Causal Inference from Epidemiologic Data

Chapter 3. Treatment assignment with known and varying probabilities.

- 1 Assumption of assignment: $q(z^*)$ are known or can be estimated, but $q(z^*)$ are not necessary to equal across units, where $pr(\underline{Z} = z^* | \underline{Y}(0), \underline{Y}(1)) = q(z^*)$.
- 2 Fisher's mode of inference, revisited.
 - (1) Procedure.
 - (a) Assign treatments.
 - (b) Assume null hypothesis, $H_0 : Y_i(1) = Y_i(0)$; and fill in the missing potential outcomes.
 - (c) Choose a statistic, e.g., $\overline{Y}_0 \overline{Y}_1$ with observed value, $(\overline{y}_0 \overline{y}_1)^{obs}$.
 - (d) List all possible assignment. The probability of assignment z^* , $pr(\underline{Z} = z^*)$ is $q(z^*)$.
 - (e) Get a p-value: $\sum q(z*)$ over all assignments z^* that are equally or more extreme than the observed one.

Note 1. The p-value defined in (e) is a function of assignment Z and observed outcomes Y(Z), thus can be written as $\alpha(Y(Z), Z)$. It is a valid p-value in the sense that

$$\operatorname{pr}(\alpha(Y(Z), Z) \le 5\% \mid \text{if null is true}) = 5\%.$$

Note 2. If the null is rejected, the p-value $\alpha(Y(Z), Z)$ is not reasonable to decide what treatment is better and can lead to systematically wrong conclusions.

- 3 Neyman's mode of inference revisited.
 - (1) Procedure.
 - (a) Select an estimand of interest, e.g., $Q = \overline{Y}_0 \overline{Y}_1$.
 - (b) Get an unbiased estimate of Q.

Note. $(\overline{y}_0 - \overline{y}_1)^{obs}$ is biased for $\overline{Y}_0 - \overline{Y}_1$, because here the assignment probabilities are not equal across units as in Fisher's mode.

(c) What is an unbiased estimator of Q? Horvitz-Thompson estimator.

Denote $e_i = pr(Z_i|Y_i(0), Y_i(1))$. A Horvitz-Thompson estimator \hat{Q}^{H-T} of Q is:

$$\frac{1}{2n}\sum_{i=1}^{2n}\frac{Y_i(1)Z_i}{e_i} - \frac{1}{2n}\sum_{i=1}^{2n}\frac{Y_i(0)(1-Z_i)}{1-e_i}$$

Note 1. H-T estimator is unbiased for causal effect Q.

Note 2. H-T estimator is generally associated with large variance.

Note 3. One can use covariates to increase precision of H-T estimator.