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Summary: In randomized studies involving severely ill patients, functional outcomes are often unobserved due to

missed clinic visits, premature withdrawal or death. It is well known that if these unobserved functional outcomes

are not handled properly, biased treatment comparisons can be produced. In this paper, we propose a procedure

for comparing treatments that is based on a composite endpoint that combines information on both the functional

outcome and survival. We further propose a missing data imputation scheme and sensitivity analysis strategy to

handle the unobserved functional outcomes not due to death. Illustrations of the proposed method are given by

analyzing data from a recent non-small cell lung cancer clinical trial and a recent trial of sedation interruption among

mechanically ventilated patients.
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1. Introduction

Consider a randomized trial in which patients at high risk of death are scheduled to be

clinically evaluated at pre-specified points in time after randomization. These clinical evalu-

ations may be pre-empted due to death. Among living patients, clinical evaluations may be

missing due to skipped visits or premature withdrawal from the study. There is a distinction

between the two types of unobserved data. Data pre-empted due to death are generally

considered undefined, whereas missing data are considered defined but uncollected. The

question addressed in this paper is how to draw inference about the effect of treatment when

clinical evaluation data may be unobserved due to death or missingness.

The issue of ”truncation due to death” is challenging even in the absence of missing data.

A number of methods have been proposed for analyzing such data (Kurland et al., 2009).

Broadly speaking, the methods can be categorized into four main groups: (1) conditional, (2)

joint, (3) causal and (4) composite. In the conditional approach, treatment effects are evalu-

ated by conditioning on survival at each follow-up time (Kurland and Heagerty, 2005; Shardell

and Miller, 2008). This approach is problematic because survival is a post-randomization

factor and conditioning on a factor that may be affected by treatment can introduce bias

(Rosenbaum, 1984). The joint approach introduces a common set of latent random effects

for modeling both clinical evaluation endpoints and survival (Wulfsohn and Tsiatis, 1997;

Tsiatis and Davidian, 2004; Ibrahim et al., 2010; Rizopoulos, 2012). In this approach, the

model for the clinical evaluation endpoints allows trajectories of the functional endpoint

after death, which is not scientifically meaningful. The causal inference approach frames the

problem in terms of counterfactuals and seeks to estimate the ”principal stratum” causal

effect (Frangakis and Rubin, 2002; Hayden et al., 2005; Chiba and VanderWeele, 2011). The

issue with this approach is that the principal stratum is the cohort of patients who would

survive to a particular point in time regardless of treatment assignment and a clinician
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cannot, at the time of the treatment decision, readily identify whether a patient is a member

of this stratum or not. Nonetheless, this approach is useful for understanding the mechanistic

effect of treatment on clinical outcomes. The fourth approach creates a composite outcome

that mixes both the survival and functional evaluation endpoints (Diehr et al., 2001; Lachin,

1999; Joshua Chen et al., 2005). The problem with this approach is that it requires that

the outcomes for patients be ordered. Further, the composite outcome approach does not

allow one to separately tease out the effect of treatment on survival and on the functional

outcome. If patients can be ordered in a way that makes scientific sense, the simplicity of

the composite outcome approach can be a useful way of globally assessing treatment effects

that are causally interpretable.

In this paper, we consider the composite outcome approach and address how to handle

missing clinical evaluation data among those alive at the assessment times. We develop

and illustrate our methodology in the context of the Study HT-ANAM-302 (also known

as ROMANA 2), a randomized trial among advance lung cancer patients with cachexia. A

second example with a trial of sedation interruption among mechanically ventilated patients

is included in Web Appendix A.

In Study HT-ANAM-302, patients were randomized 2:1 to receive either anamorelin (n =

330) or Placebo (n = 165) (Temel et al., 2016). Patients were scheduled to have their lean

body mass (LBM) evaluated at baseline and at 6 and 12 weeks after randomization. Eight

survivors from each treatment group were missing LBM at baseline and are excluded from

our analysis. In Table 1, we present treatment-specific summaries of death prior to week 12

and missingness of LBM among survivors. In this study, there was no statistically significant

differences with respect to death prior to week 12 (15% vs. 17% for Placebo vs. anamorelin).

[Table 1 about here.]
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2. Problem Formulation

2.1 Notation

We consider a two-arm randomized study design in which continuous functional measures

are scheduled to be collected at baseline and K post-baseline assessment times t1, . . . , tK .

Let Y0 denote the baseline measure and Yk (k = 1, . . . , K) denote the post-baseline measure

scheduled to be collected at time tk. We use Y k to denote (Y1, Y2, . . . , Yk). Let X denote

baseline covariates, excluding treatment assignment T . Let L denote the survival time and

Ak = I(L > tk). Let Z = g(Y0, . . . , YK) be the study’s functional endpoint (i.e., an outcome

measured on a living patient). We assume that Z is coded so that higher values denote better

function. In the HT-ANAM-302 study, K = 2, Yk is LBM and Z = (Y1 + Y2)/2 − Y0 (the

clinically meaningful endpoint defined in the protocol).

