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Summary: In randomized studies involving severely ill patients, functional outcomes are often unobserved due to

missed clinic visits, premature withdrawal or death. It is well known that if these unobserved functional outcomes

are not handled properly, biased treatment comparisons can be produced. In this paper, we propose a procedure

for comparing treatments that is based on the composite endpoint of both the functional outcome and survival.

We further propose a missing data imputation scheme and sensitivity analysis strategy to handle the unobserved

functional outcomes not due to death. Illustrations of the proposed method are given by analyzing data from a recent

non-small cell lung cancer clinical trial and a recent trial of sedation interruption among mechanically ventilated

patients.
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1. Introduction

Consider a randomized trial in which patients at high risk of death are scheduled to be

clinically evaluated at pre-specified points in time after randomization. These clinical evalu-

ations may be pre-empted due to death. Among patients alive at a pre-specified time, some

may fail to be evaluated due to missed visits or withdrawal, yielding missing data. There

is a distinction between the two types of unobserved data. Data pre-empted due to death

are generally considered not existing and undefined, whereas missing data are considered

existing but not collected. The question addressed in this paper is how to draw inference

about the effect of treatment when clinical evaluation data may be pre-empted by death or

missing.

Ignoring the complication of missing data, the so-called issue of ”truncation due to death”

is a thorny one. A number of methods have been proposed for analyzing such data (Kurland

et al., 2009). Broadly speaking, the methods can be categorized into four main groups: (1)

conditional, (2) joint, (3) causal and (4) composite. In the conditional approach, treatment

effects are evaluated by conditioning on survival at each follow-up time (Kurland and Hea-

gerty, 2005; Shardell and Miller, 2008). This approach is problematic because survival is a

post-randomization factor and conditioning on a factor that may be affected by treatment can

introduce bias (Rosenbaum, 1984). The joint approach introduces a common set of latent

random effects for modeling both clinical evaluation endpoints and survival (Tsiatis and

Davidian, 2004). In this approach, the model for the clinical evaluation endpoints often allows

trajectories of the functional endpoint after death, which is not scientifically meaningful.

The causal inference approach frames the problem in terms of counterfactuals and seeks to

estimate the ”principal stratum” causal effect (Frangakis and Rubin, 2002; Hayden et al.,

2005; Chiba and VanderWeele, 2011). The issue with this approach is that the principal

stratum is the cohort of patients who would survive to a particular point in time regardless
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of treatment assignment and a clinician cannot, at the time of the treatment decision, readily

identify whether a patient is a member of this stratum or not. Nonetheless, this approach

is useful for understanding the mechanistic effect of treatment on clinical outcomes. The

fourth approach creates a composite endpoint that mixes both the survival and functional

evaluation endpoints (Diehr et al., 2001; Lachin, 1999; Joshua Chen et al., 2005). The problem

with this approach is that it requires that the outcomes for patients be ordered. Further,

the composite outcome approach does not allow one to separately tease out the effect of

treatment on survival and on the functional outcome. If patients can be ordered in a way

that makes scientific sense, the simplicity of the composite outcome approach can be a useful

way of globally assessing treatment effects that are causally interpretable.

In this paper, we consider the composite outcome approach and address how to handle

missing clinical evaluation data among those alive at the assessment times. We develop and

illustrate our methodology in the context of two randomized trials.

1.1 HT-ANAM 302 Study

In this study, patients with non-small cell lung cancer-cachexia were randomized 2:1 to

receive either Anamorelin (n = 330) or Placebo (n = 165) (Garcia et al., 2015). Patients

were scheduled to have their lean body mass (LBM) evaluated at baseline and at 6 and 12

weeks after randomization. Eight survivors from each treatment group were missing LBM

at baseline and are excluded from our analysis. In Table 1, we present treatment-specific

summaries of death prior to week 12 and missingness of LBM among survivors. In this

study, there was no statistically significant differences with respect to death prior to week

12 (15% vs. 17% for Placebo vs. Anamorelin; p = 0.79 based on Fisher’s exact test, p=0.66

based on Logrank test).
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1.2 ABC Trial

The Awakening and Breathing Controlled (ABC) trial randomized critically ill patients

receiving mechanical ventilation 1:1 within each study site to management with a paired

sedation plus ventilator weaning protocol involving daily interruption of sedatives through

spontaneous awakening trials (SATs) and spontaneous breathing trials (SBTs) (n = 168)

or sedation per usual care (UC) and SBTs (n = 168) (Girard et al., 2008). In a single site

substudy (Jackson et al., 2010) (n = 94 for UC+SBT, n = 93 for SAT+SBT), the researchers

assessed differences in cognitive, psychological and functional outcomes at 3 and 12 months

after randomization. Our focus is cognitive function at 12 months after randomization, which

is derived from the results of nine cognitive tests. Each test score was converted to a T-score

and cognitive function was represented by a cognition score, the mean of the available nine T-

scores. In Table 1, we present treatment-specific summaries of death prior to 12 months and

missingness of cognition scores among survivors. In this substudy, there was a statistically

significant difference with respect to death prior to 12 months (62% vs. 41% for UC + SBT

vs. SAT + SBT, respectively; p = 0.005 based on Fisher’s exact test, p = 0.005 based on

Logrank test).

