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1. Introduction

We consider a prospective cohort study design in which outcomes are scheduled to be

collected at fixed time-points after enrollment and the parameter of interest is the mean

outcome at the last scheduled study visit. We are concerned with drawing inference about this

target parameter in the setting where some study participants prematurely stop providing

outcome data.

Identifiability of the target parameter requires untestable assumptions about the nature

of the process that leads to premature withdrawal. A common benchmark assumption,

introduced by Rubin (1976), is that a patient’s decision to withdraw between visits k and

k + 1 depends on outcomes through visit k (i.e., past), but not outcomes after visit k (i.e.,

future). This assumption has been referred to as missing at random (MAR). A weaker version

of this assumption, termed sequential ignorability (SI), posits that the withdrawal decision

depends on outcomes through visit k, but not the outcome at the last scheduled study

visit (Birmingham et al., 2003). MAR yields identification of the entire joint distribution

of the outcomes, while SI only admits identification of the distribution of the outcome at

the last scheduled visit. Both parametric (e.g., Schafer, 1997; Little and Rubin, 2014) and

semi-parametric (e.g., van der Laan and Robins, 2003; Tsiatis, 2006) approaches have been

proposed for drawing inference about the target parameter under these assumptions.

For such untestable assumptions, it is important to conduct a sensitivity analysis to

evaluate the robustness of the resulting inferences (e.g., Little et al., 2010; ICH, 1998; CHMP,

2009). As reviewed by Scharfstein et al. (2014), sensitivity analyses can generally be classified

as ad-hoc, local and global. Ad-hoc sensitivity analysis involves analyzing the data using a

variety of methods and evaluating whether the inferences they yield are consistent with one

another. Local sensitivity analysis evaluates how inferences vary in a small neighborhood of
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the benchmark assumption. In contrast, global sensitivity analysis considers how inferences

vary over a much larger neighborhood of the benchmark assumption.

In addition to untestable assumptions, testable restrictions are needed to combat the so-

called “curse of dimensionality” (Robins et al., 1997). Scharfstein et al. (2014) developed a

global sensitivity analysis approach whereby the untestable and testable assumptions were

guaranteed to be compatible. Their testable assumptions were based on a fully parametric

model for the distribution of the observable data. In practice, we have found it particularly

challenging to posit parametric models that correspond well with the observed data, as we

illustrate in Section 4 below. This has motivated the current paper, in which we relax distribu-

tional assumptions and develop a more flexible, semi-parametric extension of the Scharfstein

et al. (2014) approach. The techniques of Daniels and Hogan (2008) and Linero and Daniels

(2015) provide Bayesian solutions to the same problem and also ensure the compatibility

of the untestable and testable assumptions. However, the scalability of their approach to

settings with a large number of post-baseline assessments has yet to be demonstrated.

In Section 2, we introduce the data structure and define the target parameter of interest.

We also review the identification assumptions of Scharfstein et al. (2014). In Section 3, we

present our inferential approach. In Section 4, we present results from the reanalysis of a

clinical trial in which there was substantial premature withdrawal. In Section 5, we describe

the results of a simulation study. We provide concluding remarks in Section 6.

2. Data structure, target parameter, assumptions and identifiability

2.1 Data structure and target parameter

Let k = 0, 1, . . . , K refer in chronological order to the scheduled assessment times, with k = 0

corresponding to baseline. Let Yk denote the outcome scheduled to be measured at assessment

k. Define Rk to be the indicator that an individual is on-study at assessment k. We assume
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that all individuals are present at baseline. Furthermore, we assume that individuals do not

contribute any further data once they have missed a visit. This pattern is often referred

to as monotone drop-out. Let C = max{k : Rk = 1} and note that C = K implies that

the individual must have completed the study. For any given vector z = (z1, z2, . . . , zK), we

define zk = (z0, z1, . . . , zk) and zk = (zk+1, zk+2, . . . , zK). For each individual, O = (C, Y C) is

drawn from some distribution P ∗ contained in the non-parametric model M of distributions.

The observed data consist of n independent draws O1, O2, . . . , On from P ∗. Throughout, the

superscript ∗ will be used to denote the true value of the quantity to which it is appended.

By factorizing the distribution of O in terms of chronologically ordered conditional distri-

butions, any distribution P ∈M can be represented by

• F0(y0) := P (Y0 6 y0);

• Fk+1(yk+1 | yk) := P
(
Yk+1 6 yk+1 | Rk+1 = 1, Y k = yk

)
, k = 0, 1, . . . , K − 1;

• Hk+1(ȳk) := P
(
Rk+1 = 0 | Rk = 1, Y k = yk

)
, k = 0, 1, . . . , K − 1.

Our main objective is to draw inference about µ∗ := E∗(YK), the true mean outcome at visit

K in a hypothetical world in which all patients are followed to that visit.

2.2 Assumptions

Assumptions are required to draw inference about µ∗ based on the available data. We consider

a class of assumptions whereby an individual’s decision to drop out in the interval between

visits k and k + 1 is not only influenced by past observable outcomes but by the outcome

at visit k + 1. Towards this end, we adopt the following two assumptions introduced in

Scharfstein et al. (2014):

Assumption 1: For k = 0, 1, . . . , K − 2,

P ∗
(
YK 6 y | Rk+1 = 0, Rk = 1, Y k+1 = yk+1

)
= P ∗

(
YK 6 y | Rk+1 = 1, Y k+1 = yk+1

)
.

This says that in the cohort of patients who (1) are on-study at assessment k, (2) share the
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same outcome history through that visit and (3) have the same outcome at assessment k+1,

the distribution of YK is the same for those last seen at assessment k and those still on-study

at k + 1.

Assumption 2: For k = 0, 1, . . . , K − 1,

dG∗k+1(yk+1 | yk) ∝ exp{ρk+1(yk, yk+1)}dF ∗k+1(yk+1 | yk) ,

where G∗k+1(yk+1 | yk) := P ∗
(
Yk+1 6 yk+1 | Rk+1 = 0, Rk = 1, Y k = yk

)
and ρk+1(yk, yk+1) is

a known, pre-specified function of yk and yk+1.