We consider the primary endpoint to be a finite-valued random variable U which assigns

a score to each patient such that (1) each patient who dies prior to tK is assigned a score

according to their survival time (L), with shorter survival times assigned lower scores and

(2) each patient who survives past tK is assigned a score (higher than those who died prior

to tK) according to their functional status (Z), with lower functional status assigned lower

scores. More formally, U is a function of (AK ,W ) where W = L if AK = 0 and W = Z if

AK = 1 and is defined such for all ω ∈ Ω (sample space), U(ω) < c (an arbitrary constant)

when AK(ω) = 0 and for all ω, ω′ ∈ Ω

U(ω) < U(ω′) if AK(ω) = AK(ω′),W (ω) < W (ω′)

U(ω) > U(ω′) if AK(ω) = AK(ω′),W (ω) > W (ω′)

U(ω) = U(ω′) if AK(ω) = AK(ω′),W (ω) = W (ω′)

U(ω) < U(ω′) if AK(ω) = 0, AK(ω′) = 1

U(ω) > U(ω′) if AK(ω) = 1, AK(ω′) = 0.

For our methods, only the ordering of U is important, not the actual score assignments.

That is, given a sample of (AK ,W )’s, the above conditions are sufficient for ranking the
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sample from worst to best; for any two subjects i and j, the conditions allow us to know

whether Ui < Uj, Ui = Uj or Ui > Uj. This endpoint is a composite outcome in the sense

that it is univariate and contains information on survival and, when measurable, functional

status.

For a patient alive at assessment k (k > 1), their outcome may be missing. When Ak = 1,

define Rk to be the indicator that Yk is observed. Thus, the observed data are:

O = (T,X, Y0, L, A1R1, A1R1Y1, . . . , AKRK , AKRKYK).

We have assumed that T , X, and Y0 are always observed and that L is observed when L < tK

(i.e., no censoring before tK as is typical in well-designed clinical trials). For patients alive

at tK (i.e., AK = 1), let S = (R1, . . . , RK) denote the missing data pattern; further, let

Y
(s)
obs = {Yk : Rk = 1, k > 1, S = s} and Y

(s)
mis = {Yk : Rk = 0, k > 1, S = s} denote the

observed and missing post-baseline functional outcomes. Note that Z is unobserved when

S 6= 1, where 1 is a K-dimensional vector of 1’s. We assume that we observe n i.i.d. copies

of O. When necessary, we will subscript random variables by i and j to denote data specific

to individual i and j, respectively.

2.2 Treatment Effect Quantification

In the classic two-sample Mann-Whitney test (Mann and Whitney, 1947), the population

distributions from which the independent samples are drawn are assumed to be absolutely

continuous. This assumption obviates tied observations. The samples are used to estimate

the probability (η) that the outcome for a random individual drawn from the first population

is less than the outcome for a random individual drawn from the second population. Under

the null hypothesis of equality of the population distributions, η = 0.5. If, however, the

population distributions are not absolutely continuous, η may not be distribution-free under

the null.

In our setting, we want to allow for treatment-specific population distributions of the
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composite outcome that may not be absolutely continuous. To address this issue, we define

the treatment effect parameter θ to be the probability that the outcome for a random

individual randomized to treatment T = 0 is less than the outcome of a random individual

randomized to treatment T = 1 minus the probability that the outcome for a random

individual randomized to treatment T = 0 is greater than the outcome of a random individual

randomized to treatment T = 1. Values of θ > 0 and θ < 0 favor T = 1 and T = 0,

respectively. Under the null hypothesis of no treatment effect, θ will be zero. Our goal is to

draw inference about θ.

In the absence of missing data, we estimate θ by

θ̂ =
1

n0n1

∑
i:Ti=0

∑
j:Tj=1

{I(Ui < Uj)− I(Ui > Uj)}

where n0 =
∑

i(1 − Ti) and n1 =
∑

i Ti. In addition to estimating θ, quantiles of the

treatment-specific distribution of the composite endpoint U can be calculated to help further

characterize the treatment effect.

2.3 Missing Data and Imputation Assumptions

In order to estimate θ in the presence of missing data, we need to know how to impute Z

for patients alive at tK with s 6= 1. It is sufficient to impute Y
(s)
mis for these patients.

Assumptions are required in order to perform this imputation. We introduce the following

class of untestable assumptions:

f(Y
(s)
mis|AK = 1, Y

(s)
obs , Y0, X, T, S = s) ∝ exp(βTZ)f(Y

(s)
mis|AK = 1, Y

(s)
obs , Y0, X, T, S = 1) (1)

for all s 6= 1, where βT is a treatment-specific sensitivity parameter. Note that setting

βT = 0 (i.e., benchmark assumption in the class) reduces to the complete case missing

value (CCMV) restrictions (Little, 1993) applied to the missing data patterns for patients

alive at tK . It can be shown that CCMV is different from the missing at random (MAR)

assumption. Because of the difficulty and subtlety of the MAR assumption in the presence
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of non-monotone missing data (Robins and Gill, 1997; Tsiatis, 2007), we have anchored the

class of assumptions around CCMV.

To understand this class of assumptions, consider the case where K = 2 and, as in the

HT-ANAM-302 study, Z = (Y1 + Y2)/2− Y0. In this case, (1) reduces to the following three

assumptions, where β′T = βT/2 (due to the definition of the functional endpoint Z):

Assumption 1:

f(Y2|A2 = 1, Y1, Y0, X, T, S = (1, 0)) ∝ exp(β′TY2) f(Y2|A2 = 1, Y1, Y0, X, T, S = 1)︸ ︷︷ ︸
Reference Distribution

(2)

This assumption says that for subjects alive at t2, who are observed at time t1, who share

the same functional measure at t1 and who share the same baseline factors, the distribution

of Y2 for those whose functional measure at t2 is missing is, when β′T > 0 (< 0), more heavily

weighted toward higher (lower) values of Y2 than those whose functional measure at t2 is

observed.

