1. Let \(X_1, \ldots, X_n \) be i.i.d. \(\text{Binomial}(k, p) \) random variables, where \(k \) is an unknown integer and \(p \in [0, 1] \).

 • Derive a method of moment estimator for \(k \) and \(p \). Comment on the appropriateness of these estimators.

 • Show how you would compute the maximum likelihood estimator for \(k \) and \(p \)? Fix \(k \) and find MLE for \(p \) in terms of \(k \), say \(\hat{p}(k) \). What is \(\hat{p}(k) \)? Then plug \(\hat{p}(k) \) into the likelihood and maximize with respect to \(k \). What values of \(k \) should you maximize the likelihood over?

2. Suppose \(W \) and \(X \) have a known joint density denoted by \(q \). Suppose that the conditional density of \(Y \) given \(W \) and \(X \) is normal with mean \(\alpha W + \beta X \) and variance 1, \(\alpha \in \mathbb{R}, \beta \in \mathbb{R} \). Suppose \((W_1, X_1, Y_1), \ldots, (W_n, X_n, Y_n)\) are i.i.d. with joint density as described.

 • Derive the MLE for \(\alpha, \beta \). What is the limiting distribution of the MLE for \(\alpha \)?

 • Suppose \(\beta \) is known. Derive the MLE for \(\alpha \). What is the limiting distribution of the MLE for \(\alpha \)?

 • When will the limiting distributions in the previous two parts be the same.

3. Let \(X_1, \ldots, X_n \) be iid \(U(\theta, 2\theta) \) where \(\theta > 0 \).

 • Find a method of moments estimator for \(\theta \).

 • Find the MLE, \(\hat{\theta}_n \).