Conditional on any given history yk, this assumption relates the distribution of Yk+1 for those

patients who drop out between assessments k and k + 1 to those patients who are on study

at k+ 1. The special case whereby ρk+1 is constant in yk+1 for all k implies that, conditional

on the history yk, individuals who drop out between assessments k and k+ 1 have the same

distribution of Yk+1 as those on-study at k + 1. If instead ρk+1 is an increasing (decreasing)

function of yk+1 for some k, then individuals who drop-out between assessments k and k+ 1

tend to have higher (lower) values of Yk+1 than those who are on-study at k + 1.

Setting `∗k+1(yk) := logit
{
H∗k+1(yk)

}
− log

{∫
exp{ρk+1(yk, u)}dF ∗k+1(u | yk)

}
, it can be

shown that Assumptions 1 and 2 jointly imply that

logit
{
P ∗
(
Rk+1 = 0 Rk = 1, Y k+1 = yk+1, YK = yK

)}
= `∗k+1(yk) + ρk+1(yk, yk+1) .

We note that since H∗k+1 and F ∗k+1 are identified from the distribution of the observed data,

so is `∗k+1(yk). Furthermore, we observe that ρk+1 quantifies the influence of Yk+1 on the

risk of dropping out between assessments k and k + 1, after controlling for the past history

yk. In particular, YK is seen to not additionally influence this risk. When ρk+1 does not

depend on yk+1, we obtain an assumption weaker than MAR but stronger than SI – we refer

to it as SI-1. Under SI-1, the decision to withdraw between visits k and k + 1 depends on

outcomes through visit k but not on the outcomes at visits k+ 1 and K. For specified ρk+1,
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Assumptions 1 and 2 place no restriction on the distribution of the observed data. As such,

ρk+1 is not an empirically verifiable function.

Assumptions 1 and 2 allow the existence of unmeasured common causes of Y0, Y1, . . . , YK ,

but does not allow these causes to directly impact, for patients on study at visit k, the

decision to drop out before visit k + 1. This is no different than under MAR or SI. To allow

for a direct impact, one could utilize the sensitivity analysis model of Rotnitzky et al. (1998)

which specifies

logit
{
P ∗
(
Rk+1 = 0 Rk = 1, Y k = yk, YK = yK

)}
= h∗k+1(yk) + qk+1(yk, yK) ,

where h∗k+1(yk) := logit
{
H∗k+1(yk)

}
− log

{∫
exp{ρk+1(yk, u)}dF ∗K,k(u | Rk = 1, yk)

}
and

F ∗K,k(u | Rk = 1, yk) := P ∗(YK 6 u|Rk = 1, Y k = yk). Here, qk+1(yk, yK) quantifies the

influence of the outcome scheduled to be measured at the end of the study on the conditional

hazard of last being seen at visit k given the observable past yk. The key disadvantage of

this model is that we have found that it is challenging for scientific experts to articulate how

a distal endpoint affects a more proximal event (i.e., drop-out).

2.3 Identifiability of target parameter

Under Assumptions 1 and 2 with given ρk+1, the parameter µ∗ is identifiable. To establish

identifiability, it suffices to demonstrate that µ∗ can be expressed as a functional of the

distribution of the observed data. In the current setting, this follows immediately by noting,

through repeated applications of the law of iterated expectations, that

µ∗ = µ(P ∗) = E∗

(
RKYK∏K−1

k=0 [1 + exp{`∗k+1(Y k) + ρk+1(Y k, Yk+1)}]−1

)
The functional µ(P ∗) can be equivalently expressed as∫

y0

· · ·
∫
yK

yK

K−1∏
k=0

{
dF ∗k+1(yk+1 | yk)

{
1−H∗k+1(yk)

}
+

exp{ρk+1(yk, yk+1)}dF ∗k+1(yk+1 | yk)∫
exp{ρk+1(yk, u)}dF ∗k+1(u | yk)

H∗k+1(yk)

}
dF ∗0 (y0) . (1)
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3. Statistical inference

3.1 Plug-in estimator

Given a fixed function ρk+1, Scharfstein et al. (2014) proposed to estimate µ∗ via the plug-

in principle. Specifically, they specify parametric models for both F ∗k+1 and H∗k+1, estimate

parameters in these models by maximum likelihood, estimate F ∗0 nonparametrically using the

empirical distribution function, and finally, estimate (1) by Monte Carlo integration using

repeated draws from the resulting estimates of F ∗k+1, H
∗
k+1 and F ∗0 . Since (1) is a smooth

functional of F ∗0 and of the finite-dimensional parameters of the models for F ∗k+1 and H∗k+1,

the resulting estimator of µ∗ is n1/2-consistent and, suitably normalized, tends in distribution

to a mean-zero Gaussian random variable.

While simple to describe and easy to implement, this approach has a major drawback: the

inferences it generates will be sensitive to correct specification of the parametric models

imposed on F ∗k+1 and H∗k+1. Since the fit of these models is empirically verifiable, the

plausibility of the models imposed can be scrutinized in any given application. In several

instances, we have found it difficult to find models providing an adequate fit to the observed

data. This is a serious problem since model misspecification will generally lead to inconsistent

inference, which can translate into inappropriate and misleading scientific conclusions. To

provide greater robustness, we instead adopt a more flexible modeling approach.

As noted above, the distribution P ∗ can be represented in terms of {(F ∗k+1, H
∗
k+1) : k =

0, 1, . . . , K−1}. Suppose that P ∗ is contained in the submodel M0 ⊂M of distributions that

exhibit a first-order Markovian structure in the sense that Fk+1(yk+1 | yk) = Fk+1(yk+1 | yk)

and Hk+1(ȳk) = Hk+1(yk). We can then estimate F ∗k+1 and H∗k+1 by Nadaraya-Watson kernel

estimators of the form:

F̂k+1,λF (yk+1 | yk) :=

∑n
i=1Rk+1,iI(Yk+1,i 6 yk+1)φλF (Yk,i − yk)∑n

i=1Rk+1,iφλF (Yk,i − yk)
and (2)

Ĥk+1,λH (yk) :=

∑n
i=1Rk,i(1−Rk+1,i)φλF (Yk,i − yk)∑n

i=1Rk,iφλF (Yk,i − yk)
, (3)
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where φ is a symmetric probability density function, φλ refers to the rescaled density y 7→

φ(y/λ)/λ, and (λF , λH) is a vector of tuning parameters. In practice, the values of these

tuning parameters need to be carefully chosen to ensure the resulting estimators of F ∗k+1

and H∗k+1 perform well. As discussed next, we select the tuning parameters via J-fold cross

validation.

