Biostat 776: Other Topics in R

Roger Peng

November 19, 2003
A Hodge-Podge of Stuff

- S4 Classes and Methods
- Lexical Scoping and Statistical Computing
Classes and Methods

- A system for doing object oriented programming
- R is rare because it is both interactive and has a system for object orientation.
  - Other languages which support OOP: C++, Java, Lisp, Python, Perl
- In R, much of the code for supporting S4 classes/methods is written by John Chambers himself.
R has two “styles” of classes and methods

- S3 classes/methods
  - Included with version 3 of the S language.
  - Informal, a little kludgey
  - Sometimes called “old-style” classes/methods

- S4 classes/methods
  - more formal and rigorous
  - Included with S-PLUS 6, R ≥ 1.4.0
  - Also called “new-style” classes/methods
Two worlds

- For now (and the foreseeable future), S3 classes/methods and S4 classes/methods are *separate* systems.
- Each system can be used fairly independently of the other.
- Developers of new projects (you!) are encouraged to use the S4 style classes/methods.
  - Used extensively in the Bioconductor project
- But many developers still use S3 classes/methods because they are “quick and dirty”.
- Oh well….
Object Oriented Programming in R

- A *class* is a description of an thing. A class can be defined using `setclass()`.

- An *object* is an instance of a class. Objects can be created using `new()`.

- A *generic function* is an R function which dispatches methods. A generic function typically encapsulates a “generic” concept.
  - e.g. `plot`, `mean`, `logLik`, `residuals`, `predict`, ...

  The generic function does not actually do any computation.

- A *method* is the implementation of a generic function for an object of a particular class.
Things to look up

- The help files for the ‘methods’ package are extensive – do read them.
- Check out:
- Some of it gets technical, but don’t worry about that for now.
Classes

All objects in R have a class which can be determined by the class function

> class(1)
[1] "numeric"
> class(TRUE)
[1] "logical"
> class(rnorm(100))
[1] "numeric"
> class(NA)
[1] "logical"
> class("asdf")
[1] "character"
Classes (cont’d)

> x <- rnorm(100)
> y <- x + rnorm(100)
> fit <- lm(y ~ x)
> class(fit)
[1] "lm"
>
>
Generics/Methods in R

- S4 and S3 style generic functions look different but conceptually, they are the same (they play the same role).
- When you program you can
  1. Write new methods for an existing generic function
  2. Create your own generics and associated methods
An S3 generic function (in the ‘base’ package)

> mean
function (x, ...)
UseMethod("mean")
<environment: namespace:base>
>

An S4 generic function (from the ‘methods’ package)

> show
standardGeneric for "show" defined from package "methods"

function (object)
standardGeneric("show")
<environment: 0x8d7cdc8>
Methods may be defined for arguments: object

>
The generic/method mechanism

The first argument of a generic function is an object of a particular class (there may be a bunch of other arguments)

1. The generic function checks the class of the object.
2. A search is done to see if there is an appropriate method for that class.
3. If there exists a method for that class, then that method is called on the object and we’re done.
4. If a method for that class does not exist, a search is done to see if there is a default method for the generic. If a default exists, then the default method is called.
5. If a default method doesn’t exist, then an error is thrown.
Example 1

> x <- rnorm(100)
> mean(x)
[1] -0.06846675

1. The class of x is “numeric”.
2. But there is no mean method for “numeric” objects!
3. So we call the default function mean.default.
> mean.default
function (x, trim = 0, na.rm = FALSE, ...)
{
    ## ... Skip 18 lines ...
    if (is.integer(x))
        sum(as.numeric(x))/n
    else sum(x)/n
}
<environment: namespace: base>

>
Example 2

> df <- data.frame(x = rnorm(100), y = rnorm(100, 1))
> mean(df)

```
  x         y
0.002565053 0.972148319
```

1. The class of df is “data.frame”.

2. There is a method for “data.frame” objects!

3. We call `mean.data.frame` on df.
> mean.data.frame
  function (x, ...)
  sapply(x, mean, ...)
  <environment: namespace:base>
>
Write your own methods!