Assumption 2:

f(Y1|A2 = 1, Y2, Y0, X, T, S = (0, 1)) ∝ exp(β′TY1) f(Y1|A2 = 1, Y2, Y0, X, T, S = 1)︸ ︷︷ ︸
Reference Distribution

(3)

This assumption says that for subjects alive at t2, who are observed at time t2, who share

the same functional measure at t2 and who share the same baseline factors, the distribution

of Y1 for those whose functional measure at t1 is missing is, when β′T > 0 (< 0), more heavily

weighted toward higher (lower) values of Y1 than those whose functional measure at t1 is

observed.

Assumption 3:

f(Y1, Y2|A2 = 1, Y0, X, T, S = (0, 0))

∝ exp (β′T (Y1 + Y2)) f(Y1, Y2|A2 = 1, Y0, X, T, S = 1)︸ ︷︷ ︸
Reference Distribution

(4)

This assumption says that for subjects alive at t2 and who share the same baseline factors,

the joint distribution of Y1 and Y2 for those whose functional measures at t1 and t2 are
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missing is, when β′T > 0 (< 0), more heavily weighted toward higher (lower) values of Y1 and

Y2 than those whose measures are fully observed.

When β′T = 0 in above assumptions, there is no differential weighting. The differences be-

tween the distributions being contrasted in the above assumptions increases with |β′T |. To bet-

ter illustrate these assumptions, ignore conditioning on Y0 and X and suppose f(Y1, Y2|A2 =

1, T, S = 1) is multivariate normal with mean (µT,1, µT,2) and variance-covariance matrix

ΣT =

 σ2
T,1 ρTσT,1σT,2

ρTσT,1σT,2 σ2
T,2


Then, f(Y2|A2 = 1, Y1, T, S = (1, 0)) is normal with mean µT,2 +β′T (1−ρ2T )σ2

T,2 +ρT
σT,2

σT,1
(Y1−

µT,1) and variance (1 − ρ2T )σ2
T,2; f(Y1|A2 = 1, Y2, T, S = (0, 1)) is normal with mean µT,1 +

β′T (1−ρ2T )σ2
T,1+ρT

σT,1

σT,2
(Y2−µT,2) and variance (1−ρ2T )σ2

T,1; and f(Y1, Y2|A2 = 1, T, S = (0, 0))

is multivariate normal with mean (µT,1 +β′Tσ
2
T,1 +β′TρTσT,1σT,2, µT,2 +β′Tσ

2
T,2 +β′TρTσT,1σT,2)

and variance-covariance matrix ΣT . If ρT > 0, then the above means increase linearly in β′T ;

β′T has no impact on the above variances and covariances. Thus, β′T > 0 (β′T < 0) implies

that the distributions on the left hand sides of Equations (2), (3) and (4) have more (less)

mass at higher values than their reference distributions.

2.4 Modeling and Inference

Our imputation approach requires specification of a model for f(Y K |AK = 1, Y0, X, T, S =

1). In specifying this model, it is important to utilize an approach that respects bounds

(possibly population-specific) on the functional outcomes; failure to do so can result in non-

sensical imputations.

To address this issue, we consider a data transformation of Yk (k = 1, . . . , K) by a

transformation function

φ(yk) = log

{
yk −BL

BU − yk

}
,

where (BL, BU) denote the lower and upper bound. Let Y †k = φ(Yk) and Y
†
k = (Y †1 , . . . , Y

†
k ).
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Importantly, there is a one-to-one mapping between the conditional distributions h(Y
†
K |AK =

1, Y0, X, T, S = 1) and f(Y K |AK = 1, Y0, X, T, S = 1). We construct a model for f(Y K |AK =

1, Y0, X, T, S = 1) by positing a model for h(Y
†
K |AK = 1, Y0, X, T, S = 1). To proceed, we

write

h(Y
†
K |AK = 1, Y0, X, T, S = 1) =

K∏
k=1

h(Y †k |AK = 1, Y
†
k−1, Y0, X, T, S = 1) (5)

and posit a model for each component of the product.

In our examples, we consider models of the form:

h(Y †k |AK = 1, Y
†
k−1, Y0, X, T = t, S = 1) = hk,t(Y

†
k − µk,t(Y

†
k−1, Y0, X;αk,t))

where µk,t(Y
†
k−1, Y0, X;αk,t) is a specified conditional mean function (depending on time k

and treatment t) of Y
†
k−1, Y0, X and αk,t, αk,t is an unknown parameter vector and hk,t is

an unspecified time/treatment-specific mean zero density function. The parameter vectors

αk,t can be estimated by minimizing the least squares objective function

n∑
i=1

I(Ti = t)AK,i

(
K∏
k=1

Rk,i

)
{Y †k,i − µk,t(Y

†
k−1,i, Y0,i, Xi;αk,t)}2

Let α̂k,t denote the least squares estimator of αk,t. The density function hk,t can be estimated

by kernel density estimation based on the residuals {Y †k,i − µk,t(Y
†
k−1,i, Y0,i, Xi; α̂k,t) : Ti =

t, AK,i = 1, R1,i = . . . , RK,i = 1, i = 1, . . . , n} or estimated with parametric assumptions