Writing F := (F1, F2, . . . , FK) and H := (H1, H2, . . . , HK), and denoting a typical realiza-

tion of the prototypical data unit as o = (c, yc), we may define the loss functions

LF (F ;F ◦)(o) :=
K−1∑
k=0

rk+1

∫
{I(yk+1 6 u)− Fk+1(u | yk)}2 dF ◦k+1(u) ,

LH(H;H◦)(o) :=
K−1∑
k=0

rk [rk+1 − {1−Hk+1(yk)}]2H◦k+1

with F ◦ := (F ◦1 , F
◦
2 , . . . , F

◦
K) and H◦ := (H◦1 , H

◦
2 , . . . , H

◦
K) defined by F ◦k+1(u) := P (Yk+1 6

u | Rk+1 = 1) and H◦k+1 := P (Rk+1 = 0 | Rk = 1). Here, F ◦ and H◦ represent collections

of distributions and probabilities that can be estimated nonparametrically without the need

for smoothing. It can be shown that the true risk mappings F 7→ E∗{LF (F ;F ◦∗)(O)} and

H 7→ E∗{LH(H;H◦∗)(O)} are minimized at F = F ∗ and H = H∗, where F ◦∗ and H◦∗ denote

the true value of F ◦ and H◦, respectively. Given a random partition of the dataset into J

validation samples {V1, V2, . . . , VJ} with sample sizes n1, n2 . . . , nJ , taken to be approximately

equal, the oracle selectors for λF and λH are (van der Vaart et al., 2006)

λ̃F := argmin
λF

1

J

J∑
j=1

E∗{LF (F̂
(j)
λF

; F̂ ◦)(O)} and λ̃H := argmin
λH

1

J

J∑
j=1

E∗{LH(Ĥ
(j)
λH

; Ĥ◦)(O)}.

Here, F̂
(j)
k+1,λF

and Ĥ
(j)
k+1,λH

are obtained by computing (2) and (3), respectively, on the dataset

excluding individuals in Vj. The estimates of nuisance parameter estimators F̂ ◦k+1 and Ĥ◦k+1

are given by the empirical distribution of the observed values of Yk+1 within the subset of

individuals with Rk+1 = 1 and by the empirical proportion of individuals with Rk+1 = 0

among those with Rk = 1, respectively. The quantities λ̃F and λ̃H cannot be computed in
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practice since P ∗ is unknown. Empirical tuning parameter selectors are given by

λ̂F := argmin
λF

R̂F (λF ) and λ̂H := argmin
λH

R̂H(λH),

where

R̂F (λF ) :=
1

J

J∑
j=1

1

nj

∑
i∈Vj

LF (F̂
(j)
λF

; F̂ ◦)(Oi)

=
1

J

J∑
j=1

1

nj

∑
i∈Vj

K−1∑
k=0

Rk+1,i

(∑
`Rk+1,`{I(Yk+1,i 6 Yk+1,l)− F̂ (j)

k+1,λF
(Yk+1,l | Yk,i)}2∑

`Rk+1,`

)
and

R̂H(λH) :=
1

J

J∑
j=1

1

nj

∑
i∈Vj

LH(Ĥ
(j)
λH

; Ĥ◦)(Oi)

=
1

J

J∑
j=1

1

nj

∑
i∈Vj

K−1∑
k=0

Rk,i[Rk+1,i − {1− Ĥ(j)
k+1,λH

(Yk,i)}]2
∑

`Rk,`(1−Rk+1,`)∑
`Rk,`

.

The naive substitution estimator of µ∗ is µ(P̂ ), where P̂ is determined by (2) and (3)

computed with tuning parameters (λ̂F , λ̂H).

3.2 Generalized Newton-Raphson estimator

3.2.1 Preliminaries. In order to estimate F ∗k+1 and H∗k+1, smoothing techniques, as used

in (2) and (3), must be utilized in order to borrow strength across subgroups of individuals

with differing observed outcome histories. These techniques require the selection of tuning

parameters governing the extent of smoothing. As in the above procedure, tuning parameters

are generally chosen to achieve an optimal finite-sample bias-variance trade-off for the

quantity requiring smoothing - here, conditional distribution and probability mass functions.

However, this trade-off may be problematic, since the resulting plug-in estimator µ(P̂ ) may

suffer from excessive and asymptotically nonnegligible bias due to inadequate tuning. This

may prevent the plug-in estimator from having regular asymptotic behavior. In particular,

the resulting estimator may have a slow rate of convergence, and common methods for

constructing confidence intervals, such as the Wald and bootstrap intervals, can have poor
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coverage properties. Therefore, the plug-in estimator must be regularized in order to serve

as an appropriate basis for drawing statistical inference.

If the parameter of interest is a sufficiently smooth functional on the space of possible

data-generating distributions, it is sensible to expect a first-order expansion of the form

µ(P )− µ(P ∗) =

∫
D(P )(o)d(P − P ∗)(o) +Rem(P, P ∗) (4)

to hold, where D(P )(o) is the evaluation at an observation value o of a so-called gradient of

µ at P , and Rem(P, P ∗) is a second-order remainder term tending to zero as P tends to P ∗.

In the context of our problem, this is established formally in Lemma 1. Here, the gradient

D is an analytic object used to compute, at any given data-generating distribution P , the

change in µ(P ) following a slight perturbation of P . Although the gradient is, in general,

not uniquely defined, it must have mean zero and finite variance under sampling from P .

A discussion on gradients of statistical parameters can be found in Pfanzagl (1982) and in

Appendix A.4 of van der Laan and Rose (2011).

