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The precarious state of the educational system in the inner cities of the United States, as well as its potential causes and solutions, have been
popular topics of debate in recent years. Part of the difficulty in resolving this debate is the lack of solid empirical evidence regarding the
true impact of educational initiatives. The efficacy of so-called “school choice” programs has been a particularly contentious issue. A current
multimillion dollar program, the School Choice Scholarship Foundation Program in New York, randomized the distribution of vouchers in
an attempt to shed some light on this issue. This is an important time for school choice, because on June 27, 2002 the U.S. Supreme Court
upheld the constitutionality of a voucher program in Cleveland that provides scholarships both to secular and religious private schools.
Although this study benefits immensely from a randomized design, it suffers from complications common to such research with human
subjects: noncompliance with assigned “treatments” and missing data. Recent work has revealed threats to valid estimates of experimental
effects that exist in the presence of noncompliance and missing data, even when the goal is to estimate simple intention-to-treat effects. Our
goal was to create a better solution when faced with both noncompliance and missing data. This article presents a model that accommodates
these complications that is based on the general framework of “principal stratification” and thus relies on more plausible assumptions than
standard methodology. Our analyses revealed positive effects on math scores for children who applied to the program from certain types of
schools—those with average test scores below the citywide median. Among these children, the effects are stronger for children who applied
in the first grade and for African-American children.
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1. INTRODUCTION

There appears to be a crisis in America’s public schools.
“More than half of 4th and 8th graders fail to reach the most
minimal standard on national tests in reading, math, and sci-
ence, meaning that they probably have difficulty doing grade-
level work” (Education Week 1998). The problem is worse
in high poverty urban areas. For instance, although only 43%
of urban fourth-graders achieved a basic level of skill on a
National Assessment of Educational Progress (NAEP) reading
test, a meager 23% of those in high-poverty urban schools met
this standard.

One of the most complicated and contentious of educational
reforms currently being proposed is school choice. Debates
aboutthe equity and potential efficacy of school choice have in-
creased in intensity over the past few years. Authors making a
case for school choice include Cobb (1992), Brandl (1998), and
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Coulson (1999). A collection of essays that report mainly pos-
itive school choice effects has been published by Peterson and
Hassel (1998). Recent critiques of school choice include those
by the Carnegie Foundation for the Advancement of Teaching
(1992), Cookson (1994), Fuller and Elmore (1996), and Levin
(1998).

In this article we evaluate a randomized experiment con-
ducted in New York City made possible by the privately-funded
School Choice Scholarships Foundation (SCSF). The SCSF
program provided the first opportunity to examine the ques-
tion of the potential for improved school performance (as well
as parental satisfaction and involvement, school mobility, and
racial integration) in private schools versus public schools us-
ing a carefully designed and monitored randomized field exper-
iment. Earlier studies were observationalin nature and thus sub-
ject to selection bias (i.e., nonignorable treatment assignment).
Studies finding positive educational benefits from attending pri-
vate schools include those of Coleman, Hoffer, and Kilgore
(1982), Chubb and Moe (1990), and Derek (1997). Critiques
of these studies include those of Goldberger and Cain (1982)
and Wilms (1985). On June 27, 2002, the U.S. Supreme Court
upheld the constitutionality of a voucher program in Cleveland
that provides scholarships both to secular and religious private
schools.

As occurs in most research involving human subjects, how-
ever, our study, although carefully implemented, suffered from
complicationsdue to missing backgroundand outcome data and
also to noncompliance with the randomly assigned treatment.
We focus on describing and addressing these complications in
our study using a Bayesian approach with the framework of
principal stratification (Frangakis and Rubin 2002).

We describe the study in Section 2 and summarize its data
complications in Section 3. In Section 4 we place the study in
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the context of broken randomized experiments, a phrase appar-
ently first coined by Barnard, Du, Hill, and Rubin (1998). We
discuss the framework that we use in Section 5. We present our
model’s structural assumptions in Section 6, and its parametric
assumptionsin Section 7. We give the main results of the analy-
sis in Section 8 (with some supplementary results in the Appen-
dix). We discuss model building and checking in Section 9, and
conclude the article in Section 10.

2. THE SCHOOL CHOICE SCHOLARSHIPS
FOUNDATION PROGRAM

In February 1997 the SCSF announced that it would provide
1,300 scholarships to private school to “eligible” low-income
families. Eligibility required that the children, at the time of
application, be living in New York City, entering grades 1-5,
currently attending a public school, and from families with in-
comes low enough to qualify for free school lunch. That spring,
SCSF received applications from more than 20,000 students.
To participate in the lottery that would award the scholarships,
a family had to attend a session during which (1) their eligi-
bility was confirmed, (2) a questionnaire of background char-
acteristics was administered to the parents/guardians, and (3) a
pretest was administered to the eligible children. The final lot-
tery, held in May 1997, was administered by Mathematica Pol-
icy Research (MPR), and the SCSF offered winning families
help in finding placements in private schools.

Details of the design have been described by Hill, Rubin, and
Thomas (2000). The final sample sizes of children are displayed
in Table 1. PMPD refers to the randomizeddesign developedfor
this study (propensity matched pairs design). This design relies
on propensity score matching (Rosenbaum and Rubin 1983),
which was used to choose a control group for the families in
the first application period, where there were more applicants
that did not win the scholarship than could be followed. The
“single” and “multi” classifications describe families that have
one child and more than one child participating in the program.
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Table 1. Sample Sizes in the SCSF Program

Family Randomized block

size Treatment PMPD 1 2 3 4  Subtotal Total

Single  Scholarship 353 72 65 82 104 323 676
Control 353 72 65 82 104 323 676

Multi Scholarship 147 44 27 31 75 177 324
Control 147 27 23 33 54 137 284
Total 1,000 960 1,960

For period 1 and single-child families, Table 2 (taken from
Barnard, Frangakis, Hill, and Rubin 2002, table 1.6) compares
the balance achieved on background variables with the PMPD
and two other possible designs: a simple random sample (RS)
and a stratified random sample (STRS) of the same size, from
the pool of all potential matching subjects at period 1. For the
STRS, the strata are the “applicant’s school” (low/high), which
indicates whether the applicant child originates from a school
that had average test scores below (low) or above (high) the
citywide median in the year of application. Measures of com-
parison in Table 2 are Z statistics between the randomized
arms. Overall, the PMPD produces better balance in 15 of the
21 variables compared with the RS design. The PMPD’s bal-
ance was better in 11 variables and worse in 9 variables (1 tie)
compared with the STRS, although the gains are generally
larger in the former case than in the latter case. The table also
demonstrates balance for the application periods 2-5, which
were part of a standard randomized block design in which the
blocks were each of the four periods, cross-classified by family
size and by applicant’s school.

More generally, the entire experiment is a randomized de-
sign where the assignment probabilities are a function of the
following design variables: period of application, applicant’s
school, family size (single child versus multichild), and the es-
timated propensity scores from the PMPD. (For additional in-
formation on the design, see Hill et al. 2000.) Next, we focus
on the study’s main data complications.

Table 2. Design Comparisons in Balance of Background Variables: Single-Child Families. The Numbers Are
Z Statistics From Comparing Observed Values of Variables Between Assignments

Application period 1 Periods 2-5
Simple Stratified Randomized
Variable random sample random sample PMPD block
Applicant’s school (low/high) —.98 0 11 .21
Grade level —1.63 .03 —.03 -.39
Pretest read score —.38 .65 .48 —1.05
Pretest math score —.51 1.17 .20 —-1.37
African-American 1.80 1.68 1.59 1.74
Mother’s education .16 14 .09 1.67
In special education .31 1.66 -.17 .22
In gifted program 42 —-1.16 -.13 .75
English main language —1.06 —.02 —1.03 —.44
AFDC —.28 49 .83 —-1.57
Food stamps —1.08 -.27 .94 —1.31
Mother works —1.26 -.30 —-1.18 40
Educational expectations .50 1.79 .57 19
Childrenin household —1.01 —-1.75 41 —-1.02
Child born in U.S. .49 73 —1.40 —.69
Length of residence 42 71 .66 —.78
Father’s work missing 1.09 .70 0 .16
Catholic religion —1.84 -.19 —-.74 —.80
Male .88 1.22 .76 .53
Income —.38 —.62 .74 —1.21
Age as of 4/97 —-1.57 18 —.47 -.87
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3. DATA COMPLICATIONS

The data that we use include the design variables, the back-
ground survey collected at the verification sessions, pretest data,
and posttest data collected the following spring. The test scores
used as outcomes in our analyses are grade-normed national
percentile rankings of reading and math scores from the Iowa
Test of Basic Skills (ITBS). The ITBS was used because itis not
the test administered in the New York City public school sys-
tem, which reduces the possibility of teachers in schools with
participating children “teaching to the test.”

Attempts to reduce missingness of data included requiring at-
tendance at the initial verification sessions and providing finan-
cial incentives to attend the follow-up testing sessions. Despite
these attempts, missingness of background variables did occur
before randomization. In principle, such missingness is also a
covariate and so does not directly create imbalance of subjects
between randomized arms, although it does create loss in effi-
ciency when, as in this study, background covariates are used
in the analysis. For example, for single-child families, depend-
ing on application period and background strata, 34%—-51% of
the children’s pretest scores were missing at the time of design
planning. Since then, MPR has processed and provided an ad-
ditional 7% and 14% of the reading and mathematics pretest
scores. These scores were not as balanced between arms as
when choosing the design (see Table 2), althoughthe difference
was not statistically significant at conventionallevels. Hence we
used all available pretest scores in the final analysis that is con-
ditional on these scores.

Outcomes were also incomplete. Among the observed out-
comes in single-child families, the average (standard deviation)
was 23.5 (22.5) percentile rankings for mathematics and 28.1
(23.9) percentile rankings for reading, and unadjusted com-
parisons between randomized arms do not point to a notable
difference. However, in contrast to missingness of background
variables, missingness of outcomes that occurs after random-
ization is not guaranteed to be balanced between the random-
ized arms. For example, depending on application period and
background strata, 18%—27% of the children did not provide
posttest scores, and during design periods 2—5, the response
is higher among scholarship winners (80%) than among the
other children (73%). Analyses that would be limited to com-
plete cases for these variables and the variablesused to calculate
the propensity score would discard more than half of the units.
Moreover, standard adjustments for outcome missingness ig-
nore its potential interaction with the other complications and
generally make implicit and unrealistic assumptions.

Another complication was noncompliance; attendance at a
private school was not perfectly correlated with winning a
scholarship. For example, for single-child families, and depend-
ing on application period and background strata, 20%—27% of
children who won scholarships did not use them (scholarships
were in the amount of $1,400, which generally did not fully
cover tuition at a private school), and 6%—10% of children that
did not win scholarships were sent to private schools neverthe-
less.

Two additional complications limit our analysis sample.
First, no pretest scores were obtained for applicants in kinder-
garten, because these children most likely had never been ex-
posed to a standardized test, hence considerable time would
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have been spent instructing them on how to take a test, and
there was concern that separating such young children from
their guardians in this new environment might lead to behav-
ioral issues. Hence we focus our analyses on the children who
applied in first grade or above. Second, we do not yet have
complete compliance data for the multichild families. Conse-
quently, all analyses reported in this article are further limited
to results for the 1,050 single-child families who were in grades
14 at the time of the spring 1997 application process.

4. THE STUDY AS A BROKEN
RANDOMIZED EXPERIMENT

The foregoing deviations from the study’s protocol clarify
that our experiment does not really randomize attendance, but
rather randomizes the “encouragement,” using financial sup-
port, to attend a private school rather than a public school.
Moreover, as in most encouragement studies, interest here fo-
cuses not only on the effect of encouragementitself (which will
depend on what percentage of people encouraged would actu-
ally participate if the voucher program were to be more broadly
implemented), but also on the effect of the treatment being
encouraged—here, attending private versus public schools. If
there were perfect compliance, so that all those encouraged to
attend private school actually did so and all those not so encour-
aged stayed in public school, then the effect being estimated
typically would be attributed to private versus public school at-
tendance, rather than simply to the encouragement.

We focus on defining and estimating two estimands: the
intention-to-treat (ITT) effect, the effect of the randomized en-
couragement on all subjects; and the complier average causal
effect (CACE), the effect of the randomized encouragement on
all subjects who would comply with their treatment assignment
no matter which assignment they would be given (here, the chil-
dren who would have attended private school if they had won
a scholarship and would not have attended had they not won
a scholarship). These quantities are defined more formally in
Section 8.

In recent years there has been substantial progress in the
analysis of encouragement designs, based on building bridges
between statistical and econometric approaches to causal in-
ference. In particular, the widely accepted approach in statis-
tics to formulating causal questions is in terms of “potential
outcomes.” Although this approach has roots dating back to
Neyman and Fisher in the context of perfect randomized exper-
iments (Neyman 1923; Rubin 1990), it is generally referred to
as Rubin’s causal model (Holland 1986) for work extendingthe
framework to observational studies (Rubin 1974, 1977) and in-
cluding modes of inference other than randomization-based—
in particular, Bayesian (Rubin 1978a, 1990). In economics, the
technique of instrumental variables, due to Tinbergen (1930)
and Haavelmo (1943), has been a main tool of causal inference
in the type of nonrandomizedstudies prevalentin that field. An-
grist, Imbens, and Rubin (1996) showed how the approaches
can be viewed as completely compatible, thereby clarifying and
strengthening each approach. The result was an interpretation
of the instrumental variables technology as a way to approach a
randomized experiment that suffers from noncompliance, such
as arandomized encouragementdesign.
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In encouragement designs with compliance as the only par-
tially uncontrolled factor, and where there are full outcome
data, Imbens and Rubin (1997) extended the Bayesian approach
to causal inference of Rubin (1978a) to handle simple random-
ized experiments with noncompliance,and Hirano, Imbens, Ru-
bin, and Zhou (2000) further extended the approach to handle
fully observed covariates.

