Causal I nference

Chapter 4. Ignorable assignment and propensity score.

1 Studies we address with this template.

We now expand interest to large population. We assume that variables used to decide

assignment are measured, but we do not necessarily know the function of assignment.
Note. Appropriate when can access the humanly made assigment mechanism but do not
yet have analogous understanding to Nature’s laws governing the outcome models.
2 Role of models for potential outcomes.
cc. Context.
Patients: coronary artery disease.
Treatment Z: bypass (Z = 1) versus medical (Z = 0) therapy.
Outcome Y;(1), ¥;(0): months survived after the treatment.

Covariates X.

(1) Likelihood mode of inference: definition and elements (see suppl. notes).
(2) Small number of covariates.

(a) Suppose we have a single covariate X with & levels, e.g., X is a risk index and

that X makes assignment ignorable, i.e.,
pr(Z; = 1] X;,Y5(0),Y;(1)) = pr(Z; = 1| X3).

How to estimate @ = E(Y;(1) — Y;(0)).

Fig. 1
We have

E(Y(1))=) EY™ |z;=k Z=1)pr(X; =k)

Denote ny, as the number of people in cell X; = k; i, . as the sample average of

Y% among people in the cell X; = kand Z; = 2.
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Estimate £(Y;(1)) by a consistent estimator ) -, 7,1 %%. Then an estimator for ¢
is
Aadj o N
Q™ = Z(yk,l — Uk,0)

k

— formulal

I )
(direct adjustment by subclassification)

Note. Formula 1 is not generally applicable for a non-linear contrast of the

potential outcomes.

(b) Suppose X is still scalar and still make the assignment ignorable, but X is con-

tinuous.

Fig. 2
Subclassification: split X into k£ classes. Then for class k, define ny, gy, as

before. An estimator for @ is,

~ . _ _ nk
Q 0k = Z(yk,l ~ Yr0)

k

n

Note. Q%+ is generally biased for Q.

(Cochran 1968) X
RF=1-— M
B(Q1) - Q

Note. R* ~ 90% for k > 5 for a large class of underlying models.

3 Propensity score.

(1) Definition and main properties of propensity scores (Rosenbaum and Rubin, 1983).
(a) Definition. e(z) =pr(Z; =1| X; = z).
(b) Main properties.
Property 1. The propensity score e(z) (calculated on X') balances the distribu-

tion of all X between the treatment groups, i.e.,
pr(Zi =11 X;,e(X;)) = pr(Zi =1 | e(Xy)). 1)

Property 2. If Z is strongly ignorable given X, then Z is strongly ignorable



given e(x), i.e.,

Y1), v;0) [[ 2 | Xi = (vi(1),Y:(0)) [ [ Z | e(X3) (2)

Note 1. The propensity score does balance the observed covariates, but does not
generally balance unobserved covariates.
Note 2. The propensity score e(x) needs to be estimated.

Note 3. Model on e(z) is a tradeoff versus model on pr(Y (z) | X).

Case study. Rosenbaum and Rubin (1984).
(2) Fitting and diagnostics.

(@) Fita logistic regression:

logitpr(Z; =1 | X;) = 8'X;

N N

by stepwise selection to get a preliminary e®(X;) = exp(5X;)/(1 + exp(5X;)).
(b) Check the model in (a) to see whether

X [[% | e(X) (ex.1)

Note 1. If (ex.1) holds, e°(X;) is not necessary the propensity score, it is a
“balancing score”. (Rosenbaum and Rubin, 1983).

Note 2. We will create 5 classes on e?(X;), e;” = 1, ..., 5.

e For every continuous covariate X, do an ANOVA of X on Z x e®*. If (ex.1)

holds, we should expect no main effects of Z or interaction of Z with e®*.
e For main effect of I, F 4.
e Forinteraction Z x e”*, F 4.
(c) If a covariate is seriously unbalanced, either include it in the propensity score

model or include some of its higher order terms or split the score into more
classes.

(d) Before using the propensity score for outcome evaluation, check overlap between



treatment groups. If necessary, discard those non-overlapped observations.
Fig. 3.
(3) Using the propensity score to estimate causal effect.
(a) Effect forall, E(Y(0) — Y (1)). Estimate using subclassification.
Within subclass of ey, (k =1, ..., 5),

e Obtain ny 1, nyo — the number of units in class K respectively under different

treatments.

o Estimate E(Y (2))(z = 1,0) by 24 = 3" _| g, "otk
Note 1. If some survival statuses are censored randomly within classes & of the
propensity score and treatment Z, then one can estimate F(Y;(1) | e; = k) by a
Kaplan-Meier estimator.
Note 2. A practical variance for 724 is 30 _, var (g, ,) (202

(b) Effect for the “treated” units, £(Y;(0) — Y;(1) | Zi =1) .

Fig. 4

We have,
EYi(1)| Zi=1)=E(Y" | Z;=1);

E(Y;(0)| Zi=1)=EEY(0) | Zi=1,e) | Zi=1).  (ex.2)

Assuming ignorability on X;, we have ignorability on e(X;), so RHS of (ex.2)
becomes E(E(Y;(0) | Z; = 0,¢;) | Z; = 1). Therefore,

E(Y;(0) | Zi=1)=) E(Y"|Z =0,¢;=k)pr(e; =k | Z; = 1).
k

(c) Estimating effects of treated units using matching on this propensity score.
e For every treated unit 4, get e; and find a control unit c(s) with e; closely
matching e;.
e Then estimate E(Y;(1) — Y;(0) | Z; = 1) with average y** — yg} over the

treated units.

Note. Consider two versions of the above estimate,
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e One using the true (unknown) propensity score e;;

e One using the estimated propensity score e(,@, X;) based on a model
logitpr(Z; =1 | X;,8) = 8'X;.

In general settings, estimates from the latter one are more precise than that from
the former one (Rubin and Thomas, 1992,1996).
(d) Interaction of treatment with covariates.
(i)-(iii) See appendix.
(iv) Comparison of propensity score to other methods.
Case study. Lalonde (1986), Deheja and Wahba (1999).
— Interest lies in E(Y;(1) — Y;(0) | Z =1).
— Two approaches: (1) models for the potential outcomes without using
propensity score; (2) models for the potential outcomes with using propen-
sity score.

Note 1. Must set estimand as the effect for the treated.
Note 2. Approaches that combine propensity score with some regressions

are generally better.

Appendix

Estimating treatment-covariate interaction.
We assume (Y;(0), Y;(1)) [ ] Z: | Fi, B;, and want to estimate

pr(Y (1) =1| Fy = 1) = pr(¥(0) = 1| F; = 1).

One right way of estimating:

(@ Model
priY(z)=1| F; = f,B; =b) = f(z, f,b).



We can estimate this model by regression Yio”s on F;, B;, Z;. We have,

pr(Yi(:) = 1| Fi = 1)
= Zpr()f;(z) =1|F=1B,=bpr(Bi=0b| F;=1)

= Zf(zalab)pr(Bi:blﬂz 1)
b

Note. We can use (ex.3) to estimate pr(Y;(z) = 1 | F; = 1), but sensitive to model
specification.
(b) Using the propensity score.

If e(B, F) is the propensity score given B, F', then e(B, 1) is the propensity score given
B, F=1.

We can,

(1) estimate e(B, F);

(2) stratifyon F =1;

(3) do subclassification on e(B, 1), i.e., for units with F' = 1;

(4) the formula for subclassification will estimate pr(Y;(z) =1 | F; = 1).

For another right way, see problem set 1.