Provided (4) holds and for a given estimator P̂ of P ∗, algebraic manipulations leads to

µ(P̂ )− µ(P ∗) =

∫
D(P̂ )(o)d(P̂ − P ∗)(o) +Rem(P̂ , P ∗)

=
1

n

n∑
i=1

D(P ∗)(Oi) +

∫
{D(P̂ )(o)−D(P ∗)(o)}d(Pn − P ∗)(o)

− 1

n

n∑
i=1

D(P̂ )(Oi) +Rem(P̂ , P ∗) ,

where Pn denotes the empirical distribution based onO1, O2, . . . , On. If P̂ is a sufficiently well-

behaved estimator of P ∗, it is often the case that the terms
∫
{D(P̂ )(o)−D(P ∗)(o)}d(Pn −

P ∗)(o) and Rem(P̂ , P ∗) are asymptotically negligible. However, when P̂ involves smoothing,

as in this paper, the term n−1
∑n

i=1D(P̂ )(Oi) generally tends to zero too slowly to allow

µ(P̂ ) to be an asymptotically linear estimator of µ∗. Nonetheless, the corrected estimator

µ̂ = µ(P̂ ) +
1

n

n∑
i=1

D(P̂ )(Oi)

is regular and asymptotically linear with influence function D(P ∗), provided that the afore-
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mentioned terms are asymptotically negligible. Consequently, µ̂ converges to µ∗ in probability

and n1/2(µ̂−µ∗) tends in distribution to a zero-mean Gaussian random variable with variance

σ2 :=
∫
D(P ∗)(o)2dP ∗(o). This estimator is, in fact, a direct generalization of the one-

step Newton-Raphson procedure used in parametric settings to produce an asymptotically

efficient estimator. This correction approach was discussed early on by Ibragimov and Khas-

minskii (1981), Pfanzagl (1982) and Bickel (1982), among others.

An alternative estimation strategy would consist of employing targeted minimum loss-

based estimation (TMLE) to reduce bias due to inadequate tuning (van der Laan and

Rubin, 2006). TMLE proceeds by modifying the initial estimator P̂ into an estimator P̃

that preserves the consistency but also satisfies the equation n−1
∑n

i=1D(P̃ )(Oi) = 0. As

such, the TMLE-based estimator µ̃ := µ(P̃ ) of µ∗ does not require additional correction and

is asymptotically efficient. In preliminary simulation studies (not shown here), we found no

substantial difference between the TMLE and our proposed one-step estimator µ̂. In this

case, we favor the latter because of its greater ease of implementation.

3.2.2 Estimator based on canonical gradient: definition and properties. In our problem,

the one-step estimator can be constructed using any gradient D of the parameter µ defined

on the model M0. Efficiency theory motivates the use of the canonical gradient, often called

the efficient influence function, in the construction of the above estimator. The resulting

estimator is then not only asymptotically linear but also asymptotically efficient relative to

model M0. The canonical gradient can be obtained by projecting any other gradient onto the

tangent space, defined at each P ∈M0 as the closure of the linear span of all score functions

of regular one-dimensional parametric models through P . A comprehensive treatment of

efficiency theory can be found in Pfanzagl (1982) and Bickel et al. (1993).

In our analysis, we restrict our attention to the class of selection bias functions of the

form ρk+1(yk, yk+1) = αρ(yk+1), where ρ is a specified function of yk+1 and α is a sensitivity
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analysis parameter. With this choice, α = 0 corresponds SI-1. For the parameter chosen, the

canonical gradient D†(P ) relative to M0, suppressing notational dependence on α, is given

by

D†(P )(o) := a0(y0) +
K−1∑
k=0

rk+1bk+1(yk+1, yk) +
K−1∑
k=0

rk{1− rk+1 −Hk+1(yk)}ck+1(yk) ,

where expressions for a0(y0), bk+1 and ck+1 are given the Appendix. In this paper we suggest

the use of the following one-step estimator

µ̂ := µ(P̂ ) +
1

n

n∑
i=1

D†(P̂ )(Oi)

which stems from linearization (4), as formalized in the following lemma.

Lemma 1: For any P ∈M0, the linearization

µ(P )− µ(P ∗) =

∫
D†(P )(o)d(P − P ∗)(o) +Rem(P, P ∗)

holds for a second-order remainder term Rem(P, P ∗) defined in Web Appendix B.

In the above lemma, the expression second-order refers to the fact that Rem(P, P ∗) can be

written as a sum of the integral of the product of two error terms each tending to zero as P

tends to P ∗, that is,

Rem(P, P ∗) =
K−1∑
k=0

∫
u∗k(o) {Ψk(P )(o)−Ψk(P

∗)(o)} {Θk(P )(o)−Θk(P
∗)(o)} dP ∗(o) (5)

for certain smooth operators Ψ0, . . . ,ΨK−1,Θ0, . . . ,ΘK−1 and weight functions u∗0, . . . , u
∗
K−1

that possibly depend on P ∗. The proof of Lemma 1 follows from the derivations in Web

Appendices A and B.

The proposed estimator is asymptotically efficient relative to model M0 under certain

regularity conditions, as outlined below.

Theorem 1: If (a)
∫
{D†(P̂ )(o)−D†(P ∗)(o)}d(Pn−P ∗)(o) = oP (n−1/2) and (b) Rem(P̂ , P ∗) =

oP (n−1/2), then µ̂ = µ∗+ 1
n

∑n
i=1D

†(P ∗)(Oi) +oP (n−1/2) and µ̂ is an asymptotically efficient

estimator of µ∗ relative to model M0.
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The proof of this theorem is provided in Web Appendix C. This result not only justifies the

use of µ̂ in practice but also suggests that a Wald-type asymptotic 100× (1−γ)% confidence

interval for µ∗ can be constructed as(
µ̂−

zγ/2σ̂√
n
, µ̂+

zγ/2σ̂√
n

)
, (6)

where σ̂2 := 1
n

∑n
i=1D

†(P̂ )(Oi)
2 is, under mild conditions, a consistent estimator of the

asymptotic variance of n1/2(µ̂−µ∗) and zγ/2 is the (1−γ/2)-quantile of the standard normal

distribution.

