Proofs of theorems for the JRSS-B paper “Likelihood ratio tests in linear mixed
models with one variance component”.

Proof of Theorem 1. We partition first the vector of fixed effect parameters 8 = (3781)7,
where 3, = Bg are the known fixed effect parameters under the null hypothesis. We can also
partition the matrix of fixed effects X = (X1]|X2) corresponding to the partition of 3. Using the
notations in the paper, the LRT statistic can be written as

YT8Y
LRT, = sup {nlog (YT RY) — nlog(YTPI VI PY) — log V3| } + nlog <T1> o)
A>0 Y ' RY

The first part of the right hand side of equation (1) corresponds to testing for the zero variance of
random effects while the second part corresponds to testing for the fixed effects. One can easily show
that log |[Vy| = 225 Tog(14 A&, ). Also, from Kuo, 1999 and Patterson and Thompson, 1971 there
exists an n x (n—p) matrix W such that WIW = I,,_,, WWT = Py, WIV\W = diag {(1 + Asn)},
and

Y PIV'PY = YT Wdiag {(1+ Msn) '} WY .
Denote by w = WY /o, and note that under the null hypothesis
Ew] = (W'X18, + WI'X,8%) /0., Coviw]=1,_,.

We now show that E[w] = 0. Denote by A = WX and observe that WA = PyX = 0, and that
WTW A = 0. This shows that A = 0, that W7 X; = 0, and that W7 X, = 0. It now follows that
w = (wy, ..., wp—p) is an n — p dimensional random vector with i.i.d. N(0,1) components. Putting
all these together it follows that

K 2 n—p K
LEm(\) = —nlog {af (Z ﬁ + Y w?) } = log(1+Asn)

s=1 s=K+1 s=1

where we used the fact that at most K eigenvalues ps, and £, are not zero. In particular

LEm(0) = —nlog {062 <§w§> } ;
s=1

which is a standard result in regression analysis. Therefore we can write
LE(A) = LE™(0) = nlog {1 + Up(N)}
where U, (\) = N, (\)/Dp (M) and

K )\,u K w2 n—p
NaA) =) 5wl Da(N) =) ——>—+ Y .
s=1 1+ )\,us,n s=1 1+ )\/Ls,n s=K+1

We now focus on the second term in equation (1). Denote by Sy, = X1(X{X;)"!X{ and by
Sx = X(XTX)7'XT. It is standard to show that

Yis,y Y — X080 (I, — Sx, ) (Y — X289
nlOg <YTP(1)Y> —nlog{( QﬁQIZvT((I —S)){())}(f QIBQ)} .




Observe that Sx X = X, Sx X1 = X1, SxXo = Xo, and (I,, — Sx) X3 = 0. Hence YZ (I, — Sx)Y =
(Y — Xo8)T(I, — Sx)(Y — X289). Denoting by V = (Y — X3039) /0. one obtains

nlo <YT51Y> =nlo {1 + V(Sx - SXl)V}
*\¥Try & VI, —Sx)V |

If S is an n x n idempotent, symmetric matrix of rank ¢, there exists an n x ¢ matrix A so that
AAT = 8 and AT A = I,. For the projection matrix Py = I, — Sx this matrix was denoted by W.
For the projection matrix Sy — Sx, of rank ¢ let U be an n x ¢ matrix so that UUT = Sx — Sy,
and UTU = 1,. Because WTX, =0 it follows that w = WTV. Define now u = UTV and note
that under the null

_UTX.8,
=
Denoting by B = UT X it follows that UB = (Sx — Sx,)X1 = 0. Hence UTUB = 0 showing
that B = 0 and E[u] = 0. Also, note that Cov(u,w) = UTW. If C = UTW then UCWT =

(Sx—Sx,)Py = 0. Therefore UTUCWTW = 0 or C = 0. Because the vector (u?,w’) has a normal
distribution, it follows that all entries are i.i.d. N(0,1) random variables. Denote u = (uy, ..., uq)T.

We can now write
YTSlY> 42
nlog [ ——— ) =nlog{ 14+ &=L°5 §
8 (YT PY & Sl w?

Proof of Theorem 2. We continue to use notations from the proof of theorem 1. For
R(z) = log(1+z)—x, lim;_o R(x)/z = 0 and lim,_¢ R(z)/2?> = —1/2. Using the Taylor expansion
around 0, log(1+z) = 2+ R(z) and taking into account that Y "7 ., w?/n converges almost surely

to 1 one obtains
{ : 1“? } Eq: 2
nlogql4+ === 5 = uz + Vi,
E::{Jwg s=1

Elu] Covlu] =1, .

where V;, converges almost surely to 0. Denoting by W, = >-7_; u? one obtains LRT,, = supy> LRT,())
where

K
LRT,(A) = nlog {1 + Un(\)} = > log(1+ Asn) + Wy + Vi,
s=1

where U, () is independent of W, and V;, converges almost surely to 0. Denote now by f,(d) =
nlog {1+ U,(n™%d)} — 2521 log(1+ dn™%¢s ) + W, and we will show that

sup fn(d) = sup LRT o (d) + Wy, .
d>0 d>0

This proof consists of two steps

1 Prove that f,(-) converges weakly to LRT(-) + W, on the space C|0,00) of continuous
functions with support [0, c0).

2 Prove that a Continuous Mapping Theorem type result holds for the supysq fn(d).



We show the weak convergence for any C[0, M]. Denote f(d) = LRToo(d) + Wy, Nsn, = 1~ *fis n,
Csn = N~ %Espn. Note that limy, oo 750 = s and limy, oo (sn = §. We first establish the finite
dimensional convergence of f,(d) to f(d) and then we prove that f,(d) is a tight sequence in
Clo, M].