(e.g. normality) if the sample size is small. Let ĥk,t denote the kernel density estimator of

hk,t. We then estimate f(Y K |AK = 1, Y0, X, T, S = 1) by

f̂(Y K |AK = 1, Y0, X, T, S = 1) =
K∏
k=1

ĥk,t(Y
†
k − µk,t(Y

†
k−1, Y0, X; α̂k,t))

∣∣∣∣dφ(Yk)

dYk

∣∣∣∣ .
For each individual i alive at tK and who is in a stratum s 6= 1, we impute (see next

section) the missing functional outcomes by drawing from the density that is proportional

to exp(βTZ)f̂(Y
(s)
mis|AK = 1, Y

(s)
obs = Yobs,i, Y0 = Y0,i, X = Xi, T = Ti, S = 1). For each such

individual, we draw M copies of the missing functional outcomes to create M complete

datasets. For each complete dataset m, we estimate θ by θ̂m. Our overall estimator of θ
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is θ̃ = 1
M

∑M
m=1 θ̂m. Confidence intervals can be constructed by non-parametric bootstrap,

where individuals are sampled with replacement within each treatment group.

2.5 Imputation

We propose the following Metropolis-Hastings algorithm to draw from

exp(βTZ)f̂(Y
(s)
mis|AK = 1, Y

(s)
obs , Y0, X, T, S = 1).

For ease of notation, we suppress the superscript s for Ymis and Yobs in the following steps.

(1) Set l = 0. Choose arbitrary initial values for Ymis, denoted by Y
(0)
mis. Let Z(0) be the

primary functional endpoint with data (Yobs, Y
(0)
mis).

(2) Set l = l + 1.

(3) Generate Y ′mis from a (multivariate) Gaussian distribution with mean Y
(l−1)
mis and variance

Λ.

(4) Calculate the acceptance ratio as

a =
exp{βTZ ′}f̂(Y ′mis, Yobs|AK = 1, Y0, X, T, S = 1)

exp{βTZ(l−1)}f̂(Y
(l−1)
mis , Yobs|AK = 1, Y0, X, T, S = 1)

where Z ′ and Z(l−1) are the primary functional endpoints with data (Yobs, Y
′
mis) and

(Yobs, Y
(l−1)
mis ), respectively.

(5) Accept Y
(l)
mis = Y ′mis with probability min(1, a) and Y

(l)
mis = Y

(l−1)
mis with probability 1 −

min(1, a).

(6) Repeat Steps 2-5 until the Markov chain converges.

(7) Draw random samples from the set {Y (l0)
mis , Y

(l0+1)
mis , . . .} as the imputed missing values,

where l0 corresponds to the burn-in number.

Note that out-of-boundary candidates Y ′mis are rejected at Step 5 since the acceptance

ratio will be 0. The tuning parameter Λ in Step 3 affects the acceptance rate. In practice,

calibration of Λ may be applied to achieve a desirable acceptance rate. Note a higher

acceptance rate often corresponds to a slower convergence. Robert (1997) suggested an
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acceptance rate of 1/4 for models of high dimension and 1/2 for models of dimension 1

or 2. As an example of calibration, Muller (1991) proposed to successively modify Λ as the

product of a scale factor and the variance of the available samples. The calibration process

continues until the acceptance rate is close to 1/4 and the variance of the available samples

stabilizes. Furthermore, various diagnostics such as Geweke diagnostic may be applied to

evaluate the convergence of the Markov chain (Cowles and Carlin, 1996).

3. Simulation Study

We considered a study design in which two post-baseline functional assessments are scheduled

(i.e., K = 2) to be collected at t1 and t2. We defined Z = (Y1+Y2)/2−Y0. For each simulation,

we generate a dataset with n individuals - half assigned T = 0 and half assigned T = 1. For

each individual, we simulated data according to the following algorithm:

• Draw Y0 from standard normal distribution.

• Given T and Y0, draw L1 from an exponential distribution with mean 1/ exp(λT,0+λT,1Y0).

If L1 < t1, set L = L1 and stop.

• Given T and Y0, draw Y1 from a normal distribution with mean µT + γTY0, and variance

1.

• Given T and Y 1, draw L2 from an exponential distribution with mean 1/ exp(λT,0+λT,1Y1).

If L2 < t2 − t1, set L = L2 + t1 and stop.

• Given T and Y 1, draw Y2 from a normal distribution with mean µT + γTY1 and variance

1.

• Given T and Y 2, draw S from multinomial distribution with

P [S = s|T, Y 2] =
exp(µ′T,s + βTZ)

1 +
∑

s′ 6=1 exp(µ′T,s′ + βTZ)
, s 6= 1

and

P [S = 1|T, Y 2] =
1

1 +
∑

s′ 6=1 exp(µ′T,s′ + βTZ)
.
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Note that the data generation mechanism for S is equivalent to the exponential tilting class

of assumptions posited by (1).

We considered two major scenarios in the simulation study. Scenario I is focused on

evaluating the impact of survival and functional status among survivors on the treatment

effect evaluation. In this scenario, we assumed there is no missing data among survivors

in either arm (i.e., µ′T,s ≡ −∞ for all T and s). Scenario II is focused on evaluating the

impact of missing data and the proposed sensitivity analysis strategy on the treatment effect

evaluation. In this scenario, we assumed there were no deaths in either arm (i.e., λT,0 = −∞

for all T ). For all simulations, we set γ0 = γ1 ≡ 1 and µ0 ≡ 0. For assessing the performance

of our estimation procedure for θ, we report mean squared error, coverage rate of 95%

percentile-based bootstrap confidence intervals (1000 re-samples) and the null hypothesis

rejection rate. In our simulation study, we considered sample sizes of 200 and 500. Each

simulation was based on 500 replications. For missing data imputation, we set M = 1 and

used a burn-in of 1000 iterations for each MCMC chain.