Alternative sufficient conditions can be established to guarantee that conditions (a) and

(b) of the theorem above hold. For example, a simple application of Lemma 19.24 of van der

Vaart (2000) implies that condition (a) holds provided it can be established that

(i) D†(P̂ ) is a consistent estimator of D†(P ∗) in the L2(P
∗)-norm in the sense that∫ {

D†(P̂ )(o)−D†(P ∗)(o)
}2

dP ∗(o)
P−→ 0, and

(ii) for some P ∗-Donsker class F , D†(P̂ ) falls in F with probability tending to one.

Since our estimator P̂ is based on kernel regression, and is therefore consistent, condition (i)

holds by a simple application of the continuous mapping theorem. Condition (ii) is standard

in the analysis of estimators based on data-adaptive estimation of nuisance parameters – Giné

and Nickl (2008) presents conditions under which it is expected to hold. Condition (b) is

satisfied based on the following argument. The use of cross-validation allows the optimal rate

n−2/5 to be achieved for the estimator P̂ since the latter is constructed using univariate kernel

smoothers. By a repeated use of the Cauchy-Schwartz inequality on the various summands of

Rem(P̂ , P ∗) in (5), the continuous mapping theorem allows us to show that, since each term

in Rem(P̂ , P ∗) is a second-order difference involving smooth transformations of components

of P̂ and P , Rem(P̂ , P ∗) tends to zero in probability at a rate faster than n−1/2 under very

mild conditions, including that the probabilities π̂(Yj−1, Yj) are bounded away from zero

with probability tending to one.
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3.3 Practical considerations in confidence interval construction

As indicated above, an influence function-based asymptotic confidence interval is given by

(6). In Section 5, we present the results of a simulation study in which this confidence interval

construction results in poor coverage. The poor coverage can be explained in part by the

fact that σ̂2 can be severely downward biased in finite samples (Efron and Gong, 1983).

To address this issue, one can consider the jackknife estimator for σ2,

σ̂2
JK := (n− 1)

n∑
i=1

(
µ̂(−i) − µ̂(·))2

where µ̂(−i) is the estimator of µ∗ with the ith individual deleted from the dataset and

µ̂(·) := 1
n

∑n
i=1 µ̂

(−i). This estimator is known to be conservative (Efron and Stein, 1981).

Using the jackknife, confidence intervals take the form of (6) with σ̂ replaced by σ̂JK . Our

simulation study in Section 5 demonstrates that these intervals perform better than interval

(6) although some undercoverage is still present.

Another possible approach would be to utilize the Studentized bootstrap, wherein confi-

dence intervals are formed by choosing cutpoints based on the distribution of{
µ̂(b) − µ̂
ŝe(µ̂(b))

: b = 1, 2, . . . , B

}
(7)

where µ̂(b) is the estimator of µ∗ based on the bth bootstrap dataset and ŝe(µ̂(b)) is an

estimator of the standard error of µ̂(b). One can consider standard error estimators based on

the influence function or jackknife. An equal-tailed (1−γ) confidence interval takes the form{
µ̂− t1−γ/2ŝe(µ̂), µ̂− tγ/2ŝe(µ̂)

}
, where tq is the qth quantile of (7). A symmetric (1 − γ)

confidence interval takes the form
{
µ̂− t∗1−γ ŝe(µ̂), µ̂+ t∗1−γ ŝe(µ̂)

}
, where t∗1−γ is selected so

that the sampling distribution of (7) assigns probability mass 1−γ between −t∗1−γ and t∗1−γ.

Since our analysis depends on estimation of a correctly specified semiparametric model, it

appears sensible to use this model to bootstrap the observed data. In our data analysis and

simulation study, we use the estimated distribution of the observed data to generate boot-
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strapped observed datasets. Our simulation study in Section 5 suggests that the symmetric

Studentized bootstrap with jackknifed standard errors performs best.

4. SCA-3004 Study

SCA-3004 was a randomized trial designed to evaluate the efficacy and safety of once-

monthly, injectable paliperidone palmitate (PP1M), as monotherapy or as an adjunct to

pre-study mood stabilizers or antidepressants, relative to placebo (PBO) in delaying the

time to relapse in patients with schizoaffective disorder (SCA) (Fu et al., 2014). The study

included multiple phases. After initial screening, an open-label phase consisted of a 13-week,

flexible-dose, lead-in period and a 12-week, fixed-dose, stabilization period. Stable patients

entered a 15-month, double-blind, relapse-prevention phase and were randomized (1:1) to

receive either PP1M or placebo injections at baseline (Visit 0) and every 28 days (Visits

1–15). An additional clinic visit (Visit 16) was scheduled 28 days after the last scheduled

injection. In the study, 170 and 164 patients were randomized to the PBO and PP1M arms,

respectively. One placebo patient was removed because of excessive influence on the analysis.

The main research question was whether or not outcomes in patients with schizoaffective

disorder are better maintained if they continued on treatment rather than being withdrawn

from treatment and given placebo. Given the explanatory nature of the research question, an

ideal study would follow all randomized patients through Visit 16 while maintaining them on

their randomized treatment and examine symptomatic and functional outcomes at that time

point. Due to ethical considerations, patients who had signs of clinical relapse (determined

by symptoms and clinical response to symptoms) were required to be withdrawn from the

study. Thus, clinical data were unavailable post-relapse. In addition to this source of missing

data, some patients discontinued due to adverse events, withdrew consent or were lost to

follow-up. In the trial, 38% and 60% of patients in the PBO and PP1M arms, respectively,

were followed through Visit 16 (p<0.001).
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We focus our analysis on patient function as measured by the Personal and Social Per-

formance (PSP) scale. The PSP, a validated clinician-reported instrument, is scored from 1

to 100, with higher scores indicating better functioning. It has been argued that a clinically

meaningful difference in PSP scores is between 7 and 12 points (Patrick et al., 2009).

We seek to estimate, for each treatment group, the mean PSP at Visit 16 in the coun-

terfactual world in which all patients are followed and treated through Visit 16. Since

symptoms and function are correlated, the observed PSP data are likely to be a highly biased

representation of the counterfactual world of interest. The mean PSP score among completers

was 76.53 and 76.96 in the PBO and PP1M arms, respectively; the estimated difference is

-0.43 (95% CI: -3.34 to 2.48), indicating a non-significant treatment effect (p=0.77).