To show finite dimensional convergence it is sufficient to show that for a fixed d the convergence
is almost sure. Note that

nlog {1+ Up(n~%d)} = nU,(n *d) + nR(n"%d),

where R(+), U, (), Nu(:) and D, (-) were defined earlier. It follows immediately that almost surely

HIL%O nUy,(n~%d) = Z s w?
Because nR{U,(n~%d)} = {nUp(n~%d)} {R(U,(n"%d))/Un(n"d)}, it follows that nR(U,(n~%d))
converges to zero almost surely (lim,_, R(z)/z = 0). Note that lim, . Zle log(1 + dls ) =
Zle log(1 + d¢s) for every fixed d. We proved that, for every fixed d, f,(d) converges almost
surely to LRT o (d) + Wj.

To show that f,(d) form a tight sequence it is sufficient to show that for every e and 7 strictly
positive, there exist 0 = d(e,n), 0 < § < 1 and ng = ng(e,d) such that for n > ng

§P{ sup fn(U)fn(t)IZG}Sn-
t<u<t+o

Observe first that

[ falu) — f <>y<n10g{g } Zl L

T+ tCon

and because log(1 + x) < z for every & > 0 we obtain the following inequalities

—« — _ -« K 2
og {Dn(nat)} < Daln™) = Daln™w) (g T 0
Dn (Tl U) Dn(n u) ZS:K—i—l Wy

where C' > 0 is a constant so that n¢s,/(n —p — K) < C for every s and n. It follows that the
following inequality holds

Dy, (n™%t)
ZnNt N (g —
nlog { Dn(nau)} <(u—t)CKFkg,,

where F,, is a random variable with an F distribution with (K,n — p — K') degrees of freedom.

Similarly
us 1+ ug
Zlog (Sn> <(u—1t)CK.
2B\ Tt

We conclude that

€
P n - nt 2 SP F nzi_l )
L;‘;%Jf (w) = fu(0)] } {Frn> 5= -1}

3



and it is sufficient to find d, ng so that for every n > ng the c.d.f. Hg,, of Fi , satisfies

1— Hin (ﬁ—ogn&. 2)

If Hy is the c.d.f. of a x? distribution with K degrees of freedom then, for every z, lim,, o, H Kn(x) =
Hy (Kx). Because (using for example 'Hospital rule and the pdf of a x? distribution with K degrees

of freedom)
i {11 (5 - K)}/ {5 =0,

one can find 0 = d(e,n), § < 1, with &5 — K > 0 so that 1 — Hg (& —K) < %5 . Because of the
convergence of Hy , to Hg, one can find ng = ng(e,n) so that for n > ng the following inequality

holds
o (5 =) = e (G5 =) =5

which finishes the proof of the inequality in equation (2). We conclude that f,(d) converges weakly
to f(d) on C[0, M] for each M, and therefore on C[0, c0).

We want to show now that supysq fn(d) = supysq f(d). First we find a random variable Tk,
so that

sup fn(d) = ma n(d) .
dz%f (d) de[o,Tﬁ,n]f (d)

Note first that f,,(0) = W, for every n. Also, using again the inequality log(1+z) < x for > 0 it
is easy to prove that
K
23:1 U]?,

n—p 2
25: K+1 Ws
where m > 0 is chosen so that (s, > m for all s and n. Hence

nk
—F
n—p—K K,

1 n
TK,n = % {GXP (n—p—KFK’n> - 1}

and observe that for d > T, we have f,,(d) < W, which shows that Tk ,, has the desired property.
Observe now that for every fixed M > 0 and for every ¢ > 0

fald) <n — Klog(1+dm)+W,.

fa(d) < n — Klog(1+dm) +W,.