In encouragement designs with more than one partially un-
controlled factor, as with noncompliance and missing outcomes
in our study, defining and estimating treatment effects of inter-
est becomes more challenging. Existing methods (e.g., Robins,
Greenland, and Hu 1999) are designed for studies that dif-
fer from our study in the goals and the degree of control of
the aforementioned factors. (For a detailed comparison of such
frameworks, see Frangakis and Rubin 2002.) Frangakis and Ru-
bin (1999) studied a more flexible framework for encourage-
ment designs with both noncompliance to treatment and miss-
ing outcomes, and showed that for estimation of either the ITT
effect or CACE, one cannot in general obtain valid estimates
using standard ITT analyses (i.e., analyses that ignore data on
compliance behavior) or standard IV analyses (i.e., those that
ignore the interaction between compliance behavior and out-
come missingness). They also provided consistent moment-
based estimators that can estimate both ITT and CACE under
assumptions more plausible than those underlying more stan-
dard methods.

Barnard et al. (1998) extended that template to allow for
missing covariate and multivariate outcome values; they
stopped short, however, of introducing specific methodology
for this framework. We present a solution to a still more chal-
lenging situation in which we have a more complicated form of
noncompliance—some children attend private school without
receiving the monetary encouragement (thus receiving treat-
ment without having been assigned to it). Under assumptions
similar to those of Barnard et al. (1998), we next fully develop
a Bayesian framework that yields valid estimates of quantities
of interest and also properly accounts for our uncertainty about
these quantities.
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5. PRINCIPAL STRATIFICATION IN SCHOOL
CHOICE AND ROLE FOR CAUSAL INFERENCE

To make explicit the assumptions necessary for valid causal
inference in this study, we first introduce “potential outcomes”
(see Rubin 1979; Holland 1986) for all of the posttreatment
variables. Potential outcomes for any given variable represent
the observable manifestations of this variable under each pos-
sible treatment assignment. In particular, if child i in our study
(i=1,...,n) is to be assigned to treatment z (1 for private
school and 0 for public school), we denote the following: D; (z)
for the indicator equal to 1 if the child attends private school
and O if the child attends public school; Y;(z) for the poten-
tial outcomes if the child were to take the tests; and Ry, (z) for
the indicators equal to 1 if the child takes the tests. We denote
by Z; the indicator equal to 1 for the observed assignment to
private school or not, and let D; = D;(Z;), Y; = Yi(Z;), and
Ry, = Ry, (Z;) designate the actual type of school, the outcome
to be recorded by the test, and whether or not the child takes the
test under the observed assignment.

The notation for these and the remaining definitions of rele-
vant variables in this study are summarized in Table 3. In our
study the outcomes are reading and math test scores, so the di-
mension of Y;(z) equals two, although more generally our tem-
plate allows for repeated measurements over time.

Our design variables are application period, low/high indi-
cators for the applicant’s school, grade level, and propensity
score. In addition, correspondingto each set of these individual-
specific random variables is a variable (vector or matrix), with-
out subscript i, that refers to the set of these variables across
all study participants. For example, Z is the vector of treatment
assignments for all study participants with ith element Z;, and
X is the matrix of partially observed background variables with
ith row X;.

The variable C; (see Table 3), the joint vector of treatment
receipt under both treatment assignments, is particularly im-
portant. Specifically, C; defines four strata of people: compli-
ers, who take the treatment if so assigned and take control if so
assigned; never takers, who never take the treatment no matter

Table 3. Notation for the ith Subject

Notation Specifics General description
Z; 1 if i assignedtreatment Binary indicator of treatment assignment
0 if i assigned control
Di(z) 1 if i receives treatment under assignmentz Potential outcome formulation of treatment receipt
0 if i receives control under assignmentz
D; Di(Z;) Binary indicator of treatment receipt
Ci cif D;(0)=0and D;(1) =1 Compliance principal stratum: ¢ = complier; n = never taker;
nif D;(0)=0and Dj(1)=0 a = always taker; d = defier
aif D;j(0) =1 and D;(1) =1
dif Dj(0)=1and D;(1)=0
Yi(z) ( (math) (7). v read ) (2)) Potential outcomes for math and reading
Y; (y; (math) 7).y, reao')( Z/) Math and reading outcomes under observed assignment
Ry™") (7) 1if Y™ (z) would be observed Response indicator for Y ™ (z) under assignment z;
0if Y (math) ;) would not be observed similarly for Ry,(read)(z)
Ryi(z) (Ry ma”‘ )(2). Ry, (read) ) Vector of response indicators for Y;(z)
Ry; (Ry,(math)(Z) Ry,.(read)(z,-)) Vector of response indicators for Y;
Wi (Wit, ..., Wik) Fully observed background and design variables
Xi Xit, ... X,Q) Partially observed background variables
Rx; (Rxj1, ..., Rxiq) Vector of response indicators for X;
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the assignment; always takers, who always take the treatment
no matter the assignment; and defiers, who do the opposite of
the assignment no matter its value. These strata are not fully ob-
served, in contrast to observed strata of actual assignment and
attendance (Z;, D;). For example, children who are observed
to attend private school when winning the lottery are a mixture
of compliers (C; = ¢) and always takers (C; = a). Such explicit
stratification on C; dates back at least to the work of Imbens and
Rubin (1997) on randomized trials with noncompliance, was
generalized and taxonomized by Frangakis and Rubin (2002)
to posttreatment variables in partially controlled studies, and is
termed a “principal stratification” based on the posttreatment
variables.

The principal strata C; have two important properties. First,
they are not affected by the assigned treatment. Second, com-
parisons of potential outcomes under different assignments
within principal strata, called principal effects, are well-defined
causal effects (Frangakis and Rubin 2002). These properties
make principal stratification a powerful framework for evalu-
ation, because it allows us to explicitly define estimands that
better represent the effect of attendance in the presence of non-
compliance, and to explore richer and explicit sets of assump-
tions that allow estimation of these effects under more plausible
than standard conditions. Sections 6 and 7 discuss such a set of
more flexible assumptions and estimands.

6. STRUCTURAL ASSUMPTIONS

First, we state explicitly our structural assumptions about the
data with regard to the causal process, the missing data mech-
anism and the noncompliance structure. These assumptions are
expressed without reference to a particular parametric distribu-
tion and are the ones that make the estimands of interest identi-
fiable, as also discussed in Section 6.4.

6.1 Stable Unit Treatment Value Assumption

A standard assumption made in causal analyses is the stable
unit treatment value assumption (SUTVA), formalized with po-
tential outcomes by Rubin (1978a, 1980, 1990). SUTVA com-
bines the no-interference assumption (Cox 1958) that one unit’s
treatment assignment does not affect another unit’s outcomes
with the assumption that there are “no versions of treatments.”
For the no-interference assumption to hold, whether or not one
family won a scholarship should not affect another family’s out-
comes, such as their choice to attend private school or their chil-
dren’s test scores. We expect our results to be robust to the types
and degree of deviations from no interference that might be an-
ticipated in this study. To satisfy the “no versions of treatments,”
we need to limit the definition of private and public schools to
those participating in the experiment. Generalizability of the re-
sults to other schools must be judged separately.

6.2 Randomization

We assume that scholarships have been randomly assigned.
This implies that

p(Z|Y(1),Y(0), X, W,C,Ry(0),Ry(1), Rx,0)
=p(Z|W*.0)=p(Z|W"),

where W* represents the design variablesin W and 6 is generic
notation for the parameters governing the distribution of all
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the variables. There is no dependence on 8, because there are
no unknown parameters governing the treatment-assignment
mechanism. MPR assigned the scholarships by lottery, and
the randomization probabilities within for applicant’s school
(low/high) and application period are known.

6.3 Noncompliance Process Assumptions: Monotonicity
and Compound Exclusion

We assume monotonicity, that there are no “defiers”—that
is, for all i, D;(1) > D;(0) (Imbens and Angrist 1994). In
the SCSF program, defiers would be families who would not
use a scholarshipif they won one, but would pay to go to private
school if they did not win a scholarship. It seems implausible
that such a group of people exists; therefore, the monotonicity
assumption appears to be reasonable for our study.

By definition, the never takers and always takers will par-
ticipate in the same treatment (control or treatment) regard-
less of which treatment they are randomly assigned. For this
reason, and to facilitate estimation, we assume compound ex-
clusion: The outcomes and missingness of outcomes for never
takers and always takers are not affected by treatment assign-
ment. This compound exclusion restriction (Frangakis and Ru-
bin 1999) generalizes the standard exclusion restriction (An-
grist et al. 1996; Imbens and Rubin 1997) and can be expressed
formally for the distributionsas

p(Y (1), Ry(1) | X°°, Rx, W, C =n)
= p(Y(0), Ry(0) | X°*, Rx, W, C =n), for never takers
and
p(Y(1), Ry(1) | X°*, Rx, W,C =a)
= p(Y(0), Ry(0) | X°® Rx,W,C=a), for always takers.

Compound exclusion seems more plausible for never takers
than for always takers in this study. Never takers stayed in the
public school system whether they won a scholarship or not.
Althougha disappointmentabout winning a scholarship but still
not being able to take advantage of it can exist, it is unlikely to
cause notable differences in subsequent test scores or response
behaviors.

Always takers, on the other hand, might have been in one
private school had they won a scholarship or in another if they
had not, particularly because those who won scholarships had
access to resources to help them find an appropriate private
school and had more money (up to $1,400) to use toward tu-
ition. In addition, even if the child had attended the same pri-
vate school under either treatment assignment, the extra $1,400
in family resources for those who won the scholarship could
have had an effect on student outcomes. However, because in
our application the estimated percentage of always takers is so
small (approximately 9%)—an estimate that is robust, due to
the randomization, to relaxing compound exclusion—there is
reason to believe that this assumption will not have a substan-
tial impact on the results.

Under the compound exclusion restriction, the ITT compar-
ison of all outcomes Y;(0) versus Y; (1) includes the null com-
parison among the subgroups of never takers and always takers.
Moreover, by monotonicity,the compliers (C; = ¢) are the only
group of children who would attend private school if and only if
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offered the scholarship. For this reason, we take the CACE (Im-
bens and Rubin 1997), defined as the comparison of outcomes
Y; (0) versus Y; (1) among the principal stratum of compliers, to
represent the effect of attending public versus private school.

6.4 Latent Ignorability

We assume that potential outcomes are independentof miss-
ingness given observed covariates conditional on the compli-
ance strata, that is,

p(Ry(0), Ry(1) | Rx,Y (1), Y(0), X°™, W, C,0)
= p(Ry(0), Ry(1) | Rx, X°™, W, C,0).

This assumption represents a form of latent ignorability (LI)
(Frangakis and Rubin 1999) in that it conditions on variables
that are (at least partially) unobserved or latent—here compli-
ance principal strata C. We make it here first because it is more
plausible than the assumption of standard ignorability (SI) (Ru-
bin 1978a; Little and Rubin 1987), and second, because making
it leads to different likelihood inferences.

LI is more plausible than SI to the extent that it provides a
closer approximationto the missing-data mechanism. The intu-
ition behind this assumption in our study is that for a subgroup
of people with the same covariate missing-data patterns, Rx;
similar values for covariates observed in that pattern, X°°; and
the same compliance stratum C, a flip of a coin could deter-
mine which of these individuals shows up for a posttest. This is
a more reasonable assumption than SI, because it seems quite
likely that for example, compliers, would exhibit different at-
tendance behavior for posttests than, say, never takers (even
conditional on other background variables). Explorations of
raw data from this study across individuals with known compli-
ance status provide empirical support that C is a strong factor in
outcome missingness, even when other covariates are included
in the model. This fact is also supported by the literature for
noncompliance (see, e.g., The Coronary Drug Project Research
Group 1980).

Regarding improved estimation, when LI (and the preceding
structural assumptions) hold but the likelihood is constructed
assuming SI, the underlying causal effects are identifiable (al-
ternatively, the posterior distribution with increasing sample
size converges to the truth) only if the additional assumption is
made that within subclasses of subjects with similar observed
variables, the partially missing compliance principal stratum C
is not associated with potential outcomes. However, as noted
earlier, this assumption is not plausible.

Theoretically, only the structural assumptions described ear-
lier are needed to identify the underlyingITT and CACE causal
effects (Frangakis and Rubin 1999). Estimation based solely
on those identifiability relations in principle requires very large
sample size and explicit conditioning (i.e., stratification) on the
subclasses defined by the observed part of the covariates, X°P,
and the pattern of missingness of the covariates, Rx, as well
as implicit conditioning (i.e., deconvolutionof mixtures) on the
sometimes missing compliance principal stratum C. This works
in large samples because covariate missingness and compli-
ance principal stratum are also covariates (i.e., defined pretreat-
ment), so samples within subclasses defined by X°®, Rx, and
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C themselves represent randomized experiments. With our ex-
periment’s sample size, however, performing completely sepa-
rate analyses on all of these strata is not necessarily desirable or
feasible. Therefore, we consider more parsimonious modeling
approaches, which have the role of assisting, not creating, infer-
ence in the sense that results should be robust to different para-
metric specifications (Frangakis and Rubin 2001, rejoinder).

7. PARAMETRIC PATTERN MIXTURE MODEL

Generally speaking, constrained estimation of separate analy-
ses within missing-data patterns is the motivation behind pat-
tern mixture modeling. Various authors have taken pattern mix-
ture model approaches to missing data, including Little (1993,
1996), Rubin (1978b), and Glynn, Laird, and Rubin (1993).
Typically, pattern mixture models partition the data with re-
spect to the missingness of the variables. Here we partition the
data with respect to the covariate missing-data patterns Rx, as
well as compliance principal strata C, design variables W, and
the main covariates X °*. This represents a partial pattern mix-
ture approach. One argument in favor of this approach is that
it focuses the model on the quantities of interest in such a way
that parametric specifications for the marginal distributions of
Rx, W, and X°P can be ignored. To capitalize on the structural
assumptions, consider the factorization of the joint distribution
for the potential outcomes and compliance strata conditional on
the covariates and their missing-data patterns,

p(Yi(0). Yi(1), Ryi(0), Ry; (1), Ci | Wi, X, Rx;,0)
= p(Ci | Wi, X9, Rx;,6©)
x p(Ryi(0), Ry;(1) | Wi, X{*, Rx;, C;, 0®)
x p(Y:(0), Yi(1) | Wi, X{™, Rx;, Ci,0Y)),

where the product in the last line follows by latent ignorability
and 6 = (9©,0® 9y’ Note that the response pattern of co-
variates for each individualis itself a covariate. The parametric
specifications for each of these components are described next.