In Figure 1, we display the treatment-specific trajectories of mean PSP score, stratified by

last visit time. For patients who prematurely terminate the study, it is interesting to notice

that there tends to be a worsening of mean PSP scores at the last visit on study.

[Figure 1 about here.]

Before implementing our proposed sensitivity analysis procedure, we implemented the

approach of Scharfstein et al. (2014). For each treatment group, we modeled H∗k+1 using

logistic regression with visit-specific intercepts and a common effect of Yk. Additionally,

we modeled F ∗k+1 both using beta and truncated normal regression, each with visit-specific

intercepts and a common effect of Yk. Using estimates of the parameters from these models,

we simulated 500,000 datasets for each treatment group. We compared the proportion

dropping out before visit k + 1 among those on study at visit k based on the actual and

simulated datasets. We also compared the empirical distribution of PSP scores among those

on study at visit k+1 based on these datasets using the Kolmogorov-Smirnov statistics. The

results for the simulations involving the truncated normal regression and beta regression

models are shown in the first and second rows of Figure 2, respectively. The figure suggests
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that these models do not fit the observed data well. For both the truncated normal and beta

regression models, inspection of the actual and simulated distribution of PSP scores at each

study visit reveals large discrepancies. For the beta regression model, the contrast between

the simulated and actual drop-out probabilities for the PP1M arm is particularly poor.

[Figure 2 about here.]

We contrast the fit of these models to the non-parametric smoothing approach proposed in

this paper. For estimation of F ∗k+1 and H∗k+1 based on data from the PBO arm, the optimal

choices of λF and λH are 1.81 and 5.18, respectively. The corresponding optimal choices for

the PP1M arm were 1.16 and 8.53. Using the estimated F ∗k+1 and H∗k+1 and optimal choices

of λF and λH , we simulated, as before, 500,000 observed datasets for each treatment group.

The results of this simulation in comparison to the actual observed data is shown in the

bottom row of Figure 2. In sharp contrast to the parametric modeling approach, the results

show excellent agreement between the actual and simulated datasets. For each treatment

group, inspection of the actual and simulated distribution of PSP scores at the study visit

with the largest Kolmogorov-Smirnov statistics reveals only small discrepancies.

Under SI-1, that is, when α = 0, the estimated counterfactual means of interest are 73.31

(95% CI: 69.71 to 76.91) and 74.52 (95% CI: 72.28 to 76.75) for the PBO and PP1M arms,

respectively. The estimated treatment difference is −1.20 (95% CI: -5.34 to 2.93). Relative to

the complete-case analysis, the SI-1 analysis corrects for bias in a direction that is anticipated:

the estimated means under SI-1 are lower and, since there is greater drop-out in the PBO arm,

there is a larger correction in that arm. As a consequence, the estimated treatment effect is

more favorable to PP1M, although the 95% CI still includes 0. For comparative purposes, the

plug-in procedure produces estimates of the means that are slightly lower (73.79 and 74.63)

and an estimated treatment difference that is slightly larger (-0.84). The logistic-truncated

normal and logistic-beta models for the distribution of the observed data produce markedly
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different results under SI-1. For the logistic-truncated model, the estimated means are 70.62

(95% CI: 67.01 to 74.24) and 74.68 (95% CI: 72.89 to 76.48) with an estimated difference

of -4.06 (95% CI: -8.13 to 0.01); for the logistic-beta model, the estimated means are 64.42

(95% CI: 55.15 to 73.69) and 70.55 (95% CI: 67.53 to 73.56) with an estimated difference of

-6.13 (95% CI: -15.96 to 3.71).

In our sensitivity analysis, we chose ρ to be the cumulative distribution of a Beta(6, 11)

random variable scaled to the interval 1 to 100. The shape of the function was chosen so

that when comparing patients on the low end (6 30) and high end (> 80) of the PSP scale

there is relatively less difference in the risk of drop-out than when comparing patients in the

middle of the PSP scale (30-80). When α > 0 (α < 0), patients with higher PSP scores are

more (less) likely to drop out. Since lower PSP scores represent worse function, it is plausible

that α 6 0. For completeness, we ranged the treatment-specific α values from -20 to 20.

In Figure 3 (a) and (b), we display the estimated treatment-specific mean PSP at Visit

16 as a function of α along with 95% pointwise confidence intervals. Figure 3 (c) displays

a contour plot of the estimated differences between mean PSP at Visit 16 for PBO versus

PP1M for various treatment-specific combinations of α. The point (0,0) corresponds to the

SI-1 assumption in both treatment arms. There are no treatment-specific combinations of

α for which the estimated treatment differences are clinically meaningful or statistically

significant (at the 0.05 level). Figure 3 (d) displays the estimated treatment-specific difference

in mean PSP at Visit 16 between non-completers and completers as a function of α. For each

treatment group and α, the estimated mean among non-completers is back-calculated from

the estimated overall mean (µ̂), the observed mean among completers (
∑

iRK,iYK,i/
∑

iRK,i)

and the proportion of completers (
∑

iRK,i/n). The differences in the negative range of α are

in the clinically meaningful range, suggesting that the considered choices of the sensitivity

analysis parameters are reasonable.
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[Figure 3 about here.]

5. Simulation study

As in our goodness-of-fit evaluation above, we simulated, using the estimated F ∗k and H∗k

and optimal choices of λF and λH , 1,000 datasets for each treatment group. For purposes of

the simulation study, we treat the best fit to the observed data as the true data generating

mechanism. We evaluate the performance of our procedures for various α values ranging

from -10 to 10. The target for each α is the mean computed using formula (1).

The results of our simulation study are displayed in Tables 1 and 2. In Table 1, we

report for each treatment group and each α the bias and mean-squared error (MSE) for

the plug-in estimator µ(P̂ ) and the one-step estimator µ̂. The results show that the one-

step estimator has less bias and lower MSE than the plug-in estimator, although the dif-

ferences are not dramatic. In Table 2, we report, for each treatment group and each α,

95% confidence interval coverage for six confidence interval procedures: (1) normality-based

confidence interval with influence function-based standard error estimator (Normal-IF); (2)

normality-based confidence interval with jackknife-based standard error estimator (Normal-

JK); (3) equal-tailed, Studentized-t bootstrap confidence interval with influence function-

based standard error estimator (Bootstrap-IF-ET); (4) equal-tailed, Studentized-t bootstrap

confidence interval with jackknife-based standard error estimator (Bootstrap-JK-ET); (5)

symmetric, Studentized-t bootstrap confidence interval with influence function-based stan-

dard error estimator (Bootstrap-IF-S); (6) symmetric, Studentized-t bootstrap confidence

interval with jackknife-based standard error estimator (Bootstrap-JK-S). Bootstrapping was

based on 1,000 datasets.