[Table 1 about here.]

2. Problem Formulation

We consider a two-arm randomized study design in which continuous functional measures

are scheduled to be collected at baseline and K post-baseline assessment times t1, . . . , tK .

Let Y0 denote the baseline measure and Yk (k = 1, . . . , K) denote the post-baseline measure

scheduled to be collected at time tk. Let X denote baseline covariates, excluding treatment

assignment T . Let L denote the survival time and ∆k = I(L > tk). Let Z = g(Y0, . . . , YK)

be the study’s primary functional endpoint, which is only defined if ∆K = 1. We assume
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that Z is coded so that higher values denote better function. In the HT-ANAM 302 study,

K = 2, Yk is LBM and Z = (Y1 + Y2)/2− Y0. In the ABC substudy, Y0 is not available (as

is commonly the case in study of patients with critical illness), K = 2, Yk is the cognition

score and Z = Y2.

In the absence of missing data among patients alive at the post-baseline assessment time

points, the data for an individual are

F = (T,X, L, Y0,∆1Y1, . . . ,∆KYK)

We use the subscripts i and j to denote data for the ith and jth patients, respectively.

2.1 Ranking

In the absence of missing data, we propose to rank patients as follows:

• If ∆K,i = ∆K,j = 1, then patient i (j) is ranked better than patient j (i) if Zi > Zj

(Zj < Zi) and ranked the same if Zi = Zj.

• If ∆K,j = 0 (∆K,i = 0) and ∆K,i = 1 (∆K,j = 1), then patient i (j) is ranked better than

patient j (i).

• If ∆K,i = ∆K,j = 0, then patient i (j) is ranked better than patient j (i) if Li > Lj

(Lj < Li) and ranked the same if Li = Lj.

We let R denote the rank for an individual.

In this ranking, patients who die prior to time tK are ranked according to their survival

time, with shorter survival times assigned worse ranks. Patients who survive past time tK

are then assigned ranks (higher than those died prior to time tK), according to the value of

Z, with lower values of Z assigned worse ranks.

2.2 Treatment Effect Quantification

Let θ be the probability that the rank for a random individual randomized to treatment

T = 0 is less than the rank of a random individual randomized to treatment T = 1 minus
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the probability that the rank for a random individual randomized to treatment T = 0 is

greater than the rank of a random individual randomized to treatment T = 1. Values of

θ > 0 (< 0) favor T = 1 (T = 0). Under the null hypothesis of no treatment effect, there

will be no difference between the ranks of the two treatment groups and θ will be zero. The

goal is to draw inference about θ.

In the absence of missing data, we estimate θ by

θ̂ =
1

n0n1

∑
i:Ti=0

∑
j:Tj=1

{I(Ri < Rj)− I(Ri > Rj)}

where n0 =
∑

i(1− Ti) and n1 =
∑

i Ti.

In addition to estimating θ, quantiles of the treatment-specific distribution of the composite

endpoint can be calculated to further characterize the treatment effect.

2.3 Missing Data and Benchmark Imputation Assumptions

For a patient alive at assessment k (k > 1), their outcome may be missing. When ∆k = 1,

define τk to be the indicator that Yk is observed. Thus, the observed data are:

O = (T,X, L, Y0,∆1τ1,∆1τ1Y1, . . . ,∆KτK ,∆KτKYK).

We have assumed that T , X, L and Y0 are always observed.

For subjects alive at tK , let Yobs = {Yk : τk = 1, k > 1} and Ymis = {Yk : τk = 0, k > 1}

denote the observed and missing post-baseline functional outcomes. Let S = (τ1, . . . , τK)

be the missing pattern. In order to rank subjects in the presence of missing data, we need

to know how to impute Z for patients alive at τK . It is sufficient to impute Ymis for these

patients.

Assumptions are required in order to perform this imputation. We make the following

untestable benchmark assumptions:

f(Ymis|∆K = 1, Yobs, Y0, X, T, S = s) = f(Ymis|∆K = 1, Yobs, Y0, X, T, S = 1) (1)

for all s 6= 1, where 1 is a K-dimensional vector of 1’s. These assumptions are the complete
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case missing value (CCMV) restrictions (Little, 1993) applied to the missing data patterns

for patients alive at tK .