7.1 Compliance Principal Stratum Submodel

The compliance status model contains two conditional probit
models, defined using indicator variables C;(c) and C; (n), for
whether individual i is a complier or a never taker:

Ci(n) = 1if Ci(n)* = g1 (W, X, Rx)) BV +v; <0
and
Cie)=1ifC;(n)* >0
and  C;(c)* = go(Wi, X, Rx;) 8¢ + U; <0,

where V; ~N(0, 1) and U; ~ N(0, 1) independently.

The link functions, go and g;, attempt to strike a balance be-
tween on the one hand including all of the design variables as
well as the variables regarded as most important either in pre-
dicting compliance or in having interactions with the treatment
effect and on the other hand maintaining parsimony. The re-
sults discussed in Section 8 use a compliance componentmodel
whose link function, g1, is linear in, and fits distinct parameters
for, an intercept, applicant’s school (low/high), indicators for
application period, propensity scores for subjects applying in
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the PMPD period and propensity scores for the other periods,
indicators for grade of the student, ethnicity (1 if the child or
guardian identifies herself as African-American, O otherwise),
an indicator for whether or not the pretest scores of reading and
math were available, and the pretest scores (reading and math)
for the subjects with available scores. A propensity score for
the students not in the PMPD period is not necessary from the
design standpoint, and is in fact constant. However, to increase
efficiency, and to reduce bias due to missing outcomes, here we
include an “estimated propensity score value” for these periods,
calculated as the function derived for the propensity score for
students in the PMPD period and evaluated at the covariate val-
ues for the students in the other periods as well. Also, the fore-
going link function go is the same as g1 except that it excludes
the indicators for application period as well as the propensity
scores for applicants who did not apply in the PMPD period
(i.e., those for whom propensity score was not a design vari-
able). This link function, a more parsimonious version of one
we used in earlier models, was more appropriate to fit the rel-
atively small proportion of always takers in this study. Finally,
because the pretests were either jointly observedor jointly miss-
ing, one indicator for missingness of pretest scores is sufficient.

The prior distributions for the compliance submodel are
BED ~N(B™ (o ©DP2D) and BED ~ N, {0 D)
(C, 1))2 and (O.(C,Z))Z
)

independently, where (o are hyperpara-
meters set at 10 and ,Béc’l is a vector of Os with the excep-
tion of the first element, which is set equal to —o-! (1/3) =
{c©D1/n >0 (g1 81,0 + 1312, where g1, = gl(Wi,X?bs,
Rx;) and n is our sample size. These priors reflect our a priori
ignorance about the probability that any individual belongs to
each compliance status by approximately setting each of their
prior probabilities at 1/3.

7.2 Outcome Submodel

We first describe the marginal distribution for the math out-
come Y ™M™ Ty address the pile-up of many scores of 0, we
posit the censored model

0 if ™) <0
Yi(math) @) =1 100 if Yi(math), *(z) > 100
Y™™ % (z)  otherwise,

where

Y-(math), *(Z) | Wi, Xl()bs’ Rx;,C;, g (math)

l

~N(g2(W;, X%, Rx;, Ci, z)/ ™)
exp[g3(XP™, Rx;, Ci, z) ¢ M)

for z =0, 1 and §Math) = (g(math) " (math)y "pere Yi(math)’ *(0)

and Yl.(math)’ *(1) are assumed conditionally independent, an as-

sumption that has no effect on inference for our superpopulation
parameters of interest (Rubin 1978a).

The results reported in Section 8 use an outcome component
model whose outcome mean link function, g, is linear in dis-
tinct parameters for the following:

1. For the students of the PMPD design: an intercept, appli-
cant’s school (low/high), ethnicity,indicators for grade, an
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indicator for whether or not the pretest scores were avail-
able, pretest score values for the subjects with available
scores, and propensity score

2. For the students of the other periods: the variables in

item 1, along with indicators for application period

An indicator for whether or not a person is an always taker

An indicator for whether or not a person is a complier

5. For compliers assigned treatment: an intercept, appli-
cant’s school (low/high), ethnicity, and indicators for the
first three grades (with the variable for the fourth-grade
treatment effect as a function of the already-included vari-
ables)

W

For the variance of the outcome component, the link func-

tion g3 includes indicators that saturate the cross-classification

of whether or not a person applied in the PMPD period and

whether or not the pretest scores were available. This depen-

dence is needed because each pattern conditions on a different

set of covariates; that is, X°P* varies from pattern to pattern.
The prior distributions for the outcome submodel are

ﬁ(math) | é. (math) N(O, F (é— (math))gl) ,

where F(g(math)) — % Z exp(gk(math))’
k

¢ (math) (gl(math), ¢ ,((math)), with one component for each

of the K (in our case, K = 4) subgroups defined by cross-
classifying the PMPD/non-PMPD classification and the mis-
sing-data indicator for pretest scores, and where § is a hyper-
parameter set at 10; and exp(;“k(math)) E invy2(v, o?), where
invxz(v, o2) refers to the distribution of the inverse of a chi-
squared random variable with degrees of freedom v (set at 3)
and scale parameter o2 (set at 400 based on preliminary esti-
mates of variances). The sets of values for these and the hy-
perparameters of the other model components were chosen for
satisfying two criteria: giving posterior standard deviations for
the estimands in the neighborhoodof the respective standard er-
rors of approximate maximum likelihood estimate fits of simi-
lar preliminary likelihood models and giving satisfactory model
checks (Sec. 9.2), and producing quick enough mixing of the
Bayesian analysis algorithm.

We specify the marginal distribution for reading outcome
Y ®¢ad) i the same way as for the math outcome, with separate
mean and variance regression parameters g9 and ¢ ead,
Finally, we allow that, conditionally on W;, X?*, Rx;, C;, the
math and reading outcomes at a given assignment, Yi(math)’ *(2)

and Yl.(read)’ *(z), may be dependent with an unknown correla-

tion, p. We set the prior distribution for p to be uniform in
(—1, 1)independentlyof the remaining parameters in their prior
distributions.

7.3 Outcome Response Submodel

As with the pretests, the outcomes on mathematics and read-
ing were either jointly observed or jointly missing, thus one
indicator Ry;(z) for missingness of outcomes is sufficient for
each assignment z = 0, 1. For the submodel on this indicator,
we also use a probit specification,

Ryi(z)=1
if Ry (2)* = g2(Wi, X, Rx;, Ci, 2)/ B® + E; (2) > 0,
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where Ry;(0) and Ry;(1) are assumed conditionally indepen-
dent (using the same justification as for the potential out-
comes) and where E;(z) ~ N(0, 1). The link function of the
probit model on the outcome response g is the same as the
link function for the mean of the outcome component. The
prior distribution for the outcome response submodel is ® ~
N(0, {o ®)2I), where {0 ®}? is a hyperparameter set at 10.

8. RESULTS

All results herein were obtained from the same Bayesian
analysis. We report results for the ITT and CACE estimands,
for proportions of compliance principal strata, and for outcome
response rates. The reported estimands are not parameters of
the model, but rather are functions of parameters and data.
The results are reported by applicant’s school (low/high) and
grade. Both of these variables represent characteristics of chil-
dren that potentially could be targeted differentially by gov-
ernment policies. Moreover, each was thought to have possible
interaction effects with treatment assignment. Except when oth-
erwise stated, the plain numbers are posterior means, and the
numbers in parentheses are 2.5 and 97.5 percentiles of the pos-
terior distribution.

8.1 Test Score Results
Here we address two questions:

1. What is the impact of being offered a scholarship on stu-
dent outcomes, namely, the ITT estimand?

2. Whatis the impact of attending a private school on student
outcomes, namely, the CACE estimand?

The math and reading posttest score outcomes represent the
national percentile rankings within grade. They have been ad-
justed to correct for the fact that some children were kept be-
hind while others skipped a grade, because students transferring
to private schools are hypothesized to be more likely to have
been kept behind by those schools. The individual-level causal
estimates have also been weighted so that the subgroup causal
estimates correspond to the effects for all eligible children be-
longing to that subgroup who attended a screening session.

8.1.1 Effect of Offering the Scholarship on Mathematics and
Reading. We examine the impact of being offered a scholar-
ship (the ITT effect) on posttest scores. The corresponding es-
timand for individual i is defined as E(Y;(1) — Y;(0) | Wl-p, 0),
where Wip denotes the policy variables grade level and appli-
cant’s school (low/high) for that individual. The simulated pos-
terior distribution of the ITT effect is summarized in Table 4.
To draw from this distribution, we take the following steps:
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Table 4. ITT Effect of Winning the Lottery on Math
and Reading Test Scores 1

Grade at Applicant’s school: Low Applicants school: High
application Reading Math Reading Math

1 23(-13,58 922083 144872 5101103
2 S26,35 131743 —Be249 1.0cs3561
3 T27,40) 83570  —5-6050 2503280
4 301174y 31272 1841760 23(-3378
Overall 1.5(_6,3.6) 3.2(1.0,5.4) A 4652 281872

NOTE: Year Postrandomization Plain numbers are means, and numbers in parentheses are
central 95% intervals of the posterior distribution of the effects on percentile rank.

1. Draw 6 and {C;} from the posterior distribution (see
App. A).

2. Calculate the expected causal effect E(Y; (1) — Y;(0) |
Wip, le’bs, Ci, Rx;, 0) for each subjectbased on the model
in Section 7.2.

3. Average the values of step 2 over the subjects in the sub-
classes of WP with weights reflecting the known sampling
weights of the study population for the target population.

These results indicate posterior distributions with mass pri-
marily (>97.5%) to the right of O for the treatment effect on
math scores overallfor children from low applicantschools, and
also for the subgroup of first graders. Each effect indicates an
average gain of greater than three percentile points for children
who won a scholarship. All of the remaining intervals cover 0.
As a more general pattern, estimates of effects are larger for
mathematics than for reading and larger for children from low-
applicantschools than for children from high-applicantschools.

These results for the ITT estimand using the method of this
article can also be contrasted with the results using a simpler
method reported in Table 5. The method used to obtain these re-
sults is the same as that used in the initial MPR study (Peterson,
Myers, Howell, and Mayer 1999) but limited to the subset of
single-child families and separated out by applicant’s school
(low/high). This method is based on a linear regression of the
posttest scores on the indicator of treatment assignment, ignor-
ing compliance data. In addition, the analysis includes the de-
sign variables and the pretest scores and is limited to individuals
for whom the pretest and posttest scores are known. Separate
analyses are run for math and reading posttest scores, and the
missingness of such scores is adjusted by inverse probability
weighting. Finally, weights are used to make the results for the
study participants generalizable to the population of all eligible
single-child families who were screened. (For more details of
this method, see the appendix of Peterson et al. 1999.)

Table 5. ITT Effect of Winning the Lottery on Test Scores, Estimated Using the Original

MPR Method
Grade at Applicants school: Low Applicant’s school: High
application Reading Math Reading Math
1 —1.0-7.1,52) 2.1(-26,6.7) 4.8(-10.0,19.6) 2.6(—15.5,20.7)
2 —.8(-4.9,32) 2.0(~4.0,8.0) —3.4(-165,9.7) 2.7(10.3,157)
3 3.2(_1.7,8.1) 5.0(—8,10.7) —8.0(—25.4,9.3) 4.0(-17.7,25.6)
4 2.7(_35,88) 3(-7.3,7.9) 27.9(8.0,47.8) 22.7(_1.5,46.8)
Overall B(-2.0,3.2) 2.0(_8,4.8) 1.1(_7.0,0.1) -3(-9.6,10.1)
NOTE: Plain numbers are point estimates, and parentheses are 95% confidence intervals for the mean effects on

percentile rank.
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Table 6. Effect of Private School Attendance on Test Scores

Grade at Applicants school: Low Applicant’s school: High
application Reading Math Reading Math

1 3.4(_2.0,8.7) 7.7(3.0,12.4) 1.9-7.3,10.3) 7.4(2,14.6)

2 7(-3.7,5.0) 1.9-24,62) —.9(-9.4,7.3) 1.5(6.2,9.3)
3 1.0—4.1,6.1) 5.0(—8,10.7) —.8(_9.5,7.7) 4.0(—4.9,12.5)
4 4.2(_1.5,10.1) 4.3(-1.6,10.1) 2.7(_6.3,11.3) 3.5(-4.7,11.9)
Overall 2.2 953 4.7(1.4,79) B(-7.1,7.7) 4.2(_26,109)
NOTE: Plain numbers are means, and parentheses are central 95% intervals of the posterior distribution of the effects

on percentile rank.

The results of the new method (Table 4) are generally more
stable than those of the original method (Table 5), which in
some cases are not even credible. In the most extreme cases, the
original method estimates a 22.7-point gain [95% confidence
interval, (—1.5,46.8)] in mathematics and a 27.9-point gain
[95% confidence interval, (8.0,47.8)] in reading for fourth-
grade children from high-applicantschools. More generally, the
new method’s results display a more plausible pattern in com-
paring effects in high-applicant versus low-applicant schools
and mathematics versus reading.

8.1.2 Effect of Private School Attendance on Mathemat-
ics and Reading. We also examine the effect of offering the
scholarship when focusing only on the compliers (the CACE).
The corresponding estimand for individuali is defined as

E(Yi(1) = Y;(0) | WP, Ci = ¢, 0).

This analysis defines the treatment as private school atten-
dance (Sec. 6.3). The simulated posterior distribution of the
CACE is summarized in Table 6. A draw from this distribu-
tion is obtained using steps 1-3 described in the Section 8.1.1
for the ITT estimand, with the exception that at step 3 the av-
eraging is restricted to the subjects whose current draw of C; is
“complier”

The effects of private school attendance follow a pattern
similar to that of the ITT effects, but the posterior means are
slightly bigger in absolute value than ITT. The intervals have
also grown, reflecting that these effects are for only subgroups
of all children, the “compliers,” in each cell. As a result, the as-
sociated uncertainty for some of these effects (e.g., for fourth-
graders applying from high-applicantschools) is large.

