3D Slicer

John Muschelli and Vadim Zipunnikov

Department of Biostatistics

JOHNS HOPKINS BLOOMBERG SCHOOL OF PUBLIC HEALTH

November 18, 2011
What is Slicer

- http://www.slicer.org; 3.6.x
- Mac, Linux, Windows
- 3D slicer gallery: http://www.slicer.org/publications/gallery
- SlicerWelcome is useful at the beginning
Step 1: Loading data

- **Brain atlas atlas.img/hdr (DICOM)**
- **91 labeled regions**

1. medial front-orbital gyrus right	69. lingual gyrus left
2. middle frontal gyrus right	70. superior frontal gyrus left
3. lateral ventricle left	72. nucleus accumbens left
4. insula right	73. occipital lobe WM left
5. precentral gyrus right	74. postcentral gyrus left
6. lateral front-orbital gyrus right	75. inferior frontal gyrus right
7. cingulate region right	80. precentral gyrus left
8. lateral ventricle right	83. temporal lobe WM left
9. medial frontal gyrus left	85. medial front-orbital gyrus left
10. superior frontal gyrus right	86. perirhinal cortex right
11. globus pallidus right	88. superior parietal lobule right
12. globus pallidus left	90. lateral front-orbital gyrus left
13. putamen left	92. perirhinal cortex left
14. inferior frontal gyrus left	94. inferior temporal gyrus left
15. putamen right	95. temporal pole left
16. frontal lobe WM right	96. entorhinal cortex left
17. angular gyrus right	97. inferior occipital gyrus right
18. subthalamic nucleus right	98. superior occipital gyrus left
19. nucleus accumbens right	99. lateral occipitotemporal gyrus right
20. uncus right	100. entorhinal cortex right
21. cingulate region left	101. hippocampal formation left
22. fornix left	102. thalamus left
23. frontal lobe WM left	104. parietal lobe WM right
24. precuneus right	105. insula left
25. subthalamic nucleus left	106. postcentral gyrus right
26. PCCICPL*	107. lingual gyrus right
27. PCCICPR*	108. medial frontal gyrus right
28. hippocampal formation right	109. amygdala left
29. inferior occipital gyrus left	110. medial occipitotemporal gyrus left
30. superior occipital gyrus right	111. anterior limb of internal capsule right
31. supramarginal gyrus left	112. middle temporal gyrus right
32. anterior limb of internal capsule left	113. occipital pole right
33. occipital lobe WM right	114. corpus callosum
34. occipital pole left	115. amygdala right
35. middle occipital gyrus left	116. inferior temporal gyrus right
36. middle temporal gyrus right	117. superior temporal gyrus right
37. supramarginal gyrus right	118. middle occipital gyrus left
38. superior temporal gyrus left	119. angular gyrus left
39. inferior temporal gyrus right	120. lateral occipitotemporal gyrus right
40. superior parietal lobule left	121. thalamus right
41. caudate nucleus right	122. background
42. caudate nucleus left	123. occipital pole left
43. caudate nucleus left	124. fornix right
44. amygdala right	125. subarachnoid cerebro-spinal fluid
Step 1: Loading data

- **File** ⇒ **Add Data** ⇒ choose atlas.hdr (check Centered if applicable) ⇒ Click Apply.
 note: .img files always go with .hdr, at this step .hdr should be chosen.