To understand the CCMV assumptions, consider the special case where K = 2. In this

setting, (1) reduces to the following three assumptions:

Assumption 1:

f(Y2|∆2 = 1, Y1, Y0, X, T, S = (1, 0)) = f(Y2|∆2 = 1, Y1, Y0, X, T, S = 1) (2)

This assumption says that for subjects alive at t2, who are observed at time t1, who share

the same functional measure at t1 and who share the same baseline factors (Y0, X, T ), the

distribution of Y2 is the same for those whose functional measure at t2 is missing and those

whose measure is observed.

Assumption 2:

f(Y1|∆2 = 1, Y2, Y0, X, T, S = (0, 1)) = f(Y1|∆2 = 1, Y2, Y0, X, T, S = 1) (3)

This assumption says that for subjects alive at t2, who are observed at time t2, who share

the same functional measure at t2 and who share the same baseline factors, the distribution

of Y1 is the same for those whose functional measure at t1 is missing and those whose measure

is observed.

Assumption 3:

f(Y1, Y2|∆2 = 1, Y0, X, T, S = (0, 0)) = f(Y1, Y2|∆2 = 1, Y0, X, T, S = 1) (4)

This assumption says that for subjects alive at t2 and who share the same baseline factors,

the joint distribution of Y1 and Y2 is the same for those whose functional measures at t1 and

t2 are missing and those whose measures are fully observed.

2.4 Sensitivity Analysis

The CCMV benchmark assumptions are untestable. Thus, as noted in NRC (2010), it is

essential to evaluate the robustness of inferences to deviations from the benchmark assump-
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tions. Exponential tilting is one method that has been employed to construct a neighborhood

of assumptions that is centered around the benchmark assumptions. The neighborhood is

indexed by sensitivity analysis parameters, where typically sensitivity analysis parameters

set to zero reduce to the benchmark assumptions.

One of the challenges with any sensitivity analysis is the dimension of the sensitivity

analysis parameters. While the size of the neighborhood grows with the dimension of the

sensitivity analysis parameters, it becomes more complex to communicate results. In our

analyses, we consider a two-dimensional sensitivity analysis parameter. Specifically, we con-

sider an exponential tilting class of assumptions of the following form:

f(Ymis|∆K = 1, Yobs, Y0, X, T, S = s) ∝ exp(βTZ)f(Ymis|∆K = 1, Yobs, Y0, X, T, S = 1) (5)

for all s 6= 1, where βT is a treatment-specific sensitivity parameter. Note that setting βT = 0,

reduces to the CCMV benchmark assumptions.

To understand this class of assumptions, consider the case where K = 2 and, as in the

HT-ANAM 302 study, Z = (Y1 + Y2)/2− Y0. In this case, (5) reduces to the following three

assumptions (where β′T = 2βT ):

Assumption 1’:

f(Y2|∆2 = 1, Y1, Y0, X, T, S = (1, 0)) ∝ exp(β′TY2) f(Y2|∆2 = 1, Y1, Y0, X, T, S = 1)︸ ︷︷ ︸
Reference Distribution

(6)

This assumption says that for subjects alive at t2, who are observed at time t1, who share

the same functional measure at t1 and who share the same baseline factors, the distribution

of Y2 for those whose functional measure at t2 is missing is, when β′T > 0 (< 0), more heavily

weighted toward higher (lower) values of Y2 than those whose functional measure at t2 is

observed.

Assumption 2’:

f(Y1|∆2 = 1, Y2, Y0, X, T, S = (0, 1)) ∝ exp(β′TY1) f(Y1|∆2 = 1, Y2, Y0, X, T, S = 1)︸ ︷︷ ︸
Reference Distribution

(7)
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This assumption says that for subjects alive at t2, who are observed at time t2, who share

the same functional measure at t2 and who share the same baseline factors, the distribution

of Y1 for those whose functional measure at t1 is missing is, when β′T > 0 (< 0), more heavily

weighted toward higher (lower) values of Y1 than those whose functional measure at t1 is

observed.

Assumption 3’:

f(Y1, Y2|∆2 = 1, Y0, X, T, S = (0, 0))

∝ exp (β′T (Y1 + Y2)) f(Y1, Y2|∆2 = 1, Y0, X, T, S = 1)︸ ︷︷ ︸
Reference Distribution

(8)

This assumption says that for subjects alive at t2 and who share the same baseline factors,

the joint distribution of Y1 and Y2 for those whose functional measures at t1 and t2 are

missing is, when β′T > 0 (< 0), more heavily weighted toward higher (lower) values of Y1 and

Y2 than those whose measures are fully observed.