8.2 Compliance Principal Strata
and Missing Outcomes

Table 7 summarizes the posterior distribution of the esti-
mands of the probability of being in stratum C as a function
of an applicant’s school and grade, p(C; =1 | Wip, 0). To draw

from this distribution, we use step 1 described in Section 8.1.1
and then calculate p(C; =1 | Wip, Xl?’bs, Rx;,0) for each sub-
ject based on the model of Section 7.1 and average these values
as in step 3 of Section 8.1.1. The clearest pattern revealed by
Table 7 is that for three out of four grades, children who ap-
plied from low-applicant schools are more likely to be compli-
ers or always takers than are children who applied from high-
applicant schools.

As stated earlier, theoretically under our structural assump-
tions, standard ITT analyses or standard IV analyses that use
ad hoc approaches to missing data are generally not appropri-
ate for estimating the ITT or CACE estimands when the com-
pliance principal strata have differential response (i.e., outcome
missing-data) behaviors. To evaluate this here, we simulated the
posterior distributions of

p(Ri(2)|Ci=1t, W], 0), z=0,1. 1)

To draw from the distributions of the estimands in (1), we used
step 1 from Section 8.1.1 and then, for z =0, 1 for each subject
calculated p(R; () | Wip, Xl‘.’bs, Rx;,C;,0). We then averaged
these values over subjects within subclasses defined by the dif-
ferent combinations of Wip and C;.

For each draw (across individuals)from the distributionin (1)
we calculate the odds ratios (a) between compliers attending
public schools and never takers, (b) between compliers attend-
ing private schools and always takers, and (c) between com-
pliers attending private schools and compliers attending public
schools. The results (omitted) showed that response was in-
creasing in the following order: never takers, compliers attend-
ing public schools, compliers attending private schools, and
always takers. These results confirm that the compliance prin-
cipal stratum is an important factor in response both alone and
in interaction with assignment.

9. MODEL BUILDING AND CHECKING

This model was built through a process of fitting and check-
ing a succession of models. Of note in this model are the follow-
ing features: a censored normal model that accommodates the

Table 7. Proportions of Compliance Principal Strata Across Grade and Applicants School

Grade at Applicants school: Low Applicants school: High
application Never taker Compiler Always taker Never taker Compiler Always taker
1 2454, 67.13.) 8.4(2.4) 25.05.0) 69.3(6.1) 5.7@33)

2 20.52.7) 69.4(3.7) 10125 25351 67.26.2) 7.5.4)

3 24.535 65.9(4.0) 9.6(25) 28.85.) 64.16.7) YA

4 18.433) 72.8(4.) 8.813.0) 27.05) 66.7(6.7) 6.33.6)
NOTE: Plain numbers are means, and parentheses are standard deviations of the posterior distribution of the estimands.
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pile-up of Os in the outcomes, incorporation of heteroscedastic-
ity, and a multivariate model to accommodate both outcomes
simultaneously. It is reassuring from the perspective of model
robustness that the results from the last few models fit, includ-
ing those in the conference proceedings report of Barnard et al.
(2002), are consistent with the results from this final model.

9.1 Convergence Checks

Because posterior distributions were simulated from a
Markov chain Monte Carlo algorithm (App. A), it is impor-
tant to assess its convergence. To do this, we ran three chains
from different starting values. To initiate each chain, we set
any unknown compliance stratum equal to a Bernoulli draw,
with probabilities obtained from moment estimates of the prob-
abilities of being a complier given observed attendance and
randomizationdata (D, Z) alone. Using the initialized compli-
ance strata for each chain, parameters were initialized to values
based on generalized linear model estimates of the model com-
ponents.

Each chain was run for 15,000 iterations. At 5,000 iterations,
and based on the three chains for each model, we calculated
the potential scale-reduction statistic (Gelman and Rubin 1992)
for the 250 estimands (parameters and functions of parameters)
that serve as building blocks for all other estimands. The re-
sults suggested good mixing of the chains (with the maximum
potential scale reduction statistic across parameters 1.04) and
provided no evidence against convergence. Inference is based
on the remaining 30,000 iterations, combining the three chains.

9.2 Model Checks

We evaluate the influence of the model presented in Section 7
with six posterior predictivechecks, three checks for each of the
two outcomes. A posterior predictive check generally involves
(a) choosing a discrepancy measure, that is, a function of ob-
served data and possibly of missing data and the parameter vec-
tor 8; and (b) computing a posterior predictive p value (PPPV),
which is the probability over the posterior predictive distribu-
tion of the missing data and 6 that the discrepancy measure in
a new study drawn with the same 6 as in our study would be
as or more extreme than in our study (Rubin 1984; Meng 1996;
Gelman, Meng, and Stern 1996).

Posterior predictive checks in general, and PPPVs in partic-
ular, demonstrate whether the model can adequately preserve
features of the data reflected in the discrepancy measure, where
the model here includesthe prior distributionas well as the like-
lihood (Meng 1996). As a result, properties of PPPVs are not
exactly the same as properties of classical p values under fre-
quency evaluations conditional on the unknown 6, just as they
are not exactly the same for frequency evaluations over both
levels of uncertainty, that is, the drawing of 6 from the prior dis-
tribution and the drawing of data from the likelihood given 6.
For example, over frequency evaluations of the latter type, a
PPPV is stochastically less variable than but has the same mean
as the uniform distribution and so tends to be more conservative
than a classical p value, although the reverse can be true over
frequency evaluations of the first type (Meng 1996). (For more
details on the interpretation and properties of the PPPVs, see
also Rubin 1984 and Gelman et al. 1996.)
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Table 8. Posterior Predictive Checks: p Values

Signal Noise Signal to Noise
Math .34 .79 .32
Read 40 .88 .39

The posterior predictive discrepancy measures that we
choose here are functions of
Ay = {Y;;P : I(Ry{;f’ = 1)1(Y;;P #£0)I(C;P=0)1(Z;=2)=1}
for the measures that are functions of data Y; *, Ry; ",

ip and Cirep
from a replicated study and

APY =Y, 1(Ryip = DIY;p # OI(C; = ON(Z; =2) = 1)

for the measures that are functions of this study’s data. Here
R yl.r;p is defined so that it equals 1 if Yl.r;p is observed and 0 oth-
erwise and p equals 1 for math outcomes and 2 for reading out-
comes. The discrepancy measures, “rep” and “study”, that we
used for each outcome (p = 1, 2) were (a) the absolute value of
the difference between the mean of A | and the mean of A o
(“signal”), (b) the standard error based on a simple two-sample
comparison for this difference (“noise”), and (c) the ratio of (a)
to (b) (“signal to noise”). Although these measures are not treat-
ment effects, we chose them here to assess whether the model
can preserve broad features of signal, noise, and signal-to-noise
ratio in the continuous part of the compliers’ outcome distribu-
tions, which we think can be very influential in estimating the
treatment effects of Section 8. More preferable measures might
have been the posterior mean and standard deviation for the ac-
tual estimands in Section 8 for each replicated dataset, but this
would have required a prohibitive amount of computer mem-
ory because of the nested structure of that algorithm. In settings
such as these, additional future work on choices of discrepancy
measures is of interest.

PPPVs for the discrepancy measures that we chose were cal-
culated as the percentage of draws in which the replicated dis-
crepancy measures exceeded the value of the study’s discrep-
ancy measure. Extreme values (close to O or 1) of a PPPV would
indicate a failure of the prior distribution and likelihoodto repli-
cate the corresponding measure of location, dispersion, or their
relative magnitude and would indicate an undesirable influence
of the model in estimation of our estimands. Results from these
checks, displayed in Table 8, provide no special evidence for
such influences of the model.

10. DISCUSSION

In this article we have defined the framework for princi-
pal stratification in broken randomized experiments to accom-
modate noncompliance, missing covariate information, missing
outcome data, and multivariate outcomes. We make explicit a
set of structural assumptions that can identify the causal effects
of interest, and we also provide a parametric model that is ap-
propriate for practical implementation of the framework in set-
tings such as ours.

Results from our model in the school choice study do not
indicate strong treatment effects for most of the subgroups ex-
amined. But we do estimate positive effects (on the order of 3
percentile points for ITT and 5 percentile points for the effect of
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attendance) on math scores overall for children who applied to
the program from low-applicant schools, particularly for first
graders. Also, the effects were larger for African-American
children than for the remaining children (App. B).

Posterior distributions for the CACE estimand, which mea-
sures the effect of attendance in private school versus public
school, are generally larger than the corresponding ITT effects
but are also associated with greater uncertainty. Of importance,
because of the missing outcomes, a model like ours is needed
for valid estimation even of the ITT effect.

The results from this randomized study are not subject to se-
lection bias in the way that nonrandomized studies in school
choice have been. Nevertheless, although we use the CACE, a
well-defined causal effect, to represent the effect of attendance
of private versus public schools, it is important to remember
that the CACE is defined on a subset of the study children
(those who would have complied with either assignment) and
that for the other children there is no information on such an
effect of attendance in this study. Therefore, as with any ran-
domized trial based on a subpopulation, external information,
such as background variables, also must be used when gen-
eralizing the CACE from compliers to other target groups of
children. Also, it is possible that a broader implementation of
a voucher program can have a collective effect on the public
schools if a large shift of the children who might use vouch-
ers were to have an impact on the quality of learning for chil-
dren who would stay in public schools (a violation of the no-
interference assumption). Because our study contains a small
fraction of participants relative to all school children, it cannot
provide direct information about any such collective effect, and
additional external judgment would need to be used to address
this issue.

The larger effects that we estimated for children applying
from schools with low versus high past scores are also not,
in principle, subject to the usual regression to the mean bias,
in contrast to a simple before—after comparison. This is be-
cause in our study both types of children are randomized to
be offered the scholarship or not, and both types in both treat-
ment arms are evaluated at the same time after randomization.
Instead, the differential effect for children from schools with
different past scores is evidence supporting the claim that the
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school voucher program has greater potential benefit for chil-
dren in lower-scoring schools.

Our results also reveal differences in compliance and
missing-data pattern across groups. Differences in compliance
indicate that children applying from low-applicant schools are
generally more likely to comply with their treatment assign-
ment; this could provide incentives for policy makers to target
this subgroup of children. However, this group also exhibits
higher levels of always takers, indicating that parents of chil-
dren attending these poorly performancing schools are more
likely to get their child into a private school even in the ab-
sence of scholarship availability. These considerations would of
course have to be balanced with (and indeed might be dwarfed
by) concerns about equity. Missing-data patterns reveal that per-
haps relatively greater effort is needed in future interventions
of this nature to retain study participants who stay in public
schools, particularly the public-school students who actually
won but did not use a scholarship.

The approach presented here also has some limitations. First,
we have presented principal stratification only on a binary con-
trolled factor Z and a binary uncontrolled factor D, and it is
of interest to develop principal stratification for more levels of
such factors. Approaches that extend our framework in that di-
rection, including for time-dependentdata, have been proposed
(e.g., Frangakis et al. 2002b).

Also, the approach of explicitly conditioning on the patterns
of missing covariates that we adopted in the parametric com-
ponent of Section 7 is not as applicable when there are many
patterns of missing covariates. In such cases, it would be more
appropriate to use models related to those of D’ Agostino and
Rubin (2000) and integrate them with principal stratification
for noncompliance. Moreover, it would be also interesting to
investigate results for models fit to these data that allow devia-
tions from the structural assumptions, such as weakened exclu-
sion restrictions (e.g., Hirano et al. 2000; Frangakis, Rubin, and
Zhou 2002a), although to ensure robustness of such models, it
would be important to first investigate and rely on additional
alternative assumptions that would be plausible.

APPENDIX A: COMPUTATIONS

Details are available at http://biosun01.biostat.jhsph.edu/~

cfrangak/papers/sc.

Table B.1. ITT Estimand

Grade at Applicant school: Low Applicant school: High
application Ethnicity Reading Math Reading Math
1 AA 2.8(_15,7.2) 6.7(3.0,10.4) 1.8(_5.2,8.4) 6.3(8,11.9)
Other 1.7(_1.9,5.4) 3.9(5,7.2) 8(—4.5,6.1) 3.5(-1.2,8.2)
2 AA 8(_2.8,4.4) 2410548 —.3(-6.6,6.0) 2.2(_38,8.0)
Other 2(.3.1,34) 5(-2.8,3.7) —.9(-6.1,4.3) 0(-5.2,48)
3 AA 1.123.0,52) 4.6(3,8.9) —1(-6.7,6.4) 4.2(_25,10.6)
Other 3(-3.2,38) 2.0(-2.0,58) —.7(-5.8,4.4) 1.4(_39,65)
4 AA 3.7(-1.2,8.7) 4.4_593) 2.4(_4.7,9.4) 3.8(—2.9,10.5)
Other 241767 1.8(_2.6,6.0) 1.4_43,7.0 114464
Overall AA 2.0(—.9,4.8 4.518,7.2) .8(-5.1,6.5) 4.2(_1.1,0.3)
Other 1.11.4,36) 21(_ 747 T(-46,46) 1.6(-2.9,58)
NOTE: Plain numbers are means, and parentheses are central 95% intervals of the posterior distribution of the effects on

percentilerank.


http://biosun01.biostat.jhsph.edu/%7Ecfrangak/papers/sc
http://biosun01.biostat.jhsph.edu/%7Ecfrangak/papers/sc

310

Journal of the American Statistical Association, June 2003

Table B.2. CACE Estimand

Grade at Applicant school: Low Applicant school: High
application Ethnicity Reading Math Reading Math
1 AA 3.8(-2.0,9.6) 9.0(4.1,14.0) 2.3(-7.3,10.9) 8.3(1.1,15.5)
Other 293188 6.3(8,11.8) 1.3(-8.0,10.2) 5.9(_2.2,13.9)
2 AA 1.1-36,5.7) 3.1(-13,7.5) —4(-9.0,7.9) 2.9(-5.0,10.7)
Other 3(-4.9,5.4) 8(~4.4,5.9) —1.5(_10.5,7.3) 0(-85,85)
3 AA 1.54.1,7.0) 6.3(3,12.2) —.2(—9.1,8.5) 5.6(_3.2,14.1)
Other 5(_5.4,6.4) 3.5(_3.4,10.2) —1.3(-10.5,7.9) 2.7(-7.0,12.0)
4 AA 4.6(_1.6,10.8) 557,116 3.0(—6.0,11.6) 4.8(_3.6,13.1)
Other 3.7(—2.6,10.1) 2.8(_3.8,9.3) 2.3(—7.4,11.7) 2.0(-7.0,11.0)
Overall AA 2.6(_1.2,6.3) 6.0(2.4,9.5) 1.0(_6.9,8.4) 5.5(_1.5,12.2)
Other 1.7(_23,58) 3.3(-1.2,7.7) (81,79 2.7(-5.0,10.3)
NOTE: Plain numbers are means, and parentheses are central 95% intervals of the posterior distribution of the effects on

percentilerank.

