
Causal Inference from Epidemiologic Data

Chapter 4. Ignorable assignment and propensity score.

1 Studies we address with this template.

We now expand interest to large population. We assume that variables used to decide

assignment are measured, but we do not necessarily know the function of assignment.

Note. Appropriate for treatments that units adhere to recommendations, i.e., no non-

compliance.

2 Role of models for potential outcomes.

cc. Context.

Patients: coronary artery disease.

TreatmentZ: bypass (Z = 1) versus medical (Z = 0) therapy.

OutcomeYi(1), Yi(0): months survived after the treatment.

CovariatesX.

(1) Likelihood mode of inference: definition and elements (see suppl. notes).

(2) Small number of covariates.

(a) Suppose we have a single covariateX with k levels, e.g.,X is a risk index and

thatX makes assignment ignorable, i.e.,

pr(Zi = 1 | Xi, Yi(0), Yi(1)) = pr(Zi = 1 | Xi).

How to estimateQ = E(Yi(1)− Yi(0)).

Fig. 1

We have

E(Y (1)) =
∑

k

E(Y obs | xi = k, Z = 1)pr(Xi = k)

Denotenk as the number of people in cellXi = k; ŷk,z as the sample average of

Y obs among people in the cellXi = k andZi = z.
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EstimateE(Yi(1)) by a consistent estimator
∑

k ŷk,1
nk

n
. Then an estimator forQ

is

Q̂adj =
∑

k

(ŷk,1 − ŷk,0)
nk

n
(formula1)

(direct adjustment by subclassification)

Note. Formula 1 isnot generally applicable for anon-linear contrast of the

potential outcomes.

(b) SupposeX is still scalar and still make the assignment ignorable, butX is con-

tinuous.

Fig. 2

Subclassification: splitX into k classes. Then for classk, definenk, ŷk,z as

before. An estimator forQ is,

Q̂adj,k =
∑

k

(yk,1 − yk,0)
nk

n

Note. Q̂adj,k is generally biased forQ.

(Cochran 1968)

Rk = 1− E(Q̂adj,k)−Q

E(Q̂adj,1)−Q

Note. Rk ≈ 90% for k ≥ 5 for a large class of underlying models.

3 Propensity score.

(1) Definition and main properties of propensity scores (Rosenbaum and Rubin, 1983).

(a) Definition. e(x) = pr(Zi = 1 | Xi = x).

(b) Main properties.

Property 1. The propensity scoree(x) (calculated onX) balances the distribu-

tion of all X between the treatment groups, i.e.,

pr(Zi = 1 | Xi, e(Xi)) = pr(Zi = 1 | e(Xi)). (1)

Property 2. If Z is strongly ignorable givenX, thenZ is strongly ignorable

givene(x), i.e.,

(Yi(1), Yi(0))
∐

Zi | Xi =⇒ (Yi(1), Yi(0))
∐

Zi | e(Xi) (2)
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Note 1.The propensity score does balance theobservedcovariates, butdoes not

generally balanceunobservedcovariates.

Note 2.The propensity scoree(x) needs to be estimated.

Note 3.Model one(x) is a tradeoff versus model on pr(Y (z) | X).

Case study.Rosenbaum and Rubin (1984).

(2) Fitting and diagnostics.

(a) Fit a logistic regression:

logitpr(Zi = 1 | Xi) = β′Xi

by stepwise selection to get a preliminaryeo(Xi) = exp(β̂Xi)/(1 + exp(β̂Xi)).

(b) Check the model in (a) to see whether

Xi

∐
Zi | eo(Xi) (ex.1)

Note 1. If (ex.1) holds,eo(Xi) is not necessary the propensity score, it is a

“balancing score”. (Rosenbaum and Rubin, 1983).

Note 2.We will create 5 classes oneo(Xi), eo,∗
i = 1, ..., 5.

• For every continuous covariateX, do an ANOVA ofX onZ × eo,∗. If (ex.1)

holds, we should expect no main effects ofZ or interaction ofZ with eo,∗.

• For main effect ofF , F1,df .

• For interactionZ × eo,∗, F4,df .

