Lecture 2

Brian Caffo

Department of Biostatistics
Johns Hopkins Bloomberg School of Public Health
Johns Hopkins University

October 21, 2007
Table of contents

1. Table of contents
2. Outline
3. Probability
4. Random variables
5. PMFs and PDFs
6. CDFs, survival functions and quantiles
Outline

- Define probability calculus
- Basic axioms of probability
- Define random variables
- Define density and mass functions
- Define cumulative distribution functions and survivor functions
- Define quantiles, percentiles, medians
A probability measure, P, is a real valued function from the collection of possible events so that the following hold

1. For an event $E \subset \Omega$, $0 \leq P(E) \leq 1$
2. $P(\Omega) = 1$
3. If E_1 and E_2 are mutually exclusive events
 $P(E_1 \cup E_2) = P(E_1) + P(E_2)$.
Part 3 of the definition implies **finite additivity**

\[P(\bigcup_{i=1}^{n} A_i) = \sum_{i=1}^{n} P(A_i) \]

where the \(\{A_i\} \) are mutually exclusive. This is usually extended to **countable additivity**

\[P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i) \]
Note

- P is defined on \mathcal{F} a collection of subsets of Ω
- Example $\Omega = \{1, 2, 3\}$ then
 \[\mathcal{F} = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\} \}. \]
- When Ω is a continuous set, the definition gets much trickier. In this case we assume that \mathcal{F} is sufficiently rich so that any set that we’re interested in will be in it.
Consequences

You should be able to prove all of the following:

- \(P(\emptyset) = 0 \)
- \(P(E) = 1 - P(E^c) \)
- \(P(A \cup B) = P(A) + P(B) - P(A \cap B) \)
- if \(A \subset B \) then \(P(A) \leq P(B) \)
- \(P(A \cup B) = 1 - P(A^c \cap B^c) \)
- \(P(A \cap B^c) = P(A) - P(A \cap B) \)
- \(P(\bigcup_{i=1}^n E_i) \leq \sum_{i=1}^n P(E_i) \)
- \(P(\bigcup_{i=1}^n E_i) \geq \max_i P(E_i) \)
Proof that $P(E) = 1 - P(E^c)$

\[
\begin{align*}
1 & = P(\Omega) \\
& = P(E \cup E^c) \\
& = P(E) + P(E^c)
\end{align*}
\]
Example

Proof that $P(\bigcup_{i=1}^{n} E_i) \leq \sum_{i=1}^{n} P(E_i)$

$$P(E_1 \cup E_2) = P(E_1) + P(E_2) - P(E_1 \cap E_2) \leq P(E_1) + P(E_2)$$

Assume the statement is true for $n-1$ and consider n

$$P(\bigcup_{i=1}^{n} E_i) \leq P(E_n) + P(\bigcup_{i=1}^{n-1} E_i) \leq P(E_n) + \sum_{i=1}^{n-1} P(E_i) = \sum_{i=1}^{n} P(E_i)$$
The National Sleep Foundation (www.sleepfoundation.org) reports that around 3% of the American population has sleep apnea. They also report that around 10% of the North American and European population has restless leg syndrome. Similarly, they report that 58% of adults in the US experience insomnia. Does this imply that 71% of people will have at least one sleep problems of these sorts?
Example continued

Answer: No, the events are not mutually exclusive. To elaborate let:

\[A_1 = \{ \text{Person has sleep apnea} \} \]
\[A_2 = \{ \text{Person has RLS} \} \]
\[A_3 = \{ \text{Person has insomnia} \} \]

Then (work out the details for yourself)

\[
P(A_1 \cup A_2 \cup A_3) = P(A_1) + P(A_2) + P(A_3) \\
- P(A_1 \cap A_2) - P(A_1 \cap A_3) - P(A_2 \cap A_3) \\
+ P(A_1 \cap A_2 \cap A_3) \\
= .71 + \text{Other stuff}
\]

where the “Other stuff” has to be less than 0.
Example: LA Times from Rice page 26
Random variables

- A random variable is a numerical outcome of an experiment.
- The random variables that we study will come in two varieties, discrete or continuous.
- Discrete random variable are random variables that take on only a countable number of possibilities.
 - $P(X = k)$
- Continuous random variable can take any value on the real line or some subset of the real line.
 - $P(X \in A)$
Examples of random variables