APPENDIX B: ETHNIC BREAKDOWN

The model of Section 7 can be used to estimate the effect of the
program on finer strata that may be of interest. For example, to es-
timate effects stratified by ethnicity (AA for African-American), we
obtain the posterior distribution of the causal effect of interest (ITT or
CACE) using the same steps described in Section 8.1.1 or 8.1.2, but
allowing ethnicity to be part of the definition of WP. The results for
this stratification are reported in Table B.1 for the estimands of ITT
and Table B.2 for the estimands of CACE.

The results follow similar patterns to those in Section 8. For each
grade and applicant’s school (low/high) combination, however, the
effects are more positive on average for the subgroup of African-
American children. For both estimands, this leads to 95% intervals
that are entirely above O for math scores for the following subgroups:
African-American first- and third-graders and overall from low-
applicant schools, African-American first-graders from high-applicant
schools, and non-African-American first-graders from low-applicant
schools. All intervals for reading covered the null value. This suggests
that the positive effects reported on math scores in Section 8 for chil-
dren originating from low-applicant schools are primarily attributable
to gains among the African-American children in this subgroup.

[Received October 2002. Revised October 2002.]
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Comment

1. INTRODUCTION

The article by Barnard, Frangakis, Hill, and Rubin (BFHR) is
timely in that the Department of Education is calling for more
randomized studies in educational program evaluation. (See the
discussion of the “No Child Left Behind” initiative, in e.g.,
Slavin 2002.) BFHR can serve as a valuable pedagogical ex-
ample of a successful sophisticated statistical analysis of a ran-
domized study. Our commentary is intended to provide addi-
tional pedagogical value to benefit the planning and analysis of
future studies, drawing on experiences and research within our
research group. [The Prevention Science Methodology Group
(PSMG; www.psmg.hsc.usf.edu), co-PI’s Brown and Muthén,
has collaborated over the last 15 years with support from the
National Institute of Mental Health and the National Institute
on Drug Abuse.]

BFHR provides an exemplary analysis of the data from an
imperfect randomized trial that suffers from several compli-
cations simultaneously: noncompliance, missing data in out-
comes, and missing data in covariates. We are very pleased to
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Los Angeles, CA-90095 (E-mail: bmuthen @ucla.edu). C. Hendricks Brown is
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Florida, Tampa, FL 33620. The research of the first author was supported by
National Institute on Alcohol Abuse and Alcoholism grant KO2 AA 00230.
The research of the second and third authors was supported by National Insti-
tute on Drug Abuse and National Institute of Mental Health grant MH40859.
The authors thank Chen-Pin Wang for research assistance, Joyce Chappell for
graphical assistance, and the members of the Prevention Science Methodology
Group and the Fall ED299A class for helpful comments.

see their applicationof cutting-edge Bayesian methods for deal-
ing with these complexities. In addition, we believe the method-
ological issues and the results of the study have important im-
plications for the design and analysis of randomized trials in
education and for related policy decisions.

BFHR provides results of the New York City school choice
experiment based on 1-year achievement outcomes. With the
planned addition of yearly follow-up data, growth models can
provide an enhanced examination of causal impact. We discuss
how such growth modeling can be incorporated and provide a
caution that applies to BFHR’s use of only one posttest occa-
sion. We also consider the sensitivity of the latent class ignora-
bility assumption in combination with the assumption of com-
pound exclusion.

2. LONGITUDINAL MODELING ISSUES

BFHR focuses on variationin treatment effect across compli-
ance classes. This part of the commentary considers variation
in treatment effect across a different type of class based on the
notion that the private school treatment effect might very well
be quite different for children with different achievement de-
velopment. (Also of interest is potential variation in treatment
effects across schools, with respect to both the public school
the child originated in and the private school the child was
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moved to, but this multilevel aspect of the data is left aside here
for lack of space.) To study such a “treatment-baseline inter-
action” (or “treatment—trajectory interaction”), we will switch
from BFHR’s pretest—posttest analysis framework (essentially
a very advanced ANCOVA-type analysis) to the growth mix-
ture modeling framework of Muthén et al. (2002). An under-
lying rationale for this modeling is that individuals at different
initial status levels, and on different trajectories, may benefit
differently from a given treatment. ANCOVA controls for ini-
tial status, as measured by the observed pretest score. Unlike
the observed pretest score, the latent variable of initial status is
free of time-specific variation and measurement error.

The focus on longitudinal aspects of the New York School
Choice Study (NYSCS) is both substantively and statistically
motivated. First, treatment effects may not have gained full
strength after only a 1-year stay in a private school. The NYSCS
currently has data from three follow-ups, that is, providing
repeated-measures data from four grades. Although BFHR used
percentile scores that do not lend themselves to growth mod-
eling, a conversion to “scale scores” (i.e., IRT-based, equated
scores) should be possible, enabling growth modeling. Unfor-
tunately, educational research traditionally uses scales that are
unsuitable for growth modeling, such as percentile scores, nor-
mal curve equivalents, and grade equivalents (for a comparison
in a growth context, see Seltzer, Frank, and Bryk 1994). Hope-
fully, this tradition can be changed. Second, the use of informa-
tion from more time points than pretest and posttest makes it
possible to identify and estimate models that give a richer de-
scription of the normative developmentin the control group and
how the treatment changes this development.

Consider three types of latent variables for individual i. The
first type, C;, refers to BFHR’s compliance principal strata. The
next two relate to the achievement development as expressed
by a growth mixture model: 7; refers to trajectory class and
n; refers to random effects within trajectory class (within-class
model is a regular mixed-effects model). Unlike the latent class
variable C;, the latent class variable 7; is a fully unobserved
variable as is common in latent variable modeling (see, e.g.,
Muthén 2002a). Consider the likelihood expression for individ-
ual 7, using the [] notation to denote probabilities/densities,

[Ci, T;1 X 1[mi |Cy, T3, X 1 Yimi, Ci, Ti, X
x [Uilni, Ci, Ti, Xil[RilYi, i, Ci, T, X, (1)

where X; denotes covariates, U; denotes a compliance stratum
indicator (with C; perfectly measured by U; in the treatment
group for never-takers and perfectly measured in the control
group for always-takers, other group—class combinations hav-
ing missing data), and R; denotes indicators for missing data
on the repeated-measures outcomes Y; (pretreatment and post-
treatment achievement scores). This type of model can be fitted
into the latent variable modeling framework of the Mplus pro-
gram (Muthén and Muthén 1998-2002; tech. app. 8), which has
implemented an EM-based maximum likelihood estimator. (For
related references, see the Mplus website www.statmodel.com.)
As a special case of (1), conventional random-effects growth
modeling includes n;, but excludes C; and 7; and assumes
missingness at random, so that the last term in (1) is ignored.
Growth mixture modeling (Muthén and Shedden 1999; Muthén
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et al. 2002; Muthén and Muthén 1998-2002) includes n; and
T;. BFHR includes C;, but not T; (or 7;), and includes the last
term in (1), drawing on latent ignorability of Frangakis and Ru-
bin (1999). Muthén and Brown (2001) studied latent ignorabil-
ity related to 7; in the last term of (1). In randomized studies,
it would be of interest to study C; and 7; classes jointly, be-
cause individuals in different trajectory classes may show dif-
ferent compliance and missingness may be determined by these
classes jointly.

If data have been generated by a growth mixture model with
treatment effects varying across trajectory classes, what would
pretest—posttest analysis such as that in BFHR reveal? To judge
the possibility of such treatment—trajectory interaction in the
NYSCS, we considered several recent applications of growth
mixture modeling that have used 7; to represent qualitatively
different types of trajectories for behavior and achievement
scores on children in school settings. Drawing on these real-
data studies, two growth mixture scenarios were investigated.
(A detailed description of these real-data studies and scenar-
ios and their parameter values are given in Mplus Web Note
#5 at www.statmodel.com/mplus/examples/webnote.html.) For
simplicity, no missing data on the outcome or pretest is as-
sumed and C; classes are not present. In a three-class scenario,
the treatment effect is noteworthy only for a 70% middle class,
assuming that the low-class membership (10%) hinders individ-
uals from benefiting from the treatment and assuming that the
high-class membership (20%) does not really need the treat-
ment. The achievement developmentin the three-class scenario
is shown in Figure 1(a), and the corresponding posttest (y2)—
pretest (y1) regressions are shown in Figure 1(b). The lines
denoted ANCOVA show a regular ANCOVA analysis allow-
ing for an interaction between treatment and pretest (different
slopes). In the three-class scenario, the ANCOVA interaction
is not significant at n = 2,000 and the treatment effect in the
middle class is underestimated by 20%, but overestimated in
the other two classes. In a two-class scenario (not shown here),
where the treatment is noteworthy only for individuals in the
low class (50%), ANCOVA detects an interaction that is sig-
nificant at the NYSCS sample size of n = 2,000, but underes-
timates the treatment effect for most children in the low class.
(At the low-class average pretest value of 0, the treatment effect
is underestimated by 32%.)

Although the NYSCS children are selected from low-per-
forming schools (the average NYSCS math and reading per-
centile rankings are around 23-28), there may still be sufficient
heterogeneity among children in their achievement growth to
make a treatment-trajectory interaction plausible. The three-
class scenario is possible, perhaps with more children in the
low class relative to the other two classes. If this is the case, the
ANCOVA analysis shown in Figure 1 suggests a possible rea-
son for BFHR’s finding of low treatment effects. The empirical
studies and the results in Figure 1 suggest that future program
evaluations may benefit from exploring variation in treatment
effects across children characterized by different development.
Using data from at least two posttreatment time points (three
time points total), the class-specific treatment effects generated
in these data can be well recovered by growth mixture model-
ing. (Monte Carlo simulation results are given in Mplus Web
Note #5 at www.statmodel.com/mplus/examples/webnote.html.)
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Figure 1. Growth Mixture Modeling Versus Pretest—Posttest Analysis.

A more flexible analysis is obtained with more posttreatment
time points. An improved design for the determination of the
latent trajectory classes is to use more than one pretreatment
time point so that the trajectory class membership is better de-
termined before the treatment starts.

3. COMPOUND EXCLUSION AND
LATENT IGNORABILITY

Based on the ideas of principal stratification (Frangakis
and Rubin 2002) and latent ignorability (Frangakis and Rubin
1999), BFHR successfully demonstrates that the complexities
of educational studies can be better handled under more explicit
and flexible sets of assumptions. Although we think that their
structural assumptions are reasonable in the NYSCS, we would
like to add some thoughts on the plausibility of two other as-
sumptions, considering more general situations.

Compound exclusion (CE) is one of the key structural as-
sumptions in identifying principal effects under latent ignora-
bility. However, the plausibility of this assumption can be ques-
tioned in practice (Frangakis et al. 2002; Hirano et al. 2000; Jo,
2002, 2002c; Shadish, Cook, and Campbell, 2002; West and
Sagarin, 2000). In the NYSCS, it seems realistic to assume that
winning a lottery has some positive impact on always-takers;
however, it is less clear how winning a lottery will affect never-
takers. One possibility is that winning a lottery has a negative
impact on parents, because they fail to benefit from it. Discour-
aged parents may have a negative influence on a child’s test
scores or response behaviors. This negative effect may become
more evident if noncompliance is due to parents’ low expec-
tation of or lack of interest in their child’s education. Another
possibility is that winning a lottery has a positive impact on
a child’s test scores or response behaviors. For example, par-
ents who are discouraged by being unable to send their child to
private schools even with vouchers may try harder to improve
the quality of existing resources (e.g., in the public school their
child attends) and be more motivated to support their child to

improve his or her academic performance. Given these compet-
ing possibilities, it is not easy to predict whether and how CE is
violated.

Depending on the situation, causal effect estimates can be
quite sensitive to violation of the exclusion restriction in out-
come missingness (Jo 2002b), which is less known than the
impact of violating exclusion restriction in observed outcomes
(Angrist et al. 1996; Jo 2002). The implication of possible vio-
lation of CE and its impact is that the relative benefit of models
assuming latent ignorability (LI) and standard ignorability (ST)
depends on degrees of deviation from CE and SI. Identification
of causal effects under LI relies on the generalized (compound)
exclusion restriction (i.e., both on the outcomes and missing-
ness of outcomes), whereas identification of causal effects un-
der SI relies on the standard exclusion restriction (i.e., only on
the outcomes). Therefore, in some situations, the impact of de-
viation from CE may outweigh the impact of deviation from SI,
resulting in more biased causal effect estimates in models as-
suming LI than in models assuming ST (Jo 2002b). For example,
if SI holds but CE is seriously violated (say, a 20% increase in
the response rate due to treatment assignment for compliers and
a 15% increase for never-takers), causal effect estimates and the
coverage probability assuming LI and CE can drastically de-
viate from the true value and the nominal level. This type of
violation does not affect models assuming SI and the standard
exclusionrestriction. To empirically examine the plausibility of
SI, LI, and CE, it will be useful to do sensitivity analyses of
models imposing different combinations of these assumptions.
As BFHR points out, this investigationcan be conducted by re-
laxing compound exclusion (e.g., Frangakis et al. 2002; Hirano
et al. 2000), or by using alternative structural assumptions (e.g.,
Jo,2002c¢). More research is needed to examine the efficiency of
these alternative models and to explore factors associated with
insensitivity of LI models to violation of compound exclusion.