(c) If a covariate is seriously unbalanced, either include it in the propensity score

model or include some of its higher order terms or split the score into more

classes.

(d) Before using the propensity score for outcome evaluation, check overlap between

treatment groups. If necessary, discard those non-overlapped observations.

Fig. 3.

(3) Using the propensity score to estimate causal effect.

(a) Effect for all,E(Y (0)− Y (1)). Estimate using subclassification.

Within subclass ofek, (k = 1, ..., 5),
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• Obtainnk,1, nk,0 – the number of units in classK respectively under different

treatments.

• EstimateE(Y (z))(z = 1, 0) by ȳadj
z =

∑5
k=1 ȳk,z

nk,1+nk,0

n
;

Note 1. If some survival statuses are censored randomly within classesk of the

propensity score and treatmentZ, then one can estimateE(Yi(1) | ei = k) by a

Kaplan-Meier estimator.

Note 2.A practical variance for̄yadj
z is

∑5
k=1 var(ȳk,z)(

nk,1+nk,0

n
)2.

(b) Effect for the “treated” units,E(Yi(0)− Yi(1) | Zi = 1) .

Fig. 4

We have,

E(Yi(1) | Zi = 1) = E(Y obs
i | Zi = 1);

E(Yi(0) | Zi = 1) = E(E(Yi(0) | Zi = 1, ei) | Zi = 1). (ex.2)

Assuming ignorability onXi, we have ignorability one(Xi), so RHS of (ex.2)

becomesE(E(Yi(0) | Zi = 0, ei) | Zi = 1). Therefore,

E(Yi(0) | Zi = 1) =
∑

k

E(Y obs
i | Zi = 0, ei = k)pr(ei = k | Zi = 1).

(c) Estimating effects of treated units using matching on this propensity score.

• For every treated uniti, getei and find a control unitc(i) with ec(i) closely

matchingei.

• Then estimateE(Yi(1) − Yi(0) | Zi = 1) with averageyobs
i − yobs

c(i) over the

treated units.

Note. Consider two versions of the above estimate,

• One using the true (unknown) propensity scoreei;

• One using the estimated propensity scoree(β̂, Xi) based on a model

logitpr(Zi = 1 | Xi, β) = β′Xi.

In general settings, estimates from the latter one are more precise than that from

the former one (Rubin and Thomas, 1992,1996).
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(d) Interaction of treatment with covariates.

(i)-(iii) See appendix.

(iv) Comparison of propensity score to other methods.

Case study.Lalonde (1986), Deheja and Wahba (1999).

– Interest lies inE(Yi(1)− Yi(0) | Z = 1).

– Two approaches: (1) models for the potential outcomeswithout using

propensity score; (2) models for the potential outcomeswith using propen-

sity score.

Note 1.Must set estimand as the effect for the treated.

Note 2. Approaches that combine propensity score with some regressions

are generally better.

Appendix

Estimating treatment-covariate interaction.

We assume(Yi(0), Yi(1))
∐

Zi | Fi, Bi, and want to estimate

pr(Y (1) = 1 | Fi = 1)− pr(Y (0) = 1 | Fi = 1).

One right way of estimating:

(a) Model

pr(Y (z) = 1 | Fi = f, Bi = b) = f(z, f, b).

We can estimate this model by regressionY obs
i onFi, Bi, Zi. We have,

pr(Yi(z) = 1 | Fi = 1)

=
∑

b

pr(Yi(z) = 1 | Fi = 1, Bi = b)pr(Bi = b | Fi = 1)

=
∑

b

f(z, 1, b)pr(Bi = b | Fi = 1)

Note. We can use (ex.3) to estimate pr(Yi(z) = 1 | Fi = 1), but sensitive to model

specification.
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(b) Using the propensity score.

If e(B, F ) is the propensity score givenB,F , thene(B, 1) is the propensity score given

B, F = 1.

We can,

(1) estimatee(B,F );

(2) stratify onF = 1;

(3) do subclassification one(B, 1), i.e., for units withF = 1;

(4) the formula for subclassification will estimate pr(Yi(z) = 1 | Fi = 1).

For another right way, see problem set 1.

6