If you write new methods for new classes, you’ll probably end up writing methods for the following generics:

- `print/show`
- `summary`
- `plot`

You could write a new method for an existing class, but more likely you’ll want to write a method for a class that *you* create.
Why would you want to create a new class?

- To represent new types of data
  - e.g. gene expression, space-time, hierarchical, sparse matrices
- New concepts/ideas
  - e.g. a fitted point process model, mixed-effects models
- To abstract implementation details from the user

I say things are “new” meaning that R does not know about them (not that they are new to the statistical community).
Example: A polygon class

```
setClass("polygon",
    representation(x = "numeric",
               y = "numeric"))
setMethod("plot", "polygon",
    function(x, y, ...) {
      xlim <- range(x@x)
      ylim <- range(x@y)
      plot(0, 0, type = "n", xlim = xlim,
           ylim = ylim, ...)
      xp <- c(x@x, x@x[1])
      yp <- c(x@y, x@y[1])
      lines(xp, yp)
    })
```
> setClass("polygon", [ ...OMITTED... ]
[1] "polygon"
>
> setMethod("plot", "polygon", [ ...OMITTED... ]
Creating a new generic function for "plot" in ".GlobalEnv"
[1] "plot"
> p <- new("polygon", x = c(1,2,3,4), y = c(1,2,3,1))
> plot(p)
Where to look, places to start

- The best way to learn this stuff is to look at examples.
- Sadly, there aren’t too many examples on CRAN which use S4 classes/methods.
- My suggestions:
  - Bioconductor ([http://www.bioconductor.org](http://www.bioconductor.org)) — a rich resource, even if you know nothing about bioinformatics
  - Some packages on CRAN (as far as I know) — SparseM, gpclib (poorly written), flexmix, its, lme4, orientlib, pixmap
  - Version 1.8.0 of the base R installation comes with a package ‘mle’ which use S4 classes/methods. It’s a small package and is a good place to start.
Pause
Lexical Scoping and Statistical Computing

1. What is lexical scoping?

2. How can it help me with statistical computing?

3. Examples
Scoping Rules

- Rules for assigning values to free variables
- A free variable is a variable that is
  - Not a formal argument to a function
  - Not assigned inside a function (i.e. a local variable)
Example 1

f <- function(x) {
    a <- 3
    x + a
}

• x is a formal argument
• a is a local variable

> f(2)
????
Example 2

g <- function(x) {
a <- 3
   x + a + y
}

• x is a formal argument
• a is a local variable
• y is a free variable

> g(2)
????
Dynamic Scoping (old school)

- Free variables are looked up in the environment in which the function was called (function call stack)
- In R, this is called the parent frame
  - can be accessed via `parent.frame()`
- e.g. If you call a function from the command line, the parent frame is the global workspace.
Lexical Scoping (modern)

- Free variables are looked up in the environment in which the function was defined.
- In R, this is called the *parent environment*
  - can be accessed via `parent.env()`
- In other words, free variables are looked up according to the *textual* description of the function

**Note:** If a function is defined in the global workspace and is also called from the global workspace, then the parent environment and the parent frame are the same.
Languages that Support Lexical Scoping

- Scheme
- R (much like Scheme)
- Common Lisp
- Perl
- Python
Example 2 (cont’d)

> rm(list = ls(all = TRUE))  ## Clear workspace
> g <- function(x) {
+   a <- 3
+   x + a + y
+ }
> g(2)
Error in g(2) : Object "y" not found
> y <- 3
> g(2)
[1] 8
>
Here, the function g() is defined in the *global workspace*. Therefore, the parent environment is the global workspace.
Example 2a

> gg <- function(x) {
+ y <- 2
+ g(x)
+ }
> gg(2)
Error in g(x) : Object "y" not found
> y <- 3
> gg(2)
[1] 8
Moving along

Can a function have something other than the global workspace as the parent environment? Yes!

```r
make.pow <- function(n) {
    pow <- function(x) {
        x^n
    }
    pow
}
```

`make.pow` returns a function which takes a single argument `x`. The function returned by `make.pow` has a free variable, `n`.  

35
Example 3

> cube <- make.pow(3)
> cube
function(x) {
  x^n
}
<environment: 0x8f39ce8>
> cube(4)  ## No error here!
[1] 64
Example 3 (cont’d)

- The function `cube` was defined inside the `make.pow` function. Therefore, the parent environment of `cube` is the body of the `make.pow` function, *not the global workspace*.