3.1 Scenario I

We set λ0,0 = λ1,0 = −0.5 and λ0,1 = 1. In varying the survival rate at the end of the study,

we considered study lengths (i.e., t2) of 0.2 and 0.5 and set t1 = t2/2. Table 2 shows that,

for all settings, θ is well estimated and the 95% bootstrap confidence interval covers the true

value of θ with probability close to the nominal level. Under the null hypothesis H0 : θ = 0

(i.e. λ1,1 = 1 and µ1 = 0), the type I error rate is well controlled and as expected the power

to detect a treatment effect increases as the size of the study or |θ| increases.

[Table 2 about here.]
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3.2 Scenario II

We set µ′1,s = −2.5 and µ′0,s = −∞ (i.e., no missing data in arm T = 0) for all s 6= 1. We

set β1 = −2.0. We considered µ1 = −0.25, 0.00 and 0.25, yielding missing data rates in arm

T = 1 of 21%, 15% and 10%, respectively. Table 3 shows that when β1 is correctly specified

(i.e., β∗1 = −2.0), the multiple imputation procedure produces unbiased estimates of θ with

nominal coverage probabilities. However, when β1 is mis-specified (i.e., β∗1 = 0), there is, as

expected, bias in estimation of θ, poor confidence interval coverage and inflated type I error.

[Table 3 about here.]

4. Data Analysis

For the analysis of the HT-ANAM-302 Study, the imputation of week 6 and week 12

LBM incorporated the following baseline covariates: Eastern Cooperative Oncology Group

(ECOG) performance status (0 or 1 vs. 2), age ( 6 65 vs. > 65), sex, body mass index (BMI)

(underweight, < 18.5, or not), and weight loss over the prior 6 months (WL) (6 10% vs. >

10%). In this example, we applied a data transformation setting the lower (BL) and upper

(BU) bound of LBM to be 24 and 140, respectively. We specified the following models for

µk,t(Y
†
k−1, Y0, X;αk,t):

µ1,t(Y0, X,α1,t) = α1,t,1 + α1,t,2Y0 + α1,t,3ECOG+ α1,t,4AGE

+ α1,t,5SEX + α1,t,6BMI + α1,t,7WL

µ2,t(Y
†
1, Y0, X;α2,t) = α2,t,1 + α2,t,2Y0 + α2,t,3ECOG+ α2,t,4AGE

+ α2,t,5SEX + α2,t,6BMI + α2,t,7WL+ α2,t,8Y
†
1

To estimate θ, M = 10 imputed datasets were generated. A burn-in of 2000 iterations

was used for each MCMC chain. After the burn-in, imputed data were drawn every 50

iterations. Trace plots of the MCMC chains for 5 randomly selected patients are reported

in Web Appendix B. A total of 1000 bootstrap samples were used to compute standard
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errors and 95% percentile-based confidence intervals; two-sided p-values were computed using

a standard normal approximation to the Wald statistic (estimator divided by bootstrap

standard error).

Under the benchmark assumptions, θ̂ = 0.30 (95% CI: 0.16 to 0.37, p < 0.0001), which

indicates that patients treated with anamorelin have a significantly higher probability of

having a better clinical outcome, as described by the composite of survival and average

change in LBM from baseline, than patients treated with Placebo. Figure 1 displays the

treatment-specific cumulative distribution functions of the composite endpoint U , where we

have labeled the values of the composite endpoint according to the survival time L and

functional endpoint Z among survivors. Note that the distribution of survival is similar

across the treatment groups and differences in the distribution of the composite endpoint

are being driven by differences in the functional endpoint among survivors. In the Placebo

group, we estimate that more than half the patients will survive and have an average change

in LBM from baseline greater than -0.98 kg (95% CI: -1.27 kg to -0.28 kg). In the anamorelin

group, we estimate that more than half the patients will survive and have an average change

in LBM from baseline greater than 0.69 kg (95% CI: 0.43 kg to 0.93 kg).

For the sensitivity analysis, we varied βT from −0.5 to 0.5. This range corresponds to an

induced shift, relative to the benchmark imputation, of about 1.5 kg in the mean of the

imputed average LBM change, which represents a clinically important change (Figure 2).

Panel (A) of Figure 3 presents estimates of θ and its associated 95% confidence interval as

a function of β0 (i.e., sensitivity analysis parameter in the Placebo arm), for two extreme

values of β1 = −0.5, 0.5 (i.e., sensitivity analysis parameter in the anamorelin arm). For

all the sensitivity scenarios, the lower bound of the 95% CI for θ is always greater than 0

suggesting that the conclusions from the benchmark analysis are robust. Panel (B) of Figure 3

presents the treatment-specific estimates (along with 95% confidence intervals) of the median
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of the composite endpoint and its 95% confidence interval as a function of βT for this study.

Panel (C) of Figure 3 presents a contour plot of the p-values associated with testing the null

hypothesis θ = 0 for each combination of β0 and β1 for this study. The figures shows that,

for all combinations, the null hypothesis is rejected in favor of anamorelin. We conclude that

anamorelin is superior to Placebo in terms of improving the composite endpoint, driven by

improvements in LBM (as depicted in Figure 1).