4. CONCLUSION

Causal inferences of the type BFHR provides are a dramatic
improvement over the existing literature now available on the
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question of whether school choice will produce better achieve-
ment outcomes for children in an urban public school system.
The randomized lottery provides an exceptionally powerful tool
for examining the impact of a program—far more useful than
observationalstudies that have causal change intertwined hope-
lessly with self-selection factors. Statisticians are just now in-
vestigating variations in such principal strata analyses, that is,
those involving latent classes formed as a function of random-
ized trials involving intervention invitations (such as vouch-
ers), encouragement designs, and field trial designs involving
more than one randomization (Brown and Liao 1999). The la-
tent categories in this article, which BFHR labels “complier,”
“never-taker,” “always-taker,” and “defier,” represent only one
type of design. Other terms may be more relevant to the sci-
entific questions underlying trials in which subjects are ran-
domly assigned to different levels of invitation (e.g., Angrist
and Imbens 1995), or different levels of implementation. Such
trials not only have great potential for examining questions
of effectiveness, sustainability, and scalability, but also require
terms more consistent with adherence than compliance. Again,
we congratulate the authors on an important addition to the
methodological literature that we predict will have lasting im-
pact.
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Comment

The New York City school voucher experiment provides
some of the strongest evidence on the effect of private school
vouchers on student test achievement yet available. Barnard
et al. provide a useful reevaluation of the experiment, and some
of the authors were integrally involved in the design of the ex-
periment. We will leave it to other discussants to comment on
the Bayesian methodological advances in their paper, and in-
stead comment on the substantive lessons that can be learned
from the experiment, and the practical lessons that emerge from
the novel design of the experiment.

We have the advantage of having access to more complete
data than Barnard et al. used in preparing their paper. This in-
cludes more complete baseline test information, data on multi-
child families as well as single-child families, and three years
of follow-up test data instead of just one year of follow-up data.

Alan B. Krueger is Professor and Pei Zhu is graduate student, Eco-
nomics Department, Princeton University, Princeton, NJ 08544 (E-mail:
akrueger@princeton.edu). In part, this comment extends and summarizes re-
sults of Krueger and Zhu (2003). Readers are invited to read that article for a
more in-depth analysis of many of the issues raised in this comment. Some of
the results presented here differ slightly from those in our earlier article, how-
ever, because the definition of family size in this comment corresponds to the
one used by Barnard et al. rather than to the definition in our earlier article.

In our comment, we use the more comprehensive sample be-
cause results for this sample are more informative, but we high-
light where differences arise from using the sample analyzed by
Barnard et al.

Three themes emerge from our analysis. First, simplicity and
transparency are under appreciated virtues in statistical analy-
sis. Second, it is desirable to use the most recent, comprehen-
sive data, for the widest sample possible. Third, there is no sub-
stitute for probing the definitions and concepts that underlie the
data.

1. RANDOM ASSIGNMENT

As Barnard et al. explain, the voucher experiment entailed
a complicated block design, and different random assignment
procedures were used in the first and second set of blocks. In the
first block, a propensity matched-pairs design (PMPD) method
was used. In this block, far more potential control families were
available than was money to follow them up. Rather than se-
lect a random sample of controls for follow up after randomly
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Table 1. Efficiency Comparison of Two Methods of Random Assignment Estimated Treatment Effect and Standard Error, by Method of
Random Assignment

Propensity score Randomized blocks Relative Sample-size-
match subsample subsample samp ling adjus'ted relz?zt/ve
variance sampling variance
Year Model Coefficient Number of observations Coefficient ~Number of observations (RB/PMPD) (RB/PMPD)
All students
Year 1 Control for baseline .33 721 2.10 734 972 .989
(1.40) (1.38)
Omit baseline .32 1,048 —1.02 1,032 1.274 1.254
(1.40) (1.58)
Year 3 Control for baseline 1.02 613 .67 637 1.244 1.293
(1.56) (1.74)
Omit baseline -.31 900 —.45 901 1.285 1.287
(1.57) (1.78)
African-American students
Year1 Control for baseline .32 302 8.10 321 .827 .879
(1.88) (1.71)
Omit baseline 2.10 436 3.19 447 1.082 1.109
(1.99) (2.07)
Year3 Control for baseline 4.21 247 6.57 272 .693 .764
(2.51) (2.09)
Omit baseline 2.26 347 3.05 386 .875 973
(2.47) (2.31)
NOTE: Standard errors are in parentheses. Treatment effect coefficient is from a regression of test scores on a dummy indicating assignmentto receive a voucher (1 = yes), lottery randomization

strata dummies, and in indicated models baseline test scores. Bootstrap standard errors account for within-family correlationin residuals. Year 1 or 3 refers to follow-up year. The last column adjusts
the relative sampling variances of the treatment effects for differencesin relative sample sizes. The sample of African-American students consists of those whose mothers’ race/ethnicity is identified

as non-Hispanic, Black/African-American.

selecting the treatments, the researchers estimated a propen-
sity score model to align controls with the treatments, and then
used a nearest-available-neighbor Mahalanobis match to select
specific paired control families for follow-up. In principle, the
PMPD design should improve the precision of the estimates
by reducing the chance imbalances that can occur in a simple
randomized block design. A standard randomized block design
was used in the remaining four blocks.

Barnard et al. emphasize that the PMPD block was more bal-
anced for 15 of the 21 baseline variables that they examined.
But the key question is the extent to which the precision of
the estimates was improved, not the covariate balance, because
both blocks yield unbiased estimates. If the covariates explain
relatively little of the outcome variable, then the PMPD will add
very little. In Table 1 we provide standard intent-to-treat (ITT)
estimates—that is, the difference in mean test scores between
treatments and controls, conditional on the strata used for ran-
dom assignment (family size by block by high/low-achieving
school)—and, more importantly, their standard errors, sepa-
rately for the PMPD subsample and randomized block subsam-
ple. The outcome variable is the average of the national per-
centile rank on the math and reading segments of the Iowa Test
for Basic Skills, taken either 1 year or 3 years after random as-
signment. Two sets of results are presented, one set controlling
for baseline test scores for the subsample with baseline scores,
and the other without controlling for scores for the larger sam-
ple. The last column adjusts the relative sampling variances for
differences in sample size between the blocks.

For all students (panel A), the standard errors are about 10%
smaller in the PMPD sample. For the Black students (panel B),
however, the standard errors are essentially the same or slightly
larger in the PMPD sample. This finding is unexpected because
Hill, Rubin, and Thomas (2000) predicted that analyses of sub-
groups would have more power in the PMPD design, because

matching should lead to a more nearly equal representation of
subgroups in the treatment and control groups. In addition, the
covariate balance is less good for the Black students in the
PMPD than in the randomized blocks if we compute Z scores
for the differences between treatments and controls for the base-
line covariates. One possibility is that because Black students
could have been matched to non-Black students in the PMPD
design, this subsample was actually less balanced than the sub-
sample of Blacks from the more conventionalrandomized block
design.

The increase in power from the PMPD design is relatively
modest, even in the full sample. Of much more practical im-
portance is the fact that the complexity of the PMPD de-
sign caused Mathematica to initially calculate incorrect base-
line sample weights. The baseline weights were designed to
make the follow-up sample representative of all eligible ap-
plicants for vouchers. The initial weights assigned much too
little importance to the control sample in the PMPD block. Be-
cause these families represented many unselected controls, they
should have been weighted heavily. The revised weights in-
creased the weight on the PMPD controls by 620%. In contrast,
the weight increased by just 18% for the rest of the sample.

This error had grave consequences for the initial infer-
ences and analyses of the data. First, using the faulty weights,
Peterson, Myers, and Howell (1998) reported highly statisti-
cally significant differences in baseline test scores between the
treatment and control groups, with control group members scor-
ing higher on both the math and reading exams. After the mis-
take was discovered and the weights were revised, however,
the baseline differences became small and statistically insignif-
icant. (We note, however, that if we limit attention to the stu-
dents from single-children families that Barnard et al. use, and
use the more complete baseline test score data, then there is
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a statistically significant difference in baseline reading scores
between treatments and controls, even with the revised base-
line weights. If we pool together students from single-child and
multichild families, then the baseline difference is insignificant.
This is another reason why we think it is more appropriate to
use the broader sample that includes children from all families.)

Second, because of the inaccurate inference that there was a
difference in baseline ability between treatments and controls,
Mathematica’s researchers were discouraged from analyzing
(or at least from presenting) results that did not condition on
baseline scores. This is unfortunate, because conditioning on
baseline scores caused the researchers to drop from the sam-
ple all the students who were initially in kindergarten (because
these students were not given baseline tests) and 11% of stu-
dents initially in grades 1-4. Including students with missing
baseline scores increases the sample by more than 40%, and
expands the populationto which the results can be generalized.
As explained later and in an article by Krueger and Zhu (2003),
qualitatively different results are found if students with missing
baseline scores are included in the sample. Because assignment
to receive a voucher was random within lottery strata, estimates
that do not condition on baseline scores are nonetheless unbi-
ased. Moreover, it is inefficient to exclude students with missing
baseline scores (most of whom had follow-up test scores), and
such a sample restriction can potentially cause sample selection
bias.

Of lesser importance is the fact that the PMPD design also
complicates the calculation of standard errors. The matching of
treatments and controls on selected covariates creates a depen-
dence between paired observations. Moreover, if the propensity
score model is misspecified, then the equation error also cre-
ates a dependence between observations. Researchers have not
taken this dependence into account in the calculation of stan-
dard errors. We suspect, however, that this is likely to cause
only a small understatement of the standard errors, because the
covariates do not account for much of the residual variance of
test scores, and because the PMPD sample is only about half of
the overall sample. (We tried to compute the propensity score
to adjust the standard errors ourselves, but were unable to repli-
cate the PMPD model because it was not described in suffi-
cient detail and because the computer programs are proprietary.
This also prevented us from replicating estimates in Table 4 of
Barnard et al.)

The problems created by the complicated experimental de-
sign, particularly concerning the weights, lead us to reiterate
the advice of Cochran and Cox (1957): “A good working rule is
to use the simplest experimental design that meets the needs of
the occasion.” It seems to us that in this case, the PMPD design
introduced unnecessary complexity that inadvertently led to a
consequential mistake in the computation of weights, with very
little improvementin efficiency. This was not the fault of the ar-
chitects of the PMPD design, who did not compute the weights,
but it was related to the complexity of the design. Simplicity
and transparency—in designs, methods, and procedures—can
help avoid mistakes down the road, which are almost inevitable
in large-scale empirical studies. Indeed, Mathematica recently
informed us that they still do not have the baseline weights ex-
actly correct, 5 years after random assignment.

Journal of the American Statistical Association, June 2003

2. INTENT-TO-TREAT ESTIMATION RESULTS

Barnard et al. devote much attention to addressing potential
problems caused by missing data for the sample of students in
grades 14 at baseline; this follows the practice of earlier re-
ports by Mathematica, which restricted the analysis of student
outcomes (but not parental responses such as satisfaction) to
those enrolled in grades 1—4 at baseline. In our opinion, a much
more important substantive problem results from the exclusion
of students in the kindergarten cohort, who were categorically
dropped because they were not given baseline tests. Because
assignment to treatment status was random (within strata), a
simple comparison of means between treatments and controls
without conditioning on baseline scores provides an unbiased
estimate of the average treatment effect. Moreover, as Barnard
et al. and others show, treatments and controls were well bal-
anced in terms of baseline characteristics, so there is no reason
to suspect that random assignment was somehow corrupted.

Table 2 presents regression estimates of the ITT effect using
various samples. Because we cannot replicate the Bayesian es-
timates without knowing the propensity score, we present con-
ventional ITT estimates. For each entry in the first column,
we regressed the test score percentile rank on a voucher offer
dummy, 30 dummies indicating lottery strata (block x family
size x high/low school), and baseline test scores. The sample is
limited to those with baseline test data. Our results differ from
the ITT estimates in Table 5 of Barnard et al., because we use
the revised weights and a more comprehensive sample that also
includes students from multichild families. Barnard et al. report
that their Bayesian estimates are “generally more stable” than
the conventional ITT estimates, “which in some cases are not
even credible,” but the extreme ITT estimates that they refer to
for 4th graders from high-achieving schools are based on only
15 students. For the samples that pool students across grades,
the results of the conventional ITT estimates are a priori credi-
ble and probably not statistically different from their Bayesian
estimates.

In the second column we use the same sample as in column 1,
but omit the baseline test score from the model. In the third
column we expand the sample to include those with missing
baseline scores. In the fourth column we continue to include
students with missing baseline scores, but restrict the sample to
those initially in low-achieving public schools.

We focus mainly on the results for Black students and stu-
dents from low-achieving public schools, because the effect of
offering a voucher on either reading or math scores for the over-
all sample is always statistically insignificant, and because most
public policy attention has focused on these two groups.

Although it has not been made explicitin previous studies of
these data, Black students have been defined as children with
a non-Hispanic, Black/African-American mother. We use this
definition and a broader one to probe the sensitivity of the re-
sults.