[Table 1 about here.]

[Table 2 about here.]
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We found that the normality-based confidence interval with influence function-based stan-

dard error estimator underperformed for both treatment groups and all choices of the

sensitivity analysis parameters. In general, the confidence interval procedures that used

jackknife standard errors performed better than their counterparts that used the influence

function-based standard error estimator. The symmetric, Studentized-t bootstrap confidence

interval with jackknife-based standard error estimator (Bootstrap-JK-S) exhibited the most

consistent performance across treatment groups and sensitivity analysis parameters.

Our simulation studies reveal some evidence of possible residual bias of the one-step

estimator in the context considered. The latter is based upon the use of kernel smoothing in

order to estimate the various conditional distribution functions required in the evaluation of

µ. It may be possible to achieve better small-sample behavior by employing alternative

conditional distribution function estimators with better theoretical properties, e.g., Hall

et al. (1999). An ensemble learning approach, e.g., van der Laan et al. (2007), may also

yield improved function estimators and decrease the residual bias of the resulting one-step

estimator. However, the benefits from improved function estimation may possibly be limited

by the relatively small sample size investigated in this simulation study. The use of correction

procedures based on higher-order asymptotic representations, as described in Robins et al.

(2008), van der Vaart et al. (2014), Carone et al. (2014) and Dı́az et al. (2016), may lead to

improved performance in smaller samples.

6. Discussion

In this paper, we have developed a semi-parametric method for conducting a global sensitivity

analysis of repeated measures studies with monotone missing data. We have developed an

open-source software package, called SAMON, that implements the methods discussed in this

paper.

Our approach does not, as of yet, accommodate auxiliary covariates Vk scheduled to be
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measured at assessment k. Incorporating V k into the conditioning arguments of Assumptions

1 and 2 can serve to increase the plausibility of these assumptions. In particular, V k can be

allowed to influence the decision, for patients on study at visit k, to drop out between visits k

and k+ 1, and the unmeasured common causes of Y0, Y1, . . . , YK can be allowed to indirectly

impact the decision to drop out through their relationship with V k. In the context of SCA-

3004, it would be useful to incorporate the PANSS (Positive and Negative Symptom Scale)

and CGI (Clinical Global Impressions) scores as auxiliary covariates as they are related to

planned patient withdrawal as well as correlated with PSP. In future work, we plan to extend

the methods developed here to accommodate auxiliary covariates. An extension that handles

multiple reasons for drop-out is also worthwhile.

In this paper, we imposed a first-order Markovian assumption in modeling the distribution

of the observed data. The plausibility of this assumption was considered in the data analysis

as we have evaluated the goodness-of-fit of our model, as illustrated in the bottom row of

Figure 2. The Markovian assumption can be relaxed by incorporating the past history using

(1) a specified function of the past history, (2) semiparametric single index models (Hall

and Yao, 2005) or (3) recently developed methods in data adaptive non-parametric function

estimation (van der Laan, 2015).

For given α, our estimator of µ∗ is essentially an α-specific weighted average of the observed

outcomes at visit K. As a result, it does not allow extrapolation outside the support of

these outcomes. We found that one patient in the PBO arm who completed the study

with the lowest observed PSP score at the final visit had a very large influence on the

analysis. Under SI-1 and other values of α, this patient affected the estimated mean in

the PBO group by more than 3 points. In contrast to our approach, a mixed modeling

approach, which posits a multivariate normal model for the joint distribution of the full

data, does allow extrapolation. Inference under this approach is valid under MAR and correct
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specification of the multivariate normality assumption. We found that this approach provides

much more precise inference, yielding a statistically significant treatment effect in favor of

PP1M (treatment effect = -4.7, 95% CI: -7.7 to -1.8). Further, this approach was insensitive

to the PBO patient that we removed from our analysis. The disadvantages of the mixed

model approach are its reliance on normality and the difficulty of incorporating it into global

sensitivity analysis.

In SCA-3004 there is a difference, albeit not statistically significant, in baseline PSP score

between treatment groups. The PBO arm has a lower baseline mean PSP score than the

PP1M arm (71.2 vs. 72.9). Our method can easily address this imbalance by subtracting out

this difference from our effect estimates or by formally modeling change from baseline. In

either case, the treatment effect estimates would be less favorable to PP1M. It is notable that

a mixed model analysis that models change from baseline does yield a statistically significant

effect in favor of PP1M. It may also be of interest to adjust the treatment effect estimates

for other baseline covariates, either through regression or direct standardization. We will

address this issue in future work. We also plan to develop methods for handling intermittent

missing outcome data.

7. Supplementary Materials

Web Appendices referenced in Section 3.2.2 are available with this paper at the Biomet-

rics website on Wiley Online Library. The software package SAMON can be found at www.

missingdatamatters.org.
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Appendix: Canonical Gradient

The derivation of the canonical gradient is provided in Web Appendix A. Here, we present

its explicit form. Let πk+1(yk, yk+1) = [1 + exp{`k+1(yk) + αρ(yk+1)}]−1, where

`k+1(yk) := logit {Hk+1(yk)} − log

{∫
exp{ρk+1(yk, u)}dFk+1(u | yk)

}
.

Let π(yK) =
∏K−1

k=0 πk(yk, yk+1),

wk+1(yk) = E (exp{αρ(Yk+1)} | Rk+1 = 1, Yk = yk) ,

and gk+1(yk+1, yk) = {1−Hk+1(yk)}wk+1(yk) + exp{αρ(yk+1)}Hk+1(yk).

