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Introduction

In studies where the primary objective is to evaluate the causal effect of a treatment on an out-

come, the method of principal stratification provides a useful approach for properly adjusting

for post-treatment variables. In this methodology, the stratification is done with respect to a

post-treatment variable and the strata are a cross-classification of subjects defined by the joint

potential values of that post-treatment variable. The key property of principal strata is that they

are not affected by treatment assignment and hence can be used just as any pre-treatment covari-

ate, such as age. Frangakis and Rubin (2002) provide a thorough discussion of this framework.

Recently, Frangakis et al. (2002) evaluated the impact of Baltimore city’s needle exchange

program (NEP) on HIV seroconversion using this approach. This paper also describes in de-

tail the estimation methodology and the plausible assumptions that are needed to estimate the

causal effect. The documentation provided here essentially describes all the steps involved in

performing the analysis presented in Frangakis et al. (2002). Even though the documentation

is described using the NEP evaluation study as a model, the PSpack package can be used to

employ the principal stratification approach to similar longitudinal studies, where the recepit

of the treatment and provision of outcome measurement are not directly controlled, but a longi-

tudinal factor is controlled and this factor is associated with both taking the treatment, as well
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as providing outcome measurement. It is currently capable of modelling binary outcomes, and

multiple levels of controlled factor (e.g., distance). It will soon be extended to handle ordinal

outcomes (with more than two levels). The user of the software is strongly urged to read the

paper by Frangakis et al. (2002) for a better understanding of the assumptions involved in the

use of this methodology.

Software requirements

The software is written to be used in a statistical programming environment called R, which is

open-source and freely available. To obtain information on how to obtain and install R, check

the website: www.r-project.org. With a few (possibly) minor changes, it can also be used in an

Splus environment. The following files are required for the use of PSpack:

• routines.r - contains some R functions to perform data preparation and other analytic

tasks.

• routines.dll (for Windows) - contains the library of executable functions which can be

dynamically linked at the beginning of an R session. This enables the execution of several

Fortran subroutines which perform more intensive computing tasks.

• routines.so (for Unix) - same purpose as routines.dll, but for Unix users.

• routines.f - the Fortran source codes for creating the .dll or .so file are contained in this

file. This file is not necessary, unless the user wants to make some changes and recompile

to create a new library.

• sample.r - contains a sample session illustrating the use of PSpack for the NEP study.

• datawide - contains data, as an R object, for the sample session.
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These required files are archived in “pspack.zip” and “pspack.tar.gz” for the Windows and Unix

users, respectively.

Description of the basic data

The basic data object required for the analysis is a dataframe where each row contains infor-

mation for a subject. This information includes (in the specified order): subject id, fixed (not

varying with time) covariates, time-varying covariates, controlled factor (time-varying), treat-

ment/exposure (time-varying), and outcome (time-varying)., and censoring indicator (time-

varying). The time-varying variables are measured at each visit. For example, in the NEP

study, measurements are taken every semester. There are 5 fixed covariates, the first 5 principal

components determined from a set of 24 baseline characteristics of the subjects. There are no

time-varying covariates. However, if there were any, they should be entered one after the other,

as follows:

var1.1, · · · , var1.k, var2.1, · · · , var2.k, · · · ,

where there are k repeated measurements or visits and var1.1 denotes variable 1 measured

at first visit, etc.. In the NEP study, there are 12 semesters at which information is available

(k=12). The controlled factor is the distance (D) to the closest NEP site from the subject’s

domicile. Since the NEP sites and/or the subjects’ domicile can change with time, the distance

also varies with time. The exposure variable (E) is binary indicating whether the subject ex-

changed needles at the NEP, at least once, in the previous semester (0 = No; 1 = Yes). The

outcome variable (Y ) is binary indicating whether the subject tested positive for HIV antibod-

ies at the current visit (0 = No; 1 = Yes). If a subject drops-out at a particular visit, then the

outcome is designated as “NA” at that visit.