- Note that when the `cube` function is printed, the parent environment is printed at the bottom of the function body:
  `<environment: 0x8f39ce8>`

- If a function is defined somewhere besides the global workspace, the parent environment is printed along with the function body.
Consequences of Lexical Scoping

- In R, all objects must be stored in memory — all functions must carry a pointer to their respective parent environments, which could be anywhere.

- In S-PLUS, free variables are always looked up in the global workspace — everything can be stored on disk because the “parent environment” of all functions is the same.
Why should I care?

- Lexical scoping provides a convenient way to create function closures
- Can be used to maintain local state
- Extremely useful for plug ’n’ play optimization routines
Application: Optimization

- Optimization routines in R (optim, nlm, optimize) require you to pass a function whose argument is a vector of parameters.
- However, an objective function might depend on a host of other things, (including data).
- When writing software which does optimization, it may be desirable to allow the user to hold certain parameters fixed.
Example: Maximum Likelihood for a Normal model

negloglik <- function(p, data) {
  mu <- p[1]
  sigma <- p[2]
  a <- -0.5 * length(data) * log(2 * pi * sigma^2)
  b <- -0.5 * sum((data - mu)^2) / (sigma^2)
  -(a + b)  # Return negative LL
}

> normals <- rnorm(100)
> out <- optim(c(1, 2), negloglik, data = normals,
               method = "BFGS")
> out[["par"]]
[1] -0.001523056 0.963032909

Note: optim() and nlm() minimize functions by default, so you usually have to compute the negative log-likelihood.
Example (cont’d): Using lexical scoping

Write a “constructor” function:

```r
make.negloglik <- function(data, fixed=c(FALSE, FALSE)) {
  op <- fixed
  function(p) {
    op[!fixed] <- p
    mu <- op[1]
    sigma <- op[2]
    a <- -0.5 * length(data) * log(2*pi*sigma^2)
    b <- -0.5 * sum((data - mu)^2) / (sigma^2)
    -(a + b)
  }
}
```
Example (cont’d): Construct the likelihood function

> set.seed(1); normals <- rnorm(100, 1, 2)
> nLL <- make.negloglik(normals)
> nLL
function(p) {
    op[!fixed] <- p
    mu <- op[1]
    sigma <- op[2]
    a <- -0.5 * length(data) * log(2 * pi * sigma^2)
    b <- -0.5 * sum((data - mu)^2) / (sigma^2)
    -(a + b)
}

<environment: 0x8f78ccc>
> ls(environment(nLL))
[1] "data" "fixed" "op"
Example (cont’d): Estimate both parameters

```r
> optim(c(mu=0,sigma=1), nLL, method="BFGS")[["par"]]
   mu     sigma
 1.217758  1.787531
> c(mean(normals), sd(normals))
[1] 1.217775  1.796399
```
Example (cont’d): Hold parameters fixed

Fixing $\sigma = 2$:

> nLL <- make.negloglik(normals, fixed=c(FALSE, 2))
> optimize(nLL, c(-1, 3))["minimum"]
[1] 1.217775
> mean(normals)
[1] 1.217775
Example (cont’d)

Fixing $\mu = 1$:

```r
> nLL <- make.negloglik(normals, fixed=c(1, FALSE))
> optimize(nLL, c(1e-6, 5))[["minimum"]]
[1] 1.800620
> sd(normals)
[1] 1.796399
```
Example (cont’d): Plot the likelihood function

nLL <- make.negloglik(normals, fixed=c(1, FALSE))
x <- seq(1.7, 1.9, len = 100)
y <- sapply(x, nLL)  ## nLL is not vectorized!
plot(x, y, type = "l",
     xlab= expression(sigma),
     ylab = "Neg. LL",
     main = expression(paste(mu, " = 1")))
Lexical Scoping Summary

- Objective functions can be “built” which contain all of the necessary data and other things.
- No need to carry around long argument lists – useful for interactive/exploratory work.
- Code can be simplified/cleaned up.
Reference

Use R!

Tell your friends!