
Proofs of theorems for the JRSS-B paper “Likelihood ratio tests in linear mixed
models with one variance component”.

Proof of Theorem 1. We partition first the vector of fixed effect parameters β = (βT
1 |βT

2 )T ,
where β2 = β0

2 are the known fixed effect parameters under the null hypothesis. We can also
partition the matrix of fixed effects X = (X1|X2) corresponding to the partition of β. Using the
notations in the paper, the LRT statistic can be written as

LRTn = sup
λ≥0

{
n log

(
Y T P0Y

)− n log(Y T P T
λ V −1

λ PλY )− log |Vλ|
}

+ n log
(

Y T S1Y

Y T P0Y

)
. (1)

The first part of the right hand side of equation (1) corresponds to testing for the zero variance of
random effects while the second part corresponds to testing for the fixed effects. One can easily show
that log |Vλ| =

∑K
s=1 log(1+λξs,n). Also, from Kuo, 1999 and Patterson and Thompson, 1971 there

exists an n×(n−p) matrix W such that W T W = In−p, WW T = P0, W T VλW = diag {(1 + λµs,n)},
and

Y T P T
λ V −1

λ PλY = Y T Wdiag
{
(1 + λµs,n)−1

}
W T Y .

Denote by w = W T Y /σε and note that under the null hypothesis

E[w] = (W T X1β1 + W T X2β
0
2)/σε, Cov[w] = In−p .

We now show that E[w] = 0. Denote by A = W T X and observe that WA = P0X = 0, and that
W T WA = 0. This shows that A = 0, that W T X1 = 0, and that W T X2 = 0. It now follows that
w = (w1, ..., wn−p) is an n− p dimensional random vector with i.i.d. N(0,1) components. Putting
all these together it follows that

LK,n(λ) = −n log

{
σ2

ε

(
K∑

s=1

w2
s

1 + λµs,n
+

n−p∑

s=K+1

w2
s

)}
−

K∑

s=1

log(1 + λξs,n) ,

where we used the fact that at most K eigenvalues µs,n and ξs,n are not zero. In particular

LK,n(0) = −n log

{
σ2

ε

(
n−p∑

s=1

w2
s

)}
,

which is a standard result in regression analysis. Therefore we can write

LK,n(λ)− LK,n(0) = n log {1 + Un(λ)} ,

where Un(λ) = Nn(λ)/Dn(λ) and

Nn(λ) =
K∑

s=1

λµs,n

1 + λµs,n
w2

s , Dn(λ) =
K∑

s=1

w2
s

1 + λµs,n
+

n−p∑

s=K+1

w2
s .

We now focus on the second term in equation (1). Denote by SX1 = X1(XT
1 X1)−1XT

1 and by
SX = X(XT X)−1XT . It is standard to show that

n log
(

Y T S1Y

Y T P0Y

)
= n log

{
(Y −X2β

0
2)

T (In − SX1)(Y −X2β
0
2)

Y T (In − SX)Y

}
.
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Observe that SXX = X, SXX1 = X1, SXX2 = X2, and (In−SX)X2 = 0. Hence Y T (In−SX)Y =
(Y −X2β

0
2)

T (In − SX)(Y −X2β
0
2). Denoting by V = (Y −X2β

0
2)/σε one obtains

n log
(

Y T S1Y

Y T P0Y

)
= n log

{
1 +

V T (SX − SX1)V
V T (In − SX)V

}
.

If S is an n × n idempotent, symmetric matrix of rank t, there exists an n × t matrix A so that
AAT = S and AT A = It. For the projection matrix P0 = In − SX this matrix was denoted by W .
For the projection matrix SX − SX1 of rank q let U be an n× q matrix so that UUT = SX − SX1

and UT U = Iq. Because W T X2 = 0 it follows that w = W T V . Define now u = UT V and note
that under the null

E[u] =
UT X1β1

σε
, Cov[u] = Iq .

Denoting by B = UT X1 it follows that UB = (SX − SX1)X1 = 0. Hence UT UB = 0 showing
that B = 0 and E[u] = 0. Also, note that Cov(u, w) = UT W . If C = UT W then UCW T =
(SX−SX1)P0 = 0. Therefore UT UCW T W = 0 or C = 0. Because the vector (uT ,wT ) has a normal
distribution, it follows that all entries are i.i.d. N(0,1) random variables. Denote u = (u1, ..., uq)T .
We can now write

n log
(

Y T S1Y

Y T P0Y

)
= n log

{
1 +

∑q
s=1 u2

s∑n−p
s=1 w2

s

}
.