In the NEP example, there are 1170 subjects. Each subject has a unique ID. The five fixed
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covariates are represented by a 1170 × 5 matrix. There are no time-dependent covariates.

Time ranges from 1 to 12, where each unit is a semester. The controlled factor, distance, is

time-varying and hence can be represented by a 1170 × 12 matrix. Here, distance, which is

continuous, is dichotomized as “near” and “far”, but in general it can be a factor variable with

any number of levels. Exposure, outcome, and censoring indicators can also be thought of

1170 × 12 matrices, but as stated earlier it should be noted that once the outcome becomes

“NA”, the rest (after that time) of the information for that subject is irrelevant, and is ignored.

Thus the entire data frame, containing all the data, has 1170 rows and 42 (=1+5+12*0+12*3)

columns. This is the “wide” format. This data frame, let us call it datawide is the primary input

for the analysis.

Creating the “long” data

The function “makebig” takes datawide as input and produces as output another data frame

which is in the “long” format. Let us call this databig. This data frame has tatrisk rows

for each subject, corresponding to the time at risk for that subject. Thus, it has ntatrisk total

number of rows, which is the sum of all the times at risk for each subject. For example, a

subject who tests HIV positive at the 5th semester will have 5 rows and a subject who drops

out at the 9th semester before seroconverting will have 9 rows. The databig object also has 11

(=1+5+0+1+4) columns, a column for ID, 5 columns for fixed covariates (the value for each

covariate is simply repeated 12 times for each subject), 1 column for time (1 to 12), and 4

columns - one each for distance, exposure, outcome, and censoring indicator. The censoring

variable, which is newly created, is also binary indicating whether the subject provided outcome

measurement at the current visit (0 = Yes; 1 = No). A subject’s censoring indicator assumes

a value of 1 at a particular visit, if and only if he/she provided measurements at the previous
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visit but dropped out after that, i.e. his outcome is “NA”. It is also assumed that once a subject

drops out of the study, he/she does not get back into it. In addition to these, it may be useful to

have lagged variables for the longitudinal controlled factor, here distance, and for the exposure

variable. These lagged variables may generally be included in the models for principal stratum,

outcome, and censoring. There is a function called “makelagvars” to create these variables.

Creating the “full” data

The final data object that needs to be created is called datafull. It will be required by the EM

algorithm to estimate all the model parameters. As mentioned in the Introduction, the principal

stratification for the NEP study is based on a post-treatment variable. Here the post-treatment

variable used for stratification describes how a subject behaves in terms of exchanging needles

at near versus far distances to the NEP site. This can be generally thought of as encoding

subject’s propensity to exchange, as well as some characteristics of NEP program. It is assumed

that subjects who exchange when the NEP is placed farther from their residence, will also do

so when the NEP is located closer, and conversely, if they don’t exchange at a nearer distance,

they won’t do so at a farther distance. Based on this monotonicity assumption, there are 3

principal strata, when the distance is dichotomized as near and far. In the first strata (Strata

1) are the subjects who will exchange at far and near distances. In the third strata (Strata 3)

are the subjects who will not exchange regardless of the NEP’s location. In the intermediate

strata (Strata 2) are the subjects whose behavior is affected by the location of the NEP. They

will exchange only when the NEP is placed nearer.

Now, the datafull is created by the function “makefull” as follows. For each subject-

time unit, based on the observed distance and exchange behaviour, we determine the possi-

ble principal strata. For example, if for subject i at time j, we have Dij = 0 (near) and
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Eij = 1 (exchanged) , then the possible principal strata Sij are 1 and 2. This information

will be reflected in datafull by having the corresponding row from the databig object repeated

twice, and by having an additional column for denoting the principal stratum, S. Therefore,

datafull will have more rows than databig. The function “makefull”, in addition to creating

datafull also provides a vector of principal strata values, one for each subject-time unit, which

is a random draw from the allowable values. This is used later by the function “EMstart” to

determine a good starting point to the EM algorithm for the parameters of the principal strata

model .