[Figure 1 about here.]

[Figure 2 about here.]

[Figure 3 about here.]

5. Discussion

In this paper, we proposed a global sensitivity analysis approach for randomized controlled

clinical trials with death and intermittent missing data. Our method is based on the construc-

tion of a composite endpoint that combines both the survival and the functional outcome

data. Complete case missing value constraints are considered as the benchmark assumption

for intermittent missing data imputation. Sensitivity analysis is further conducted to evaluate

the robustness of the findings through exponential tilting. The sensitivity analysis strategy

differs from previous work in two important ways. First, it handles non-monotone missing

data anchored at CCMV benchmark restrictions. With the exception of Minini and Chavance

(2004) and Vansteelandt et al. (2007), previous work has focused on monotone missing

data anchored at MAR-type assumptions (see, for example, Rotnitzky et al. (2001b); Little

(1994); Rotnitzky et al. (1998); Scharfstein et al. (1999); Robins et al. (2000); Rotnitzky

et al. (2001a); Birmingham et al. (2003); Daniels and Hogan (2008); National Research

Council Panel on Handling Missing Data in Clinical Trials (2010); Scharfstein et al. (2014)).

Furthermore, previous work has not been imputation-based. Second, our proposal uses a
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parsimonious way to introduce sensitivity parameters, which is directly connected to the

functional outcome.

The CCMV benchmark restrictions are untestable and may be considered unreasonable in

some settings. Thus, the proposed sensitivity analysis strategy is critically important. Our

proposal will fail in settings where there are very few survivors with complete functional

outcome data, on which Z is defined.

We emphasize that there exists multiple approaches to address the ”truncation by death”

issue. Which approach is the “best” depends on the target of inference (Kurland et al., 2009).

Provided that death and the functional outcome can be ordered in a scientifically meaningful

way, the composite endpoint approach is desirable when the goal is to globally evaluate

the efficacy and safety of a medical intervention under the intention to treat paradigm.

Before utilizing the proposed method, researchers should employ mixed methods to confirm

that the ordering is consistent with the health preferences of the patient population under

investigation.

The ranking scheme we proposed is similar to the “untied worst-rank score analysis”

in Lachin (1999). An alternative approach, the “worst-rank score analysis”, ranks all the

patients who died (AK = 0) the same and is also commonly used. The proposed method

can be easily extended to incorporate alternatives to death such as ”unable to complete”

the functional evaluation as may occur in studies similar to the trial of sedation interruption

among mechanically ventilated patients. The principle for choosing the ranking scheme,

nonetheless, is that the ranking orders should be clinically meaningful and closely related to

the goal of evaluating the efficacy and safety of the treatment.

In the proposed approach, we assume that the survival status is always known and there

is no censoring. Such an assumption is generally reasonable for well-controlled clinical trials

with relatively short study durations. When this assumption does not hold, we need to extend
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the imputation strategy to first impute the survival time for censored subjects. Depending

on the imputed survival length, missing data may nor may not need to be imputed for these

subjects.

In this paper, we have assumed complete information on baseline covariates, including the

functional measure. The missing baseline functional measures could be imputed by extending

the patterns of missingness to include this measure. With regards to other missing baseline

covariates, we recommend, prior to implementation of our proposed methods, imputation

using readily available software.

We proposed numerical sampling techniques, specifically the random-walk Metroplis Hast-

ings algorithm, for sampling the missing outcomes. Alternatively, the slice sampling algo-

rithm (Neal, 2003) can be applied to take into account the restricted ranges of the missing

outcomes. The computation load may be reduced for special cases in which there is a closed

form expression for the target distributions.

The proposed approach can handle randomized studies with more than two treatment arms

by conducting pairwise treatment comparisons and adjusting for multiplicity. The proposed

missing data imputation strategy may be applied without change since it is conducted

separately for each arm.

6. Software

A web-based software is developed for the proposed method. The software is demonstrated

at http://www.olssol.com/app/composite/. Source code in the form of R code is available

on request from the authors.

Acknowledgments and Conflicts

The authors are grateful to the editor and referees for their constructive comments. The

methods developed in this paper were motivated by a consulting project between the first



Inference in Randomized Trials with Death and Missingness 17

two authors (CW and DS) and Helsinn Therapeutics. CW and DS were compensated for

their consultation services. CW and DS were not paid for preparation of this manuscript.

This research was also partially supported by contracts from FDA and PCORI, NIH grant

R24HL111895 and NCI grant CA183854.

References

Birmingham, J., Rotnitzky, A., and Fitzmaurice, G. M. (2003). Pattern-mixture and selection

models for analysing longitudinal data with monotone missing patterns. Journal of the

Royal Statistical Society: Series B 65, 275–297.

Chiba, Y. and VanderWeele, T. J. (2011). A simple method for principal strata effects when

the outcome has been truncated due to death. American Journal of Epidemiology 173,

745–751.

Cowles, M. K. and Carlin, B. P. (1996). Markov Chain Monte Carlo convergence diagnostics:

a comparative review. Journal of the American Statistical Association 91, 883–904.

Daniels, M. and Hogan, J. (2008). Missing Data in Longitudinal Studies: Strategies for

Bayesian Modeling and Sensitivity Analysis. CRC Press.