Proof of Theorem 2. We continue to use notations from the proof of theorem 1. For
R(x) = log(1+x)−x, limx→0 R(x)/x = 0 and limx→0 R(x)/x2 = −1/2. Using the Taylor expansion
around 0, log(1+x) = x+R(x) and taking into account that

∑n−p
s=K+1 w2

s/n converges almost surely
to 1 one obtains

n log

{
1 +

∑q
s=1 u2

s∑n−p
s=1 w2

s

}
=

q∑

s=1

u2
s + Vn ,

where Vn converges almost surely to 0. Denoting by Wq =
∑q

s=1 u2
s one obtains LRTn = supλ≥0 LRTn(λ)

where

LRTn(λ) = n log {1 + Un(λ)} −
K∑

s=1

log(1 + λξs,n) + Wq + Vn ,

where Un(λ) is independent of Wq, and Vn converges almost surely to 0. Denote now by fn(d) =
n log {1 + Un(n−αd)} −∑K

s=1 log(1 + dn−αξs,n) + Wq and we will show that

sup
d≥0

fn(d) ⇒ sup
d≥0

LRT∞(d) + Wq .

This proof consists of two steps

1 Prove that fn(·) converges weakly to LRT∞(·) + Wq on the space C[0,∞) of continuous
functions with support [0,∞).

2 Prove that a Continuous Mapping Theorem type result holds for the supd≥0 fn(d).
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We show the weak convergence for any C[0,M ]. Denote f(d) = LRT∞(d)+Wq, ηs,n = n−αµs,n,
ζs,n = n−αξs,n. Note that limn→∞ ηs,n = µs and limn→∞ ζs,n = ξs. We first establish the finite
dimensional convergence of fn(d) to f(d) and then we prove that fn(d) is a tight sequence in
C[0,M ].

To show finite dimensional convergence it is sufficient to show that for a fixed d the convergence
is almost sure. Note that

n log
{
1 + Un(n−αd)

}
= nUn(n−αd) + nR(n−αd) ,

where R(·), Un(·), Nn(·) and Dn(·) were defined earlier. It follows immediately that almost surely

lim
n→∞nUn(n−αd) =

K∑

s=1

dµs

1 + dµs
w2

s ,

Because nR{Un(n−αd)} = {nUn(n−αd)} {R(Un(n−αd))/Un(n−αd)}, it follows that nR(Un(n−αd))
converges to zero almost surely (limx→R(x)/x = 0). Note that limn→∞

∑K
s=1 log(1 + dζs,n) =∑K

s=1 log(1 + dξs) for every fixed d. We proved that, for every fixed d, fn(d) converges almost
surely to LRT∞(d) + Wq.

To show that fn(d) form a tight sequence it is sufficient to show that for every ε and η strictly
positive, there exist δ = δ(ε, η), 0 < δ < 1 and n0 = n0(ε, δ) such that for n ≥ n0

1
δ
P

{
sup

t≤u≤t+δ
|fn(u)− fn(t)| ≥ ε

}
≤ η .

Observe first that

|fn(u)− fn(t)| ≤ n log
{

Dn(n−αt)
Dn(n−αu)

}
+

K∑

s=1

log
1 + uζs,n

1 + tζs,n
,

and because log(1 + x) < x for every x > 0 we obtain the following inequalities

log
{

Dn(n−αt)
Dn(n−αu)

}
≤ Dn(n−αt)−Dn(n−αu)

Dn(n−αu)
≤ (s− t)C

∑K
s=1 w2

s∑n−p
s=K+1 w2

s

,

where C > 0 is a constant so that nζs,n/(n − p −K) ≤ C for every s and n. It follows that the
following inequality holds

n log
{

Dn(n−αt)
Dn(n−αu)

}
≤ (u− t)CKFK,n ,

where FK,n is a random variable with an F distribution with (K, n − p −K) degrees of freedom.
Similarly

K∑

s=1

log
(

1 + uζs,n

1 + tζs,n

)
≤ (u− t)CK .