- **Result:** the data is loaded and you can see it in the three windows (directional)
Step 1: Loading data
Step 1: Loading data
Step 1: Loading data
Step 2: Creating Volume

- **Volumes** module ⇒ choose volume name: atlas ⇒ Apply
- *Result*: the volume created
Step 2: Creating Volume
Step 3: Creating Models

- **Editor** module \Rightarrow choose **Master Volume** (depends on Slicer version)
- in **Edit Selected Label Map** window choose Level number and color
- click **Threshold** \Rightarrow choose range (on the right you can see what areas are within this range) \Rightarrow click **Apply**
- click **MakeModel** \Rightarrow choose **Name** \Rightarrow check **Smooth Model** (if applicable)
- **Result:** The model is built with the pre-chosen color.
Step 3: Creating Models

- The first model is corpus callosum labeled 133 (Threshold: 133:133), color: blue
- The second model is frontal lobe WM right labeled 17 (Threshold: 17:17), color: green
- The third model is frontal lobe WM left labeled 30 (Threshold: 30:30), color: red
- The last model is the whole brain (Threshold: 1:255), color: grey
Step 3: Creating Models
Step 4: Playing with the Models

- **Models** module shows the created models
- you can change visibility, opacity, set new color (in a much more convenient way), play with other things
- The brain opacity can be set to see the other regions
Step 4: Playing with the Models
Step 4: Playing with the Models
Step 4: Playing with the Models
Step 5: Saving the Scene

- **Save** ⇒ Select scene (.mrml) and the volumes (.vtk) included into the scene
- Once the scene is save you can load it later
Step 5: Saving the Scene
What is Slicer

- Awesome, duh.
Getting Data in

- Bring in data
 - DICOM/Analyze/NIFTI : File → Add Volume
 - NIFTI : File → Add Data
 - You can bring in Analyze with Add Data if selecting .hdr file
- Generally need a brain image (structural / functional / template) - needs to be in same space as labels
- This makes up a scene (pretty much a project)
Labels

- Label map is surprisingly a map of labels.
- We’ll be looking at categorical labels (thresholded or different structures).
- We need to construct a “model”, which essentially is a 3D construction of the data.
- We go to Editor Module (upper left of panel, around 10 o’clock)
Labels: Structures

- Go to Editor Module (upper left of panel, around 10 o’clock)
- Select the label map image in the data
- A pop-up dialog will ask you what label map (let’s just try generic colors - which are not that good, but default)
- Click structures (if not expanded)
- **Add Structures** and pick a color
- Go to **Threshold** button (Picture)
- Provide a range: if categorical, just make range 1 to 1 if label is coded as 1, for example
Labels: Make some models

- Once you’re done adding all your structures, then let’s build the model!
- **Merge all**
- **Merge and Build:** there should be an image now in the 3D viewer.
Zombie it up: give me brains!

- **Modules** (where Editor is) → **Surface models** → **Grayscale Model Maker**
- Select New Model, brain image (not the label), defaults, and then run (at the bottom).
- Mmm Brains
- It’s so dark!?!#$#
Tweak me

- **Modules** (where Editor is) → **Models**
- Grayscale Model (Scroll down)
- Change opacity/diffusion
- Try some presets, they are the shades spheres (come on, try it).
- Bottom left corner - click the axes for different views
- Click the eye to take off / put on axes and such
- Click two check boxes to see things spin!
Feeling Saucy? Record movie

- gtk-recordMyDesktop for Linux
- Jing for Mac
- Windows? - google
More applications: BOO

- Slicer can read in 4D data, but I haven’t explored.
- bioImageSuite - if trying to record a 4D movie, this does it
- Originally for Cardiac 4D movies - so pretty good.
- If you find something better, tell me!
Other visualization tools:

- **VisIt** https://wci.llnl.gov/codes/visit/; open source, scalable to petascale visual data analysis.
- **VTK** - Visualization ToolKit: 3D Slicer, VisIt, ParaView.

Visualized is a sectional view of the rupturing of a steel container that is filled with a plastic bonded explosive and heated by a fire. copyright: VACET presentation
Other visualization tools:

- **VisIt** https://wci.llnl.gov/codes/visit/

![VisIt Image](image-url)
Other visualization tools:

- VisIt https://wci.llnl.gov/codes/visit/

Copyright: VisIt manual
Other visualization tools:

- **ParaView** www.paraview.org; open source

Copyright: http://wiki.multiscaleflows.mecheng.strath.ac.uk