The canonical gradient is expressed as

D†(P )(o) := a0(y0) +
K−1∑
k=0

rk+1bk+1(yk+1, yk) +
K−1∑
k=0

rk{1− rk+1 −Hk+1(yk)}ck+1(yk)

where

a0(y0) = E

(
RKYK

π(Y K)
Y0 = y0

)
− µ(P )

bk+1(yk+1, yk)

= E

(
RKYK

π(Y K)
Rk+1 = 1, Yk+1 = yy+1, Yk = yk

)
− E

(
RKYK

π(Y K)
Rk+1 = 1, Yk = yk

)
+ E

(
RKYK

π(Y K)

(
exp{αρ(Yk+1)}
gk+1(Yk+1, Yk)

)
Rk+1 = 1, Yk = yk

)
Hk+1(yk)

(
1− exp{αρ(yk+1)}

wk+1(yk)

)
ck+1(yk)

= E

(
RKYK

π(Y K)

(
exp{αρ(Yk+1)}
gk+1(Yk+1, Yk)

)
Rk = 1, Yk = yk

)
− E

(
RKYK

π(Y K)

(
1

gk+1(Yk+1, Yk)

)
Rk = 1, Yk = yk

)
wk+1(yk)
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Figure 1: Treatment-specific trajectories of mean PSP scores, stratified by last visit time.
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Figure 2: Left column: Comparison of the proportion dropping out before visit k + 1
among those on study at visit k based on the actual and simulated datasets. Right column:
Comparison, using the Kolmogorov-Smirnov statistics, of the empirical distribution of PSP
scores among those on study at visit k + 1 based on the actual and simulated datasets.
First row: Logistic regression for conditional probabilities of drop-out and truncated normal
regressions for outcomes; Second row: Logistic regression for conditional probabilities of drop-
out and beta regressions for outcomes; Third row: Non-parametric smoothing for conditional
probabilities of drop-out and for outcomes.
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Figure 3: (a) and (b): Treatment-specific mean PSP at Visit 16 as a function of α, along with
95% pointwise confidence intervals; (c): Contour plot of the estimated differences between
mean PSP at Visit 16 for PBO vs. PP1M for various treatment-specific combinations of α;
(d): Treatment-specific differences between the mean PSP for non-completers and completers,
as a function of α.
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Table 1: Treatment-specific simulation results: Bias and mean-squared error (MSE) for the

plug-in (µ(P̂ )) and one-step (µ̂) estimators, for various choices of α.

PBO PP1M
α Estimator µ∗ Bias MSE µ∗ Bias MSE

-10 µ(P̂ ) 72.89 0.76 1.75 73.76 0.41 1.36
µ̂ 0.50 1.58 0.31 1.26

-5 µ(P̂ ) 73.38 0.52 1.42 74.25 0.26 1.14
µ̂ 0.31 1.32 0.16 1.05

-1 µ(P̂ ) 73.74 0.38 1.23 74.59 0.17 1.02
µ̂ 0.19 1.18 0.06 0.95

0 µ(P̂ ) 73.80 0.36 1.21 74.63 0.16 1.01
µ̂ 0.18 1.17 0.08 0.95

1 µ(P̂ ) 73.84 0.35 1.19 74.67 0.18 1.01
µ̂ 0.17 1.15 0.05 0.94

5 µ(P̂ ) 74.00 0.30 1.13 74.67 0.16 1.00
µ̂ 0.13 1.11 0.04 0.93

10 µ(P̂ ) 74.15 0.24 1.08 74.84 0.15 0.97
µ̂ 0.10 1.08 0.06 0.91
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Table 2: Treatment-specific simulation results: Coverage for (1) normality-based confidence
interval with influence function-based standard error estimator (Normal-IF); (2) normality-
based confidence interval with jackknife-based standard error estimator (Normal-JK); (3)
equal-tailed, Studentized-t bootstrap confidence interval with influence function-based stan-
dard error estimator (Bootstrap-IF-ET); (4) equal-tailed, Studentized-t bootstrap confidence
interval with jackknife-based standard error estimator (Bootstrap-JK-ET); (5) symmetric,
Studentized-t bootstrap confidence interval with influence function-based standard error
estimator (Bootstrap-IF-S); (6) symmetric, Studentized-t bootstrap confidence interval with
jackknife-based standard error estimator (Bootstrap-JK-S), for various choices of α.

PBO PP1M
α Procedure Coverage (%) Coverage (%)

-10 Normal-IF 86.1 88.6
Normal-JK 92.1 92.6
Bootstrap-IF-ET 90.2 91.9
Bootstap-JK-ET 92.4 93.7
Bootstap-IF-S 92.3 92.7
Bootstap-JK-S 93.9 94.3

-5 Normal-IF 89.0 91.7
Normal-JK 94.1 94.2
Bootstrap-IF-ET 91.7 92.6
Bootstap-JK-ET 93.6 94.9
Bootstap-IF-S 94.1 94.2
Bootstap-JK-S 95.1 95.1

-1 Normal-IF 90.8 93.4
Normal-JK 94.9 94.8
Bootstrap-IF-ET 91.0 94.0
Bootstap-JK-ET 92.8 94.9
Bootstap-IF-S 94.4 94.7
Bootstap-JK-S 95.0 95.3

0 Normal-IF 90.7 93.5
Normal-JK 95.0 94.9
Bootstrap-IF-ET 92.8 93.9
Bootstap-JK-ET 94.3 95.0
Bootstap-IF-S 95.3 94.7
Bootstap-JK-S 96.0 95.1

1 Normal-IF 90.9 93.5
Normal-JK 94.9 94.8
Bootstrap-IF-ET 92.8 93.5
Bootstap-JK-ET 94.2 95.0
Bootstap-IF-S 95.3 94.6
Bootstap-JK-S 96.0 95.2

5 Normal-IF 91.5 93.7
Normal-JK 94.6 95.1
Bootstrap-IF-ET 92.6 93.8
Bootstap-JK-ET 93.8 94.7
Bootstap-IF-S 94.9 95.1
Bootstap-JK-S 96.0 95.5

10 Normal-IF 92.1 93.4
Normal-JK 94.8 95.0
Bootstrap-IF-ET 92.9 93.8
Bootstap-JK-ET 93.9 94.8
Bootstap-IF-S 94.7 95.0
Bootstap-JK-S 95.6 95.4