Omitting baseline scores has little qualitative effect on the
estimates when the same sample is used (compare columns 1
and 2); the coefficient typically changes by no more than half
a standard error. For year 3 scores for Black students, for ex-
ample, the treatment effect on the composite score is 5.2 points
(t = 3.2) when controlling for baseline scores and 5.0 points
(t = 2.6) when not controlling. This stability is expected in a
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Table 2. Estimated Treatment Effects, With and Without Controlling for Baseline Scores Coefficient on Voucher Dummy From Test Score
Regression for Various Samples

Subsample Subsample Subsample
with baseline with baseline applicant school:
scores controls for scores omits Full sample Low omits
Test Sample baseline scores baseline scores omits baseline scores baseline scores
First follow-up test
Composite Overall 1.27 42 -.33 —.60
(.96) (1.28) (1.086) (1.086)
Mother Black, Non-Hispanic 4.31 3.64 2.66 1.75
(1.28) (1.73) (1.42) (1.57)
Either parent Black, Non-Hispanic 3.55 2.52 1.38 .53
(1.24) (1.73) (1.42) (1.55)
Reading Overall 1.11 .03 -1.13 -1.17
(1.04) (1.36) (1.17) (1.18)
Mother Black, Non-Hispanic 3.42 2.60 1.38 .93
(1.59) (1.98) (1.74) (1.84)
Either parent Black, Non-Hispanic 2.68 1.49 —.09 —.53
(1.50) (1.97) (1.71) (1.81)
Math Overall 1.44 .80 47 —.03
(1.17) (1.45) (1.17) (1.15)
Mother Black, Non-Hispanic 5.28 4.81 4.01 2.68
(1.52) (1.93) (1.54) (1.63)
Either parent Black, Non-Hispanic 4.42 3.54 2.86 1.59
(1.48) (1.90) (1.51) (1.63)
Third follow-up test
Composite Overall .90 .36 —.38 10
(1.14) (1.40) (1.19) (1.16)
Mother Black, Non-Hispanic 5.24 5.03 2.65 3.09
(1.63) (1.92) (1.68) (1.67)
Either parent Black, Non-Hispanic 4.70 4.27 1.87 1.90
(1.60) (1.92) (1.68) (1.67)
Reading Overall .25 —.42 —1.00 —.08
(1.26) (1.51) (1.25) (1.24)
Mother Black, Non-Hispanic 3.64 3.22 1.25 2.06
(1.87) (2.19) (1.83) (1.83)
Either parent Black, Non-Hispanic 3.37 2.75 .76 1.23
(1.86) (2.18) (1.83) (1.82)
Math Overall 1.54 1.15 .24 .29
(1.30) (1.58) (1.33) (1.28)
Mother Black, Non-Hispanic 6.84 6.84 4.05 4.13
(1.86) (2.09) (1.86) (1.85)
Either parent Black, Non-Hispanic 6.04 5.78 2.97 2.58
(1.83) (2.09) (1.85) (1.82)

NOTE: Standard errors are in parentheses. Dependentvariable is test score NPR. Reported coefficient is coefficient on voucher offer dummy. All regressions control for 30 randomization strata

dummies; models in the first column also control for baseline math and reading test scores.

Bootstrap standard errors are robust to correlation in residuals among students in the same family. Bold font indicates that the absolute ¢ ratio exceeds 1.96.
Sample sizes in year 1 for subsample with baseline scores/or without are overall, 1,455/2,080; mother black, 623/883; either parent black, 684/968.

Sample sizes in year 3 for subsample with baseline scores/or without are overall, 1,250/1,801; mother black, 519/733; either parent black, 572/807.

Sample sizes in year 1 for subsample from low schools without baseline scores are overall, 1,802; mother black, 770; either parent black, 843.

Sample sizes in year 3 for subsample from low schools without baseline scores are overall, 1,569; mother black, 647; either parent black, 712.

randomized experiment. When the sample is expanded to in-
clude those with missing baseline scores in column 3, however,
the ITT effect falls almost in half in year 3 for Black students, to
2.65 points with a 7 ratio of 1.58. The effect on the math score
is statistically significant, as Barnard et al. emphasize. Quali-
tatively similar results are found if baseline covariates, such as
mother’s education and family income, are included as regres-
sors (see Krueger and Zhu 2003).

The classification of Black students used in the study is
somewhat idiosyncratic. Race and ethnicity were collected in
a single question in the parental survey—contrary to the OMB
guidelines for governmentsurveys—so it is impossible to iden-
tify Blacks of Hispanic origin (of which there are a large num-
ber in New York). In addition, the survey did not directly ask
about the child’s race or ethnicity, so children’s race must be

inferred from parents’ race/ethnicity. A broader definition of
Black students—and one that probably comes closer to the de-
finition used in governmentsurveys and most other educational
research—would also include those who have a Black father
in the sample of Black students. According to the 1990 Census,
race was reported as Black for 85% of the children with a Black
father and a Hispanic mother (the overwhelming non-Black
portion of the sample) in the New York metropolitan region.
Hence we also present results for a sample in which either
parent is listed as “Black, non-Hispanic.” This increases the
sample of Black students by about 10%, and the results are even
weaker for this sample. For example, the ITT estimate using
the more comprehensive sample of Black students enrolled in
grades K—4 at baseline is 1.87 points (t = 1.11) on the third-
year follow-up composite test, although even with this sample
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the effect on math is significant at the .10 level in year 1, as
Barnard et al. have found, and almost significant in year 3. So
we conclude that the effect of the opportunity to use a private
school voucher on the composite score for the most comprehen-
sive sample of Black students is insignificantly different from O,
althoughit is possible that there was initially a small beneficial
effect on the math score for Black students.

In the final column we present results for the subsample of
students originally enrolled in schools with average test scores
below the median score in New York City. In each case, the
results for this subsample are quite similar to those for the
full sample, and a formal test of the null hypothesis that stu-
dents from low- and high-achieving schools benefit equally
from vouchers is never close to rejecting. It also appears very
unlikely that the differences between the treatment effects for
applicants from low- and high-achieving schools in Barnard
et al.’s Table 4 are statistically significant either.

3. WHAT WAS BROKEN?

We agree with Barnard et al. that the experiment was broken
in the sense that attrition and missing data were common. Previ-
ous analyses were also strained, if not broken, for their neglect
of the cohort of students originally in kindergarten who were in
third grade at the end of the experiment and whose follow-up
test scores were ignored. Including these students qualitatively
alters the results for Black students. The experiment was also
broken in the sense that years passed before correct baseline
weights were computed.

We disagree, however, with the interpretation that the experi-
ment was broken because compliance was less than 100%. This
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depends on the question that one is interested in answering.
Because most interest in the experiment for policy purposes
centers on the impact of offering vouchers on achievement—
not on compelling students to use vouchers—we think the ITT
estimates, which reflect inevitable partial usage of vouchers,
are most relevant (see also Rouse 1998; Angrist et al. 2003).
Moreover, New York had a higher voucher take-up rate than
the experiments in Dayton and the District of Columbia, so
one could argue that the New York experiment provides an
upper bound estimate of the effect of offering vouchers. On
the other hand, if the goal is to use the experiment to esti-
mate the effect of attending private school on achievement,
then such methods as instrumental variables or those used by
Barnard et al. are necessary to estimate the parameter of inter-
est. We consider this of secondary interest in this case, how-
ever.

ADDITIONAL REFERENCES

Angrist, J., Bettinger, E., Bloom, E., King, E., and Kremer, M. (2003), “Vouch-
ers for Private Schooling in Colombia: Evidence from a Randomized Natural
Experiment,” American Economic Review, 92, 1535-1558.

Cochran, W., and Cox, G. (1957), Experimental Designs (2nd ed.), New York:
Wiley.

Krueger, A., and Zhu, P. (2003), “Another Look at the New York City
School Voucher Experiment,” American Behavioral Scientist, forthcoming.
Also available from Industrial Relation Section, Princeton University, at
http://www.irs.princeton.edu.

Peterson, P., Myers, D., and Howell, W. (1998), “An Evaluation of the
New York City Scholarships Program: The First Year,” Mathematica Policy
Research, Inc., available at http://www.ksg.harvard.edu/pepg/pdf/ny1rpt.pdf.

Rouse, C. (1998), “Private School Vouchers And Student Achievement: An
Evaluation Of The Milwaukee Parental Choice Program,” The Quarterly
Journal of Economics, 13, 553-602.

Comment

1. INTRODUCTION

The article by Barnard, Frangakis, Hill, and Rubin (hereafter
BFHR) is a virtuoso performance. By applying the Neyman—
Rubin model of causal effects and building on a series of im-
portant works on the estimation and interpretation of casual ef-
fects (e.g., Angrist, Imbens, and Rubin 1996), BFHR manage to
extract a reasonable set of findings for a “broken” randomized
experiment. The article more generally underscores the impor-
tant difference between estimating relationshipsin a consistent
manner and interpreting those estimates in causal terms; obtain-
ing consistent estimates is only part of the enterprise. Finally,
the article emphasizes that assumptions made so that proper es-
timates may be obtained are not just technical moves of con-
venience. Rather, they are statements about how the empirical
world is supposed to work. As such, they need to be examined

Richard A. Berk is Professor and Hongquan Xu is Assistant Professor,
Department of Statistics, University of California, Los Angeles, CA 90095
(E-mail: berk@stat.ucla.edu).

concretely with reference to the phenomenabeing studied, eval-
uated empirically whenever possible, and, at a minimum, sub-
jected to sensitivity tests.

As battle-tested academics, we can certainly quibble here and
there about some aspects of the article. For example, might it
not have made sense to construct priors from the educators and
economists who were responsible for designing the interven-
tion? Moreover, might it not have made sense to interpret the re-
sults using a yardstick of treatment effects that are large enough
to matter in practical terms? Nonetheless, we doubt that over-
all we could have done as well as BFHR did. Moreover, most
of our concerns depend on features of the data that cannot be
known from a distance. We would have had to carefully exam-
ine the data ourselves. As a result, we focus on why a virtuoso
performance was needed to begin with. Why was this trip nec-
essary?
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2. NONCOMPLIANCE

The implementation of randomized field experiments, as de-
sirable as they are, invites any number of well-known problems
(Berk 1990). One of these problems is that human subjects of-
ten do not do what they are told, even when they say they will.
There is recent scholarly literature on noncompliance (Metry
and Meyer 1999; Johnson2000) and a citation trail leading back
to evaluations of the social programs of the War on Poverty
(Havemen 1977). Some noncompliancecan be expected except
when there is unusual control over the study subjects. Our re-
cent randomized trial of the inmate classification system used
by the California Department of Corrections is one example
(Berk, Ladd, Graziano, and Baek 2003).

An obviousquestion follows: Why does it seem that the indi-
viduals who designed this experiment were caught by surprise?
As best we can tell, little was done to reduce noncompliance,
and, more important for the analyses of BFHR, apparently al-
most no data were collected on factors that might be explicitly
related to noncompliance (Hill, Rubin, and Thomas 2000).

Without knowing far more about the design stages of the ex-
periment, we find it difficult to be very specific. But from the
literatures on compliance and school choice, the following are
probably illustrative indicators relevant for parents who would
not be inclined to use a school voucher; for other forms of non-
compliance, other measures would be needed:

1. Whether the adults in the household are employed outside
the home during the day

2. Whether there is any child care at the private schools be-
fore classes begin and after they end for children of em-
ployed parents

3. A household’s ability to pay for private school beyond the
value of the voucher

4. Travel time to the nearest private schools

. Availability of transportation to those schools

6. Religious preference of the household and religious affil-
iation of the private school.

W

From these examples, and others that individuals closer to
the study would know about, one can imagine a variety of mea-
sures to reduce noncompliance. For instance, key problems for
any working parent are child care before and after school, and
round-trip school transportation. These might be addressed di-
rectly with supplemental support. If no such resources could be
obtained, then the study design might be altered to screen out
before random assignment households for whom compliance
was likely to be problematic.

3. MISSING DATA

No doubt, BFHR know more about the subtleties of the miss-
ing data than we do. Nevertheless, the same issues arise for
missing data that arise for noncompliance. Surely, problems
with missing data could have been anticipated. Factors related
to nonresponse to particular items could have been explicitly
measured and prevention strategies perhaps could have been de-
ployed.
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4. DESIGN EFFICIENCY

A carefully designed experimentnot only providesa solid ba-
sis for statistical inference, but also gives credible evidence for
causation. The New York School Choice Scholarships Program
(NYSCSP) was apparently the first good example of a random-
ized experiment to examine the potential benefits of vouchers
for private schools. Offering a scholarship (treatment) randomly
through a lottery can (1) provide a socially acceptable way to
ration scarce resources, (2) protect against undesirable selec-
tion bias and (3) produce balance between the observed and
unobserved variables, which may affect the response. In addi-
tion to the randomization and blocking, NYSCSP implemented
a PMPD (propensity matched pairs design) to choose a control
group from a large candidate pool and to balance many covari-
ates explicitly. Table 2 of BFHR shows that various background
variables were balanced properly between the treatment group
and the control group.

But, might it have been possible to do a bit better? BFHR
did not mention that the sample size of the applicant’s school
was not balanced, although winners from high and low schools
were balanced between the treatments and the controls. An
ideal design would have had equal winners from “bad” (or
low) and “good” (or high) public schools. In the NYSCSP,
85% of the winners were from bad schools and 15% were from
good schools, to achieve the social goals of the School Choice
Scholarships Foundation (Hill et al. 2000, p. 158). Bad schools
are defined as “those for which the average test scores were
below the median test scores for the city” (Hill et al. 2000,
p- 158). A direct consequence is that the estimates from the
good schools have much larger variation than that from the bad
schools, which was evident in BFHR’s Tables 4—6. The confi-
dence intervals for good schools are wider.

Instead of classifying schools into two classes (bad and
good), it might have been helpful to classify them into four
classes: very bad, bad, good, and very good. To estimate the
effect of applicant’s school (assuming linear effects), an opti-
mal design would select half of the winners to the very bad
school, other half to the very good school, and none to the two
middle schools. Avoiding the middle schools enlarges the dis-
tance between bad and good schools and also reduces the source
variation in the bad and good schools, and thus reduces the vari-
ation in the estimates. To be more consistent with the goals of
the School Choice Scholarships Foundation, an alternative de-
sign might take 75% winners from very bad schools, 10% from
bad schools, 5% from good schools, and 10% from very good
schools. This design would have a higher design efficiency than
the original design especially because the applicant’s school
was the most important design variable after family size (Hill
et al. 2000, p. 160). Of course, people on the ground at the
time may have considered these options and rejected them. Our
point is that with better planning, it might have been possible
to squeeze more efficiency out of the study design. Such an
outcome would have made the job undertaken by BFHR a bit
easier.