Model specification

The user has to define three different models in order to be able to estimate the causal effect of

the treatment. The first model is a proportional-odds logistic regression model for the principal

strata, since the principal strata are ordered from 1 to 3 (for the NEP example). The principal

strata model is generally specified in terms of fixed covariates, time, and past history of the

subject (this may include previous time-varying covariates, distances, and exchange behavior).

The second model is a binary logistic regression model for the censoring indicator (0 = No; 1

= Yes). This model can generally be specified in terms of fixed covariates, time, past history,

current exchange behavior, and the principal strata. The final model is also a binary logistic

regression model for the outcome variable (0 = No; 1 = Yes). This model can also generally

be specified in terms of fixed covariates, time, past history, current exchange behavior, and

the principal strata. The causal effect of interest is the coefficient corresponding to the current

exchange behavior. It should be noted that all these models are written for subject-time units,

i.e. the principal strata, censoring indicator, and outcome are defined for the unit (i,t) - person

i and semester t. Another implicit notion is that the models are defined only for subjects who
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are still at risk at semester t, i.e. those who haven’t dropped out and haven’t seroconverted at

time t.

The model formulas are written in the Wilkinson-Rogers notation, which is the convention

followed in R and Splus. For example, the model formulas for the three models may be written

as follows:

S ˜ X1 + Em1 + Dm1 + time + E

C ˜ X1 + Em1 + Dm1 + time + S + E

Y ˜ X1 + Em1 + Dm1 + time + S + E

where S,C, and Y are the principal stratum, censoring indicator, and outcome, respectively, and

X is a fixed covariate, Dm1 and Em1 are the distance and exchange behavior observed at the

previous visit, and E is the current exchange behavior.

EM algorithm to estimate the model parameters

The observed data for a person i at time t are (given that he/she is at risk for outcome at t),

past history (fixed covariates, previous values of time-varying covariates, previous distances

and exchange behavior), current distance, exchange behavior, censoring indicator at time t, and

outcome (if not censored at t). The unobserved (latent) data is the information on the principal

stratum to which a unit, (i,t), belongs. The observed data together and the latent principal strata

together make up the complete data. The goal is to estimate the parameters of the three models,

which are optimal in the sense that they maximize the likelihood of obtaining the observed

data. This, however, is not directly feasible since the observed data likelihood depends on the

unknown principal strata. This difficulty can be overcome by the use of the EM algorithm. The

EM algorithm works as follows: (i) in E-step, evaluate the expectation of log-likelihood of the

complete data, where the expectation is with respect to the conditional density of latent data
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given the observed data, (ii) in the M-step, the expectation from (i), which is a function of the

parameters involved in the the latent data and observed data models, is maximized with respect

to these parameters.

In PSpack, the E-step computations are performed by a call to a Fortran subroutine. Be-

cause of the additivity of the contributions from the three models to the expectation of complete

data log-likelihood, the M-step is performed by three separate maximizations. The maximiza-

tion of the principal strata model component is achieved via a call to an R function called polr,

which fits a proprortional-odds logistic regressio model. The maximization of the censoring

and outcome model components are achieved via separate calls to the glm, which fits a logistic

model, with logit link. The function “EM.ps” performs the EM computations.

The EM algorithm is an iterative method. Good starting values for the parameters are

essential for both faster convergence as well as convergence to a global maximum. In PSpack,

good starting values are obtained by assigning equal probabilities (weights) to each allowable

principal stratum for a unit (i,j), i.e. the conditional distribution of the principal strata for a unit

(i,j) given observed data, is assumed to be uniform over all the allowable strata. The function

“EMstart” computes the starting values.