Diehr, P., Patrick, D. L., Spertus, J., Kiefe, C. I., Donell, M., and Fihn, S. D. (2001).

Transforming self-rated health and the SF-36 scales to include death to improve inter-

pretability. Medical Care 39, 670–680.

Frangakis, C. E. and Rubin, D. B. (2002). Principal stratification in causal inference.

Biometrics 58, 21–29.

Hayden, D., Pauler, D. K., and Schoenfeld, D. (2005). An esitmator for treatment compar-

isons among survivors in randomized trials. Biometrics 61, 305–310.

Ibrahim, J. G., Chu, H., and Chen, L. M. (2010). Basic concepts and methods for joint

models of longitudinal and survival data. Journal of Clinical Oncology 28, 2796–2801.

Joshua Chen, Y., Gould, A. L., and Nessly, M. L. (2005). Treatment comparisons for a



18 Biometrics, 000 0000

partially categorical outcome applied to a biomarker with assay limit. Statistics in

Medicine 24, 211–228.

Kurland, B. F. and Heagerty, P. J. (2005). Directly parameterized regression conditioning on

being alive: analysis of longitudinal data truncated by deaths. Biostatistics 6, 241–258.

Kurland, B. F., Johnson, L. L., Egleston, B. L., and Diehr, P. H. (2009). Longitudinal

data with follow-up truncated by death: match the analysis method to research aims.

Statistical Science 24, 211–222.

Lachin, J. M. (1999). Worst-rank score analysis with informatively missing observations in

clinical trials. Controlled Clinical Trials 20, 408–422.

Little, R. J. (1993). Pattern-mixture models for multivariate incomplete data. Journal of

the American Statistical Association 88, 125–134.

Little, R. J. (1994). A class of pattern-mixture models for normal incomplete data.

Biometrika 81, 471–483.

Mann, H. B. and Whitney, D. R. (1947). On a test of whether one of two random variables is

stochastically larger than the other. The Annals of Mathematical Statistics pages 50–60.

Minini, P. and Chavance, M. (2004). Sensitivity analysis of longitudinal binary data with

non-monotone missing values. Biostatistics 5, 531–544.

Muller, P. (1991). A generic approach to posterior integration and Gibbs sampling. Technical

report, Purdue University.

National Research Council Panel on Handling Missing Data in Clinical Trials (2010). The

Prevention and Treatment of Missing Data in Clinical Trials. The National Academies

Press.

Neal, R. M. (2003). Slice sampling. Annals of Statistics 31, 705–741.

Rizopoulos, D. (2012). Joint models for longitudinal and time-to-event data: With applica-

tions in R. CRC Press.



Inference in Randomized Trials with Death and Missingness 19

Robert, C. P. (1997). Discussion of Richardson and Green’s paper. Journal of the Royal

Statistical Society: Series B (Statistical Methodology) 59, 758–764.

Robins, J., Rotnitzky, A., and Scharfstein, D. (2000). Sensitivity analysis for selection bias

and unmeasured confounding in missing data and causal inference models. In Halloran,

E., editor, Statistical Models for Epidemiology, pages 1–94. Springer-Verlag.

Robins, J. M. and Gill, R. D. (1997). Non-response models for the analysis of non-monotone

ignorable missing data. Statistics in Medicine 16, 39–56.

Rosenbaum, P. R. (1984). The consequences of adjustment for a concomitant variable that

has been affected by the treatment. Journal of the Royal Statistical Society, Series A

147, 656–666.

Rotnitzky, A., Robins, J., and Scharfstein, D. (1998). Semiparametric regression for

repeated outcomes with non-ignorable non-response. Journal of the American Statistical

Association 93, 1321–1339.

Rotnitzky, A., Scharfstein, D., Su, T., and Robins, J. (2001a). A sensitivity analysis

methodology for randomized trials with potentially non-ignorable cause-specific censor-

ing. Biometrics 57, 103–113.

Rotnitzky, A., Scharfstein, D., Su, T.-L., and Robins, J. (2001b). Methods for conducting

sensitivity analysis of trials with potentially nonignorable competing causes of censoring.

Biometrics 57, 103–113.

Scharfstein, D., McDermott, A., Olson, W., and F, W. (2014). Global sensitivity analysis

for repeated measures studies with informative drop-out. Statistics in Biopharmaceutical

Research 6, 338–348.

Scharfstein, D., Rotnitzky, A., and Robins, J. (1999). Adjusting for non-ignorable drop-out

using semiparametric non-response models (with discussion). Journal of the American

Statistical Association 94, 1096–1146.



20 Biometrics, 000 0000

Shardell, M. and Miller, R. R. (2008). Weighted estimating equations for longitudinal

studies with death and non-monotone missing time-dependent covariates and outcomes.

Statistics in Medicine 27, 1008–1025.

Temel, J. S., Abernethy, A. P., Currow, D. C., Friend, J., Duus, E. M., Yan, Y., and Fearon,

K. C. (2016). Anamorelin in patients with non-small-cell lung cancer and cachexia

(romana 1 and romana 2): results from two randomised, double-blind, phase 3 trials.

The Lancet Oncology 17, 519–531.

Tsiatis, A. (2007). Semiparametric Theory and Missing Data. Springer Science & Business

Media.

Tsiatis, A. A. and Davidian, M. (2004). Joint modeling of longitudinal and time-to-event

data: An overview. Statistica Sinica 14, 809–834.