5. CONCLUSIONS

Scientific problems often provide a fertile ground for impor-
tant statistical developments. BFHR’s article and the literature
on which they depend are excellentillustrations. However, from
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the perspective of public policy, the goal of program evaluation
is to obtain usefully precise estimates of program impacts while
using the most robust means of analysis available. Simplicity is
also important, both for data analysts who must do the work
and policy makers who must interpret the results. It follows
that large investments at the front end of an evaluation—in re-
search design, measurement, and study integrity—are essential.
Virtuoso statistical analyses can certainly help when these in-
vestments are insufficient or when they fail, but they must not
be seen as an inexpensive alternative to doing the study well to
begin with.
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Rejoinder

John BARNARD, Constantine E. FRANGAKIS, Jennifer L. HILL, and Donald B. RUBIN

We thank the editorial board and the thoughtful group of dis-
cussants that they arranged to comment on our article. The dis-
cussants have raised many salient issues and offered useful ex-
tensions of our work. We use this rejoinder primarily to address
a few points of contention.

Muthen, Jo, and Brown

Muthen, Jo, and Brown (henceforthMJB) provide an enlight-
ening discussion of an alternate and potentially complementary
approach to treatment effect estimation. The growth models that
they discuss are for data more extensive than what we analyzed
and so are beyond the scope of our article. Nevertheless, MJB
propose an interesting idea for looking for interactions in lon-
gitudinal experimental data, and we look forward to future ap-
plications of the method to appropriate datasets.

Although models that incorporate both our compliance prin-
cipal strata as well as latent growth trajectories are theoretically
possible (assuming multiple years of outcome data) and could
potentially yield an extremely rich description of the types of
treatment effects manifested, the more time points that exist,
the more complicated the compliance patterns can become (at
least without further assumptions), and it may be difficult to find
a dataset rich enough to support all of the interactions. Given a
choice, we feel that it is probably more beneficial to handle real
observed issues than to search for interactions with latent tra-
jectories, but certainly it would always be nice to be able to
do both. Of course, such a search for interactions in trajecto-
ries is more beneficial when there is enough prior knowledge
about the scientific background to include additional structural
assumptions that can support robust estimation.

MIJB make an interesting point about the exploration of po-
tential violations of exclusion for never-takers. Such analyses
have been done in past work by some of the authors (Hirano
et al. 2000; Frangakis, Rubin, and Zhou 2002), but was not pur-
sued for our study, because the robustness of such methods is
still an issue in examples as complex as this one.

Regarding the trade-offs between the joint latent ignorabil-
ity and compound exclusion assumptions versus the joint as-
sumptions of standard ignorability and the standard exclusion
restriction, this topic is up for debate. We would like to point
out, however, that these standard structural assumptions come
with their own level of arbitrariness. These issues have been
explored by Jo (2002) and Mealli and Rubin (2002, 2003).

We thank MJB for providinga thought-provoking discussion
of our model and assumptions, as well as ample fodder for ad-
ditional directions that can be explored in this arena. Clearly the
general category of work has stimulated much new and exciting
modeling.

Krueger and Zhu

Krueger and Zhu (henceforth KZ) focus primarily on the un-
derlying study and analyses that either we did not do or used
data we did not have. Clearly, they are interested in the substan-
tive issues, which is admirable, but we cannot be responsible
for analyses that we neither did nor were consulted on, and are
not prepared to comment on what analyses we might have un-
dertaken with data that we did not have.

KZ state that “there is no substitute for probing the defini-
tion and concepts that underlie that data.” Although we are not
entirely sure what this refers to in particular, if it means that
good science is more important than fancy techniques, then we
certainly agree.

Another comment by KZ is that “it is desirable to use the
most recent, comprehensive data, for the widest sample possi-
ble”” We agree that it is desirable to have access to the most
comprehensive data available, but it is not necessary to use all
of these data in any given analysis. Here we use only first-year
data, because these were the only data available to us at the
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time that we were building the model. We used only single-
child families, as explained in the article, because, regrettably,
no compliance data were collected for individual childrenin the
multichild families.

The exclusion of kindergarten children could be considered
more of a judgment call regarding the quality of the pretest
scores, not only for efficiency, but also for the reasonableness of
our assumptions about noncompliance and missing data. Noth-
ing in theory would prevent us from including these children
and omitting these extra covariates.

These types of trade-offs (more data vs. more appropriate
data) are common in statistical analyses and the benefits are
well known, for example, for avoiding model extrapolation or
when some subsets of data do not mean the same thing as oth-
ers. In fact, Krueger “ignored data” in his article on minimum
wage with David Card (Card and Krueger 1994), by limiting
analyses to restaurants from a similar geographic region in the
hope that employees and employers across the two comparison
states would be faced with similar economic conditions, rather
than looking at all restaurants in these states. This is a form of
implicit matching, which we believe represented a good choice.
Surely, there are times when focusing on subsets of data pro-
duces more reliable results.

Furthermore, we would like to point out that KZ’s asser-
tion that “because assignment to treatment status was random
(within strata), a simple comparison of means between treat-
ments and controls without conditioning on baseline scores
provides an unbiased estimate of the average treatment effect”
is simply false, because there are missing outcomes. Even if
there is perfect compliance, a simple comparison of means
across treatment groups when there are missing outcomes will
not lead in general to an unbiased estimate of the treatment
effect. Assumptions need to be made about the missing-data
process.

When noncompliance exists in addition to the missing out-
come data, Frangakis and Rubin (1999) have shown that esti-
mation even of the ITT effect requires additional assumptions.
Moreover, the ITT estimate, generally considered a conserva-
tive estimate of the treatment effect, can actually be anticon-
servative in this scenario. Finally, contrary to what KZ seem to
imply in their final paragraph, instrumental variables methods
alone are not sufficient to address the problems of both non-
compliance and missing data.

KZ advocate “simplicity and transparency.” We wholeheart-
edly agree, but disagree with the examples they use to defend
their stance. Their first argument is that the PMPD did not
yield strong efficiency gains and that we did not account for
the PMPD in the calculation of standard errors. It may well be
that precision gains were relatively modest; however, the analy-
ses that they present are by no means conclusive in this regard.
First, as with KZ’s other ITT analyses, we have no clue as to
how missing outcome data are handled. In addition, the PMPD
was also used to balance compliance and missingness. It is un-
clear, however, how the gains in precision due to matching the
missingness and noncomplianceare displayed, if at all, in KZ’s
results. Finally, KZ did not account for the experimental de-
sign when estimating their results. Failure to account properly
for the design typically results in estimates that overstate the
variances of treatment effect estimates. In this design, it is the
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correlation between matched pair units that leads the sampling
variances to be smaller than their estimates.

Even if precision gains were truly modest, they of course
were unknown to us at the time we debated the use of the PMPD
design. KZ’s argument is like the complaint of a cross-country
motorist who experiencesno car problems during his long drive
and then bemoans the money wasted on a spare tire purchased
before the trip began. We prefer to avoid potential problems by
using careful design.

Importantly, KZ’s criticism that we ignored this matching
in the analysis is incorrect. The matching was done based on
the estimated propensity score, so it follows from Rubin (1978)
that assignment is ignorable conditionally given the covariates
that were used to estimate it. Thus the Bayesian analysis that
we conduct that conditions on the estimated propensity score
is an approximately valid Bayesian analysis with respect to
the matched assignment, assuming that our modeled relation-
ship between the outcomes and the estimated propensity score
captures the major features of the relationship to the covari-
ates.

KZ’s second argument is that use of the PMPD “led to grave
consequences” because sampling weights were miscalculated
by MPR. It seems to us odd to maintain, as KZ do, that the
PMPD “caused” this error, nor is it clear that use of another de-
sign would have avoided the error. In any case, we have rerun
our analyses, this time generalizing to the population of which
the children in our analyses are representative (by setting con-
stant weights in step 3 of Sec. 8.1.1). For this population, all
results are very similar to our original results. These results are
posted as Appendix C at http://biosun01.biostat.jhsph.edu/~
cfrangak/papers/sc.

A third argument revolves around the protracted debate be-
tween use of ITT versus treatment-targeted measures such as
CACE. We addressed both ITT and CACE, which allows the
reader to focus on one or the other or both, depending on which
effect is expected to generalize to another environment: the
ITT, or “sociological” effect of accepting or not accepting an
offered voucher, or the CACE, or “structural” or “scientific”
effect of using a voucher. One could argue that the effect of
attending (CACE) is the more generalizable, whereas the soci-
ological effect (ITT) is more easily influenced, for instance by
“hype” about how well the program works. That is, the ITT es-
timate will not reflect the “effect of offering” if the next time the
program is offered the compliance rates change (which seems
likely!). We prefer to examine both to provide a more compre-
hensive picture.

In sum, we agree that simplicity and transparency are impor-
tant; this is the major motivation for our detailed description
of our assumptionsin terms of readily understandable concepts
rather than commonly invoked and less intuitive conditions in-
volving correlated error terms. However, this desire for sim-
plicity must be balanced with the prudence of guarding against
potential problems, through careful design.

Although we agree in theory with much of what KZ es-
pouse, some of their criticisms seem misguided. Moreover, their
presentation of analyses with incomplete exposition regarding
missing-data complications makes these analyses difficult for
us to evaluate properly.
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Berk and Xu

Berk and Xu (henceforth BX) raise several interesting ques-
tions about the way in which the evaluation was designed and
implemented. Many of these are actually addressed in a pre-
ceding and lengthier article by us on this topic (Barnard et al.
2002). That article describes, for instance, MPR’s efforts to re-
duce missing data, without which the missingness rates would
surely have been much higher. It also describes special chal-
lenges faced in this study. But in any study with human subjects,
it is difficult to completely eliminate missing data, particularly
if one desires more interesting information than can be obtained
from administrative data. One of the challenges for the collec-
tion of outcome test scores was the fact that children needed
to be tested outside of the public school setting, which allowed
the use of a standardized test not used by the public school sys-
tem, thereby greatly reducing the possibly of bias resulting from
teachers “teaching to the test.”” Consequently, parents had to
bring their children to testing areas on weekends—a formidable
hurdle for some even when monetary incentives were used.

An important consideration with this study was that the eval-
uators took the initiativeto investigate a program that was spon-
sored by an organization (SCSF) whose primary goal was to
provide scholarships, not to do research. We feel that MPR
did an admirable job convincing the SCSF to allow the study
to be evaluated and raising money for this purpose, but this
also meant that the evaluators could not control every aspect
of the program. For example, the SCSF originally only wanted
to make the program available to children from the lower-test-
score schools, and the evaluators had to convince them to allow
also a small percentage from those in higher-test-score schools,
to increase the generalizability of the results. The designs that
BX suggest, even though they have certain desirable statistical
properties under appropriate assumptions, were not an option
with this study.

Related to this issue of the alignment of the evaluators’ and
program administrators’ goalsis the issue of the potential for re-
ducing noncompliancerates. Some effort was made in that help
was provided to scholarship winners in finding an appropriate
private school. Arguably, however, 100% compliance should
not be the goal in such a study, given that we would not ex-
pect 100% compliance if the program were expanded and of-
fered, say by the government, on a larger scale. Thus it may
not be wise to use extreme efforts to increase compliance if
such efforts would not be offered in the large-scale public case.
With the current study, the opportunity exists to examine the
noncompliance process for this program in this setting: take-
up rates, predictors of noncompliance, and so on. To this end,
some sort of subexperiment that randomizes a reasonable set of
compliance incentives might be useful in similar studies in the
future, if sample sizes are sufficient.

We are not convinced that we should have solicited actual
prior distributions from educators and economists. In our expe-
rience, this is a confusing, difficult, and often unrewarding task.
Moreover, school choice is such a politically charged and con-
tentious issue that it seems wiser to try to use relatively diffuse
and objective prior distributions.

We agree that results should be interpreted in terms of a yard-
stick of practical effects. We are unaware of the most appropri-

Journal of the American Statistical Association, June 2003

ate such yardstick to use in this context. One side could claim
that even tiny average effects matter, not only because of the
cumulative effects on parts of society, but also because of pos-
sible nonadditivity of such effects, which could imply huge ef-
fects for some rare individuals and minute effects for all others.
Others could argue that seemingly quite large effects have no
long-run practical impact on quality of life. The results that we
present provide a basic empirical starting point for these debates
between people whose expertise is in this area.

We thank BX for highlighting our emphasis on the role of
the assumptions in our analyses. Our hope is that we have pre-
sented the assumptions in such a way to enable readers to make
their own judgment about whether or not they were likely to be
satisfied, rather than only stating them technically, which would
implicitly make those important decisions for the interested but
nontechnical readers.

BX point out a dearth of certain types of covariates. Part of
the problem here is that we presented only a small portion of
the data collected, due to the fact that our model in its current
form did not handle many covariates. However, there were in-
deed discussions between some members of our team and MPR
staff during the development of the questionnaire about what
types of variables could be included that would be predictive of
missing data or compliance, as well as outcomes. Some of the
variables proposed were discarded due to the surveyors’ expe-
rience with them as subject to problems, such as high measure-
ment error. Also, not every variable discussed was included due
to a desire for a survey that would not be overly burdensome for
the study families.

We raise a final small semantic question. We wonder about
the propriety of the label “Neyman—Rubin model” to describe a
framework for causal inference that views observational studies
and randomized experiments on the same continuum,and more-
over encourages Bayesian analyses of both. Neyman (1923)
certainly seems to have been the first to use the formal nota-
tion of outcomes for randomization-basedpotentialinference in
randomized experiments, which was a truly major advance, but
neitherhe nor anyoneelse to the best of our knowledge used this
formal notation to define causal effects in observational studies
until Rubin (1974, 1975), nor did he nor anyone else ever advo-
cate Bayesian inference for the unobserved potential outcomes
until Rubin (1975, 1978), which is the perspective that we have
implemented here.

Overall, we agree with BX about the paramount importance
of study design, and we tried to design this study carefully, cer-
tainly more so than most social science analyses of secondary
datasets like the PSID or CPS. We thank BX for their thoughtful
commentary; they raise some important points.

We thank all of the discussants for stimulating comments,
which we believe have added emphasis to the importance of
both the substantive topic of school vouchers and the devel-
opment of appropriate methods to evaluate this and other such
broken randomized experiments.
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