
Causal Inference

Tuesdays, Thursdays: 15:00-16:20

Instructor: Constantine E. Frangakis Teaching Assistant: Ming An
Department of Biostatistics, Hygiene, E3642
cfrangak@jhsph.edu man@jhsph.edu

Course directory for summaries of lectures and problem sets:

http://biosun01.biostat.jhsph.edu/˜cfrangak/biostat_causal

Evaluation: four problem sets and a report.
The instructor acknowledges sharing of valuable ideas and material with Donald Rubin and
Guido Imbens.

SYLLABUS

The course covers the topics outlined below. The articles listed comprise relevant reference
material. Starred articles are included in a course packet.

1. Introduction and Framework.

1 Introduction.

2 Framework of potential outcomes and assignment mechanism.

*Neyman (1923, pp. 465-468), *Rubin (1990),

*Rubin (1974, pp. 688-695), *Holland (1986), *Cox (1992).

3 Historical review.

4 Notes and outline of the course.

2. The completely randomized assignment.

1 Fisher’s mode of inference on focusing on the null hypothesis.

Fisher (1925), Fisher (1947), Cox *(1958).

2 Neyman’s mode of inference; covariates, efficiency considerations.

*Neyman (1923, p. 468-472)
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3. Treatment assignment with known and varying probabilities

1 Assumption of assignment; studies that have this form.

2 Fisher’s mode of inference, limitations.

3 Neyman’s mode of inference, limitations.

Horwitz and Thompson (1952).

4. Ignorable treatment assignment and propensity scores.

1 Studies we can address with this template; assumption of ignorability.

2 Role of models for the outcome.

(1) Likelihood mode of inference; estimation under additivity of effects,
nonadditivity.

(2) Small number of important covariates, matching, subclassification, weighting,
modeling; limitations with large number of covariates.

*Rubin (1978), *Rubin (1977), Cochran (1968), *Rubin (1984)

3 Role of propensity score.

(1) Definition, main properties.

Case study for:

(2) fitting and diagnostics for the propensity score.

(3) using the propensity score.
*Rosenbaum and Rubin (1983a), *Rosenbaum and Rubin (1984), *Rubin (1997)

(4) comparison of propensity score with other methods: a case study
*Lalonde (1986), *Dehejia and Wahba (1999)

4 Sensitivity analysis and other issues

Cornfield (1959), *Rosenbaum and Rubin (1983b), *Manski et al (1992), Rosenbaum (1999),

Scharfstein, Rotnitzky, and Robins (1999)

5 Propensity scores for multiple groups *Imbens (2000), Huang et al. (2004)

6 Bayesian inference (*Rubin, 1978)
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5. Studies with treatments at mutliple times: case of sequentially ignorable assignment.

1 Introduction: what studies we consider.

2 Problems with standard methods.

3 Estimating causal effects with full modelling.

*Robins (1987), Pearl (1995), Robins, Greenland and Hu (1999).

4 Estimating causal effects by limited modelling:
marginal structural models and estimation.

*Robins, Hernan, and Brumback (2000).

6. Studies with nonignorable noncompliance and instrumental variables

1 Introduction: studies with treatment-noncompliance.

2 Assumptions of instrumental variables with potential outcomes.

3 Estimating causal effects of interest.

*Sommer and Zeger (1991), *Card (1993), McClellan et al. (1994), Robins and Greenland

(1994),

*Angrist, Imbens and Rubin (1996), *Imbens and Rubin (1997), Balke and Pearl (1997)

Hirano et al. (2000), Frangakis, Rubin, and Zhou (2002).

7. Studies with multiple partially controlled factors

1 Partially controlled studies.

(1) What causal effects are of interest.

(2) Standard definitions.

(3) The framework of principal stratification.
*Frangakis and Rubin (2002)

2 Studies with noncompliance to treatment and incomplete outcomes.

(1) Invalidity of intention-to-treat analysis even for the intention-to-treat effect.

(2) Estimation of causal effects.
Case study: evaluating school choice on student performance

*Frangakis and Rubin (1999), Baker (2000), *Barnard et al. (2003).
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Case study: evaluating needle exchange programs
*Frangakis et al. (2004)

Case study: evaluating vaccine trials
*Gilbert et al. (2003).

Case study: estimating missing data related to death using interventional designs
Rubin (2000), *Zhang and Rubin (2003), *Frangakis, Rubin, An, and MacKenzie (2007).
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