<th>treat</th>
<th>age</th>
<th>bgDrugs</th>
<th>height</th>
<th>weight</th>
<th>block</th>
<th>recruitDate</th>
<th>bmi</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2051</td>
<td>Male</td>
<td>Control</td>
<td>56.76</td>
<td>tylenol</td>
<td>70.47</td>
<td>168.0</td>
<td>f</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2052</td>
<td>Male</td>
<td>Case</td>
<td>50.14</td>
<td>asprin</td>
<td>69.56</td>
<td>172.3</td>
<td>c</td>
<td>1</td>
</tr>
</tbody>
</table>