- The \((0−1)\) outcome of the flip of a coin
- The outcome from the roll of a die
- The BMI of a subject four years after a baseline measurement
- The hypertension status of a subject randomly drawn from a population
A probability mass function evaluated at a value corresponds to the probability that a random variable takes that value. To be a valid pmf a function, p, must satisfy

1. $p(x) \geq 0$ for all x
2. $\sum_x p(x) = 1$

The sum is taken over all of the possible values for x.
Example

Let X be the result of a coin flip where $X = 0$ represents tails and $X = 1$ represents heads.

$$p(x) = (1/2)^x (1/2)^{1-x} \text{ for } x = 0, 1$$

Suppose that we do not know whether or not the coin is fair; Let θ be the probability of a head

$$p(x) = \theta^x (1 - \theta)^{1-x} \text{ for } x = 0, 1$$
A probability density function (pdf), is a function associated with a continuous random variable

\textit{Areas under pdfs correspond to probabilities for that random variable}

To be a valid pdf, a function \(f \) must satisfy

1. \(f(x) \geq 0 \) for all \(x \)
2. \(\int_{-\infty}^{\infty} f(x)dx = 1 \)
Example

Assume that the time in years from diagnosis until death of persons with a specific kind of cancer follows a density like

\[f(x) = \begin{cases} \frac{e^{-x/5}}{5} & \text{for } x > 0 \\ 0 & \text{otherwise} \end{cases} \]

More compactly written: \(f(x) = \frac{1}{5} e^{-x/5} \) for \(x > 0 \).
Is this a valid density?

1. \(e \) raised to any power is always positive
2. \[
\int_0^\infty f(x)\,dx = \int_0^\infty \frac{e^{-x/5}}{5} \,dx = -e^{-x/5} \bigg|_0^\infty = 1
\]
What’s the probability that a randomly selected person from this distribution survives more than 6 years?

\[P(X \geq 6) = \int_{6}^{\infty} \frac{e^{-t/5}}{5} dt = -e^{-t/5}\bigg|_{6}^{\infty} = e^{-6/5} \approx 0.301. \]

Approximation in R

\[\text{pexp}(6, 1/5, \text{lower.tail} = \text{FALSE}) \]
Example continued

Survival time in years density
Survival time in years

0 5 10 15 20
0.00 0.05 0.10 0.15 0.20

0 5 10 15 20
0.00 0.05 0.10 0.15 0.20

Survival time in years density

0.00 0.05 0.10 0.15 0.20
0 5 10 15 20

Survival time in years
CDF and survival function

- The **cumulative distribution function** (CDF) of a random variable X is defined as the function

$$F(x) = P(X \leq x)$$

- This definition applies regardless of whether X is discrete or continuous.
- The **survival function** of a random variable X is defined as

$$S(x) = P(X > x)$$

- Notice that $S(x) = 1 - F(x)$
- For continuous random variables, the PDF is the derivative of the CDF
Example

What are the survival function and CDF from the exponential density considered before?

\[S(x) = \int_{x}^{\infty} \frac{e^{-t/5}}{5} dt = -e^{-t/5} \bigg|_{x}^{\infty} = e^{-x/5} \]

hence we know that

\[F(x) = 1 - S(x) = 1 - e^{-x/5} \]

Notice that we can recover the PDF by

\[f(x) = F'(x) = \frac{d}{dx} (1 - e^{-x/5}) = e^{-x/5} / 5 \]
Quantiles

• The α^{th} quantile of a distribution with distribution function F is the point x_α so that

$$F(x_\alpha) = \alpha$$

• A percentile is simply a quantile with α expressed as a percent

• The median is the 50th percentile
Example

• What is the 25^{th} percentile of the exponential survival distribution considered before?

• We want to solve (for x)

\[
.25 = F(x) = 1 - e^{-x/5}
\]

resulting in the solution $x = -\log(.75) \times 5 \approx 1.44$

• Therefore, 25% of the subjects from this population live less than 1.44 years

• R can approximate exponential quantiles for you

qexp(.25, 1/5)