We conclude that

P

{
sup

t≤u≤t+δ
|fn(u)− fn(t)| ≥ ε

}
≤ P

{
FK,n ≥ ε

CKδ
− 1

}
,
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and it is sufficient to find δ, n0 so that for every n ≥ n0 the c.d.f. HK,n of FK,n satisfies

1−HK,n

( ε

CKδ
− 1

)
≤ ηδ . (2)

If HK is the c.d.f. of a χ2 distribution with K degrees of freedom then, for every x, limn→∞HK,n(x) =
HK(Kx). Because (using for example l’Hospital rule and the pdf of a χ2 distribution with K degrees
of freedom)

lim
δ↓0

{
1−HK

( ε

Cδ
−K

)}/{
ηδ

2

}
= 0 ,

one can find δ = δ(ε, η), δ < 1, with ε
Cδ −K > 0 so that 1 −HK

(
ε

Cδ −K
) ≤ ηδ

2 . Because of the
convergence of HK,n to HK , one can find n0 = n0(ε, η) so that for n ≥ n0 the following inequality
holds ∣∣∣HK,n

( ε

Cδ
−K

)
−HK

( ε

Cδ
−K

)∣∣∣ ≤ ηδ

2
,

which finishes the proof of the inequality in equation (2). We conclude that fn(d) converges weakly
to f(d) on C[0,M ] for each M , and therefore on C[0,∞).

We want to show now that supd≥0 fn(d) ⇒ supd≥0 f(d). First we find a random variable TK,n

so that
sup
d≥0

fn(d) = max
d∈[0,TK,n]

fn(d) .

Note first that fn(0) = Wq for every n. Also, using again the inequality log(1 + x) ≤ x for x ≥ 0 it
is easy to prove that

fn(d) ≤ n

∑K
s=1 w2

s∑n−p
s=K+1 w2

s

−K log(1 + dm) + Wq .

where m > 0 is chosen so that ζs,n ≥ m for all s and n. Hence

fn(d) ≤ nK

n− p−K
FK,n −K log(1 + dm) + Wq .

Denote by

TK,n =
1
m

{
exp

(
n

n− p−K
FK,n

)
− 1

}

and observe that for d > TK,n we have fn(d) < Wq which shows that TK,n has the desired property.
Observe now that for every fixed M > 0 and for every t ≥ 0

pr

{
sup
d≥0

fn(d) ≤ t

}
≤ pr

{
max

d∈[0,M ]
fn(d) ≤ t

}
.

Taking lim sup for n →∞ one obtains

lim sup
n→∞

pr

{
sup
d≥0

fn(d) ≤ t

}
≤ lim sup

n→∞
pr

{
max

d∈[0,M ]
fn(d) ≤ t

}
.

Because fn(d) ⇒ f(d) on C[0,M ] and max is a continuous function on C[0,M ] one can apply the
Continuous Mapping Theorem for the right hand side of the inequality and we obtain

lim
n→∞ pr

{
max

d∈[0,M ]
fn(d) ≤ t

}
= pr

{
max

d∈[0,M ]
f(d) ≤ t

}
. (3)
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Using that for any two events A and B, P (A∩B) ≥ P (A)−P (BC) we obtain the following sequence
of relations

pr
{
supd≥0 fn(d) ≤ t

} ≥ pr
{
supd≥0 fn(d) ≤ t, TK,n < M

}
=

= pr
{
maxd∈[0,M ] fn(d) ≤ t, TK,n < M

}
≥ pr

{
maxd∈[0,M ] fn(d) ≤ t

}− pr (TK,n ≥ M)

Taking the lim inf when n →∞ in the first and last expressions we obtain

lim inf
n→∞ pr

{
sup
d≥0

fn(d) ≤ t

}
≥ pr

{
sup

d∈[0,M ]
f(d) ≤ t

}
− pr(TK ≥ M) ,

where we used equation (3) and TK =
{

exp
(∑K

s=1 w2
s/K

)
− 1

}/
m. Consider now a sequence of

integers M →∞. Then limM→∞ pr(TK ≥ M) = 0. Therefore if we prove that

lim
M→∞

pr
{

max
d∈[0,M ]

f(d) ≤ t

}
= pr

{
sup
d≥0

f(d) ≤ t

}
, (4)

then it follows that limn→∞ pr
{
supd≥0 fn(d) ≤ t

}
exists and

lim
n→∞pr

{
sup
d≥0

fn(d) ≤ t

}
= pr

{
sup
d≥0

f(d) ≤ t

}
,

proving that
sup
d≥0

fn(d) ⇒ sup
d≥0

f(d) .

Denote by AM =
{
maxt∈[0,M ] f(d) ≤ t

}
. Then AM ⊃ AM+1 and limM→∞ pr(AM ) = pr

(⋂
M≥1 AM

)
.