Denote by

pr{supfn(d) < t} < pr{ max fn(d) < t} :

d>0 del0,M]

Taking lim sup for n — oo one obtains

limsup pr {sup fald) < t} < lim sup pr{ max fn(d) < t} .
d>0

n—00 n—00 deo,M]

Because f,,(d) = f(d) on C[0, M] and max is a continuous function on C[0, M] one can apply the
Continuous Mapping Theorem for the right hand side of the inequality and we obtain

Nn—00 de[0,M] de[0,M]

lim pr{ max_ fo(d) gt} :pr{ max_f(d) gt} . (3)
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Using that for any two events A and B, P(ANB) > P(A)— P(B®) we obtain the following sequence
of relations

pr {supg>g fn(d) <t} pr{supgsg fu(d) <t,Tgn < M} =
pr {maxge(o 1) fu(d) < t, T < M}

pr {maxge(o nr] fn(d) <t} —pr(Tgn > M)

VIV

Taking the liminf when n — oo in the first and last expressions we obtain

liminf pr < sup fo(d) <ty >prs sup f(d) <tp —pr(Tx > M),
n—00 d>0 defo,M]

where we used equation (3) and Tk = {exp (Zﬁil w2/ K ) — 1} / m. Consider now a sequence of

integers M — oo. Then limy; .o pr(Tx > M) = 0. Therefore if we prove that

lim pr{ max f(d) < t} = pr{supf(d) < t} , (4)

M o0 defo,M] d>0

then it follows that limy oo pr {supyso fn(d) < ¢} exists and

n—00 d>0 d>0

lim pr{supfn(d) < t} = pr{supf(d) < t} ,

proving that

sup fn(d) = sup f(d) .
d>0 d>0
Denote by Ay = {maxte[o’M] fld) < t}. Then Ap; D Apr+q and limps o0 pr(Ans) = pr (ﬂle AM>.

But (V51 Av = {sup;sg f(d) < ¢} which ends the proof of equation (4).
Observe now that

LRT,, = supLRT,(A) = sup fn(d) + Vi, .
A>0 d>0

Because V,, converges almost surely to 0 it follows that

LRT,, = sup f(d) = sup LRT(d) + W, .
d>0 d>0

To end the proof one only needs to show that sup;~ LRT«(d) and W, are independent. But, for
any fixed d > 0, LRT(d) is independent of W,. Because LRT(d) is continuous in d then

supLRT«(d) = sup LRTs(d) =supLRT(d;),
>0 deQn[0,00) i>1

where (d;);>1 is an enumeration of Q N[0, 00). Let z, w > 0, Ay = ﬂf\il {LRT o (d;) < z} (W, <
w). Note that Ay D Apry1 and if Ase = (371 Anr then pr(As) = limp—oo pr(Aas). But

Ao = {sup LRT oo (d;) < x} W, < w),

i>1



and pr(Ay) = pr [ﬂf\il {LRT«(d;) < x}} pr(W, < w) due to the independence of W, and the
vector {LRTw(d1),...,LRTo(dar)} for every M. Using a similar procedure it is easy to show that

M
A/}iinoo pr [ﬂ {LRT(d;) < x}] = pr {supLRToo(di) < JJ} .

i=1 izl

Therefore we proved that for every z, w > 0

pr [{sup LRT(d) < x} ﬂ(Wq < w)] = pr {Sup LRT(d) < az} pr(W, < w),

d>0 d>0
showing that sup,>o LRTo(d) and W, are independent.
Proof of Theorem 3. Suppose that A = ) is the true value of the ratio o7 /o2. The restricted
profile log-likelihood function is
2057(\) = —log [Vi| = log | X"V, ' X | = (n— p) log (Y P{ V' PY),

where Py = I,, - X(XTV, ' X)7' X7V ', From Kuo (1999) and Patterson and Thompson (1971)
there exists an n x (n — p) matrix W such that WIW = Iy, wwT = By, WI'v,Ww =
diag {(1 + A7s )}, and

YIPIVIPY = YT Wdiag {(1 + A7) '} WY, (5)
where 7, ,, s = 1,...,n — p are the eigenvalues of WTzszTw. 1f

w = diag {(1 + )\07'3,”)_1/2} I/VTY/U6

then w is a normal vector with mean zero and covariance matrix I,,_,. Indeed, if A = WTX then
WA=PRX=0and WIWA=A=0. Because E(WTY) = WT X3 =0 it follows that E(w) = 0.
Moreover,

Cov(w) = diag {(1 + Aors,n)—m} (WTVy, W) diag {(1 + Aors,n)—l/Q} S

since WTV,\UW = diag {(1 + Ao7s,n)}. Because Y is a normal vector, the entries w; of the vector w
are i.i.d. N(0,1) random variables. Replacing these results back in equation (5) we obtain

_ 14+ Mo,
T pT'y/—1 T :
Y PV, P\Y = o w d1ag{<1+)\7_::>}w

Note that at most K eigenvalues of W1 ZXZTW are non-zero and these eigenvalues are, in fact,
the eigenvalues of 21/2ZTPOZX31/2. Therefore 75, = psn for s = 1,..., K and 75, = 0 for
s=K+1,...,n— pshowing that

1+ A
YTPIV'PY = o? Z T Aoten 2y Z
1+)\Msn

s=1 s=K+1



where wy are i.i.d. N(0, 1) random variables. Using a result from Kuo, 1999 it follows immediately

that
K

log [Va| + log | X TV, ' X| = log(| X X|) + Zlog(l + Misn) -

s=1

The result of the theorem now follows.