Vansteelandt, S., Rotnitzky, A., and Robins, J. (2007). Estimation of regression models

for the mean of repeated outcomes under nonignorable nonmonotone nonresponse.

Biometrika 94, 841–860.

Wulfsohn, M. S. and Tsiatis, A. A. (1997). A joint model for survival and longitudinal data

measured with error. Biometrics 53, 330–339.



Inference in Randomized Trials with Death and Missingness 21

C
um

ul
at

iv
e 

P
ro

ba
bi

lit
y

3 21 42 63 84

−6.9 −4 −2 0 2 4 6 8 11

0.
00

0.
25

0.
50

0.
75

1.
00 L: Time to Death (days) 

Z: Average change in LBM (kg)

Placebo
anamorelin

Figure 1: Cumulative distribution function of the composite endpoint for each treatment
group based on the multiple imputation algorithm with the benchmark assumptions. The
composite endpoint is labeled according to the survival time L among patients that die and
the functional endpoint Z among patients that survive to 12 weeks.
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Figure 3: Sensitivity analysis: Panel (A) presents estimates of θ (with 95% confidence
intervals) for various choices of the sensitivity analysis parameters. Note that β1 and β0 are
the sensitivity analysis parameters for the anamorelin and Placebo groups, respectively. Panel
(B) presents the treatment-specific estimates of the median (with 95% confidence intervals)
of the composite endpoint for various choices of sensitivity analysis parameters. Panel (C)
presents the contour plot of the p-values obtained by testing the null hypothesis of θ = 0 as
function of treatment-specific sensitivity analysis parameters.
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Table 1: Treatment-specific summaries of death prior to week 12, and missingness of LBM
among survivors from the HT-ANAM-302 Study. †: Patients with AK = 0.

Placebo (n = 157) anamorelin (n = 322)

Died Prior to Week 12† 24 (15.3%) 54 (16.8%)
Survivors with complete data 93 (59.2%) 185 (57.5%)

Survivors missing only Week 6 3 (1.9%) 17 (5.3%)
Survivors missing only Week 12 17 (10.8%) 31 (9.6%)

Survivors missing both Weeks 6 and 12 20 (12.7%) 35 (10.9%)
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Table 2: Scenario I Simulation Study Results. MSE*: mean squared error ×1000. Rej*:
rejection rate for H0 : θ = 0. Cov*: bootstrap 95% confidence interval coverage rate. The
Death Rates for T = 0 are 0.188 or 0.354 corresponding to the study length (t2) of 0.2 and
0.5, respectively.

Death Rate True Sample Estimation Rate

λ1,1 T = 0 T = 1 µ1 θ Size θ̂ MSE* Rej* Cov*

1.3 0.188 0.230 0.0 -0.056 200 -0.060 5.5 0.092 0.978
500 -0.054 2.9 0.186 0.938

0.293 0.5 0.088 200 0.085 7.1 0.198 0.944
500 0.086 2.5 0.358 0.958

0.354 0.388 0.0 -0.051 200 -0.053 6.7 0.104 0.936
500 -0.046 2.7 0.154 0.956

0.463 0.5 0.007 200 0.007 7.6 0.072 0.928
500 0.006 2.6 0.042 0.960

1.0 0.188 0.188 0.0 -0.001 200 0.002 6.9 0.050 0.952
500 0.004 2.7 0.048 0.958

0.236 0.5 0.178 200 0.181 7.5 0.602 0.932
500 0.177 2.7 0.934 0.946

0.354 0.354 0.0 0.000 200 -0.003 6.1 0.032 0.974
500 0.000 2.7 0.058 0.944

0.418 0.5 0.080 200 0.079 7.2 0.180 0.946
500 0.084 2.7 0.352 0.948

0.7 0.188 0.151 0.0 0.051 200 0.047 6.4 0.090 0.960
500 0.053 2.4 0.174 0.952

0.180 0.5 0.265 200 0.269 5.8 0.924 0.954
500 0.262 2.7 0.996 0.944

0.354 0.315 0.0 0.054 200 0.051 6.3 0.096 0.958
500 0.053 2.5 0.174 0.964

0.362 0.5 0.163 200 0.160 6.0 0.518 0.950
500 0.165 2.7 0.884 0.954
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Table 3: Scenario II Simulation Study Results. MSE*: mean squared error ×1000. Rej*:
rejection rate for H0 : θ = 0. Cov*: bootstrap 95% confidence interval coverage rate. β∗1 :
sensitivity parameter for T = 1. Missing rate*: overall functional endpoint missing rate.

Missing True Sample Estimation Rate

β∗1 Rate* µ1 θ Size θ̂ MSE* Rej* Cov*

0 0.21 -0.25 -0.186 200 -0.049 26.8 0.090 0.640
500 -0.045 23.5 0.146 0.268

0.15 0.00 0.000 200 0.104 18.4 0.236 0.780
500 0.110 15.1 0.516 0.476

0.10 0.25 0.186 200 0.275 14.4 0.906 0.810
500 0.271 9.5 1.000 0.614

-2 0.21 -0.25 -0.186 200 -0.192 7.1 0.612 0.952
500 -0.189 2.9 0.928 0.950

0.15 0.00 0.000 200 -0.014 7.6 0.054 0.952
500 -0.011 3.1 0.050 0.952

0.10 0.25 0.186 200 0.180 7.5 0.572 0.950
500 0.178 2.7 0.928 0.948