But
⋂

M≥1 AM =
{
supt≥0 f(d) ≤ t

}
which ends the proof of equation (4).

Observe now that
LRTn = sup

λ≥0
LRTn(λ) = sup

d≥0
fn(d) + Vn .

Because Vn converges almost surely to 0 it follows that

LRTn ⇒ sup
d≥0

f(d) = sup
d≥0

LRT∞(d) + Wq .

To end the proof one only needs to show that supd≥0 LRT∞(d) and Wq are independent. But, for
any fixed d ≥ 0, LRT∞(d) is independent of Wq. Because LRT∞(d) is continuous in d then

sup
d≥0

LRT∞(d) = sup
d∈Q∩[0,∞)

LRT∞(d) = sup
i≥1

LRT∞(di) ,

where (di)i≥1 is an enumeration of Q∩ [0,∞). Let x, w ≥ 0, AM =
⋂M

i=1 {LRT∞(di) ≤ x}⋂
(Wq <

w). Note that AM ⊃ AM+1 and if A∞ =
⋂∞

M=1 AM then pr(A∞) = limM→∞ pr(AM ). But

A∞ =
{

sup
i≥1

LRT∞(di) ≤ x

} ⋂
(Wq < w) ,
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and pr(AM ) = pr
[⋂M

i=1 {LRT∞(di) ≤ x}
]
pr(Wq ≤ w) due to the independence of Wq and the

vector {LRT∞(d1), . . . ,LRT∞(dM )} for every M . Using a similar procedure it is easy to show that

lim
M→∞

pr

[
M⋂

i=1

{LRT∞(di) ≤ x}
]

= pr
{

sup
i≥1

LRT∞(di) ≤ x

}
.

Therefore we proved that for every x, w ≥ 0

pr

[{
sup
d≥0

LRT∞(d) ≤ x

} ⋂
(Wq < w)

]
= pr

{
sup
d≥0

LRT∞(d) ≤ x

}
pr(Wq < w) ,

showing that supd≥0 LRT∞(d) and Wq are independent.

Proof of Theorem 3. Suppose that λ = λ0 is the true value of the ratio σ2
b/σ2

ε . The restricted
profile log-likelihood function is

2lK,n(λ) = − log |Vλ| − log |XT V −1
λ X| − (n− p) log(Y T P T

λ V −1
λ PλY ) ,

where Pλ = In −X(XT V −1
λ X)−1XT V −1

λ . From Kuo (1999) and Patterson and Thompson (1971)
there exists an n × (n − p) matrix W such that W T W = In−p, WW T = P0, W T VλW =
diag {(1 + λτs,n)}, and

Y T P T
λ V −1

λ PλY = Y T Wdiag
{
(1 + λτs,n)−1

}
W T Y , (5)

where τs,n, s = 1, . . . , n− p are the eigenvalues of W T ZΣZT W . If

w = diag
{

(1 + λ0τs,n)−1/2
}

W T Y/σε

then w is a normal vector with mean zero and covariance matrix In−p. Indeed, if A = W T X then
WA = P0X = 0 and W T WA = A = 0. Because E(W T Y ) = W T Xβ = 0 it follows that E(w) = 0.
Moreover,

Cov(w) = diag
{

(1 + λ0τs,n)−1/2
}(

W T Vλ0W
)
diag

{
(1 + λ0τs,n)−1/2

}
= In−p ,

since W T Vλ0W = diag {(1 + λ0τs,n)}. Because Y is a normal vector, the entries wi of the vector w
are i.i.d. N(0, 1) random variables. Replacing these results back in equation (5) we obtain

Y T P T
λ V −1

λ PλY = σ2
ε w

T diag
{(

1 + λ0τs,n

1 + λτs,n

)}
w .

Note that at most K eigenvalues of W T ZΣZT W are non-zero and these eigenvalues are, in fact,
the eigenvalues of Σ1/2ZT P0ZΣ1/2. Therefore τs,n = µs,n for s = 1, . . . ,K and τs,n = 0 for
s = K + 1, . . . , n− p showing that

Y T P T
λ V −1

λ PλY = σ2
ε

(
K∑

s=1

1 + λ0µs,n

1 + λµs,n
w2

s +
n−p∑

s=K+1

w2
s

)
,
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where ws are i.i.d. N(0, 1) random variables. Using a result from Kuo, 1999 it follows immediately
that

log |Vλ|+ log |XT V −1
λ X| = log(|XT X|) +

K∑

s=1

log(1 + λµs,n) .

The result of the theorem now follows.
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