Calculation of the covariance matrix

The EM algorithm, unfortunately, does not provide an estimate of the covariance matrix of the

parameters. The covariance matrix is the inverse of the Hessian matrix, which is a matrix of

second-derivatives of the negative log-likelihood, evaluated at the parameter values to which

the EM algorithm converged. The Hessian matrix is computed in PSpack by means of a call to

a Fortran subroutine, it is then inverted to obtain the covariance matrix.
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A sample session
# First, get all the necessary R functions

> source("routines.r")

# Load into memory, the library of Fortran functions executable in R

> dyn.load("routines.dll") # In Unix: dyn.load("routines.so")

# Make the MASS library available; this is needed to run ‘‘polr’’

> library(MASS)

# Seeding the random number generation

> rngseed(12345) # you can use any integer; to reproduce results exactly, use the same seed

# Get an example data set in the wide-format

> datawide <- dget("datawide")

# Define the # of fixed and time-dependent covariates

> nfix <- 5

> nvary <- 0

# Define the time units

> times <- c(1:12)

# Step 1. get big object, databig, with columns: (id,fixed X’s,time-dependent Z’s,time,D,E,Y,C)

#

# Input: datawide with columns: (id,fixed X’s,Z1.1,Z1.2,...,Z1.K,Z2.1,...,Zp.K,D.1,...,D.K,

# E.1,...,E.K,Y.1,...,Y.K)

> bigobj <- makebig(nfix,nvary,time=times,data=datawide)

> databig <- bigobj$databig

# Set the outcome value, at which drop-out occurs, to an arbitraray negative number

# This is required since Fortran can’t deal with "NA"

> databig$Y[databig$C==1] <- -999.

# Step 2. Create auxiliary variables, such as lagged distance and exposure (lag=1),

# needed for defining models. Add these variables to databig.

# i.e., Dm1(i,t) = D(i,t-1), and Em1(i,t) = E(i,t-1).

# Inputs: databig, idcol, dcol, ecol

> idcol <- 1 # column no. of the subject ID variable in databig

> dcol <- as.integer(1+nfix+nvary+2) # column no. of Distance variable in databig

> ecol <- as.integer(dcol+1) # column no. of Exchange variable in databig

> lagvar <- makelagvars(data=databig,id=idcol,dcol=dcol,ecol=ecol)

> databig$Dm1 <- lagvar$Dlag

> databig$Em1 <- lagvar$Elag

# Step 3. make the "full" object, datafull.

# Inputs: databig, dcol, ecol

# In additional to dataful, other outputs are:

# sbig: a random draw from the allowable principal strata for each subject-time unit

# nsbig: number of allowable principal strata for each subject-time unit

> fullobj <- makefull(data=databig,dcol=dcol,ecol=ecol)

> datafull <- fullobj$datafull

> sbig <- fullobj$sbig

> nsbig <- fullobj$nsbig
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# Step 4. define formulas and design matrices in full dimensions.

# INPUT: model formulas for principal strata (S), censoring indicator (C), and outcome (Y),

> c.fmla <- as.formula("C ˜ X1 + Em1 + Dm1 + time + S + E")

> s.fmla <- as.formula("as.factor(S) ˜ X1 + Em1 + Dm1 + time")

> y.fmla <- as.formula("Y ˜ X1 + Em1 + Dm1 + time + S + E")

# Step 5. Obtain good initial starting values for the EM algorithm

# Input: formulas, sbig, databig

theta.0 <- EMstart(smodel=s.fmla,ymodel=y.fmla,cmodel=c.fmla,sbig,data=databig)

# Step 6. Run the EM algorithm until convergence

# Input: formulas, sbig, theta.0, nsbig, datafull, rel.tol(convergence criterion), and

# maxiter(maximum number of iterations).

# Ouputs: Converged parameter values and hessian matrix

> ans <- EM.ps(smodel=s.fmla,ymodel=y.fmla,cmodel=c.fmla,theta.0,nsbig,data=datafull,

+ rel.tol=1.e-07, maxiter=100)

> theta <- ans$par # converged parameter estimates

> theta[length(theta)] # the causal effect parameter

> se <- sqrt(diag(ans$vcov)) # estimated standard errors of parameter estimates

> se[length(theta)] # std. error of the causal effect
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