Importantly, the differences between the distributions being contrasted in the above as-

sumptions increases with |β′T |. To better illustrate these assumptions, ignore conditioning

on Y0 and X and suppose f(Y1, Y2|∆2 = 1, T, S = 1) is multivariate normal with mean

(µT,1, µT,2) and variance-covariance matrix

ΣT =

 σ2
T,1 ρTσT,1σT,2

ρTσT,1σT,2 σ2
T,2


Then, f(Y2|∆2 = 1, Y1, T, S = (1, 0)) is normal with mean µT,2+β′T (1−ρ2T )σ2

T,2+ρT
σT,2

σT,1
(Y1−

µT,1) and variance (1 − ρ2T )σ2
T,2; f(Y1|∆2 = 1, Y2, T, S = (0, 1)) is normal with mean µT,1 +

β′T (1−ρ2T )σ2
T,1+ρT

σT,1

σT,2
(Y2−µT,2) and variance (1−ρ2T )σ2

T,1; and f(Y1, Y2|∆2 = 1, T, S = (0, 0))

is multivariate normal with mean (µT,1 +β′Tσ
2
T,1 +β′TρTσT,1σT,2, µT,2 +β′Tσ

2
T,2 +β′TρTσT,1σT,2)

and variance-covariance matrix ΣT . If ρT > 0, then the above means increase linearly in β′T ;

β′T has no impact on the above variances and covariances. Thus, β′T > 0 (β′T < 0) implies
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that the distributions on the left hand sides of Equations (6), (7) and (8) have more (less)

mass at higher values than their reference distributions.

For the ABC substudy, K = 2 and Z = Y2. In this case, there is no need to impute Y1 in

order to rank patients. Thus, (5) reduces to the following two assumptions: Assumption 1’,

and

Assumption 3”:

f(Y1, Y2|∆2 = 1, Y0, X, T, S = (0, 0)) ∝ exp(βTY2)f(Y1, Y2|∆2 = 1, Y0, X, T, S = 1) (9)

Assumption 3” is equivalent to the following two assumptions:

Assumption 3.1”:

f(Y2|∆2 = 1, Y1, Y0, X, T, S = (0, 0)) ∝ exp(βTY2)f(Y2|∆2 = 1, Y1, Y0, X, T, S = 1) (10)

and

Assumption 3.2”:

f(Y1|∆2 = 1, Y0, X, T, S = (0, 0)) = f(Y1|∆2 = 1, Y0, X, T, S = 1) (11)

Assumption 3.1” says that for subjects alive at t2, who share the same functional measure at

t1 and who share the same baseline factors, the distribution of Y2 for those whose functional

measures at t1 and t2 are missing is, when βT > 0 (< 0), more heavily weighted toward

higher (lower) values of Y2 than those whose measures are fully observed. Assumption 3.2”

says that for subjects alive at t2 and who share the same baseline factors, the distribution of

Y1 for those whose functional measures at t1 and t2 are missing is the same as those whose

measures are fully observed.

2.5 Modeling and Imputation Inference

Our imputation approach will require specification of a model for f(Y K |∆K = 1, Y0, X, T, S =

1). In specifying this model, it is important to utilize an approach that respects bounds
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(possibly population-specific) on the functional outcomes; failure to do so can result in non-

sensical imputations. In the HT-ANAM 302 study population, experts expect that LBM

will be between 24kg to 140kg. In the ABC trial, the cognitive score was constructed to be

between 0 and 100.

To address this issue, we consider a data transformation of Yk (k = 1, . . . , K) by a

transformation function

φ(yk) = log

{
yk −BL

BU − yk

}
,

where (BL, BU) denote the lower and upper bound.

Let Y †k = φ(Yk) and Y
†
k = (Y †1 , . . . , Y

†
k ). Importantly, there is a one-to-one mapping

between the conditional distributions h(Y
†
K |∆K = 1, Y0, X, T, S = 1) and f(Y K |∆K =

1, Y0, X, T, S = 1). In particular,

f(Y K |∆K = 1, Y0, X, T, S = 1) = h(Y
†
K |∆K = 1, Y0, X, T, S = 1)

∣∣∣∣∣
K∏
k=1

dφ(Yk)

dYk

∣∣∣∣∣ . (12)

We will construct a model for f(Y K |∆K = 1, Y0, X, T, S = 1) by positing a model for

h(Y
†
K |∆K = 1, Y0, X, T, S = 1) and using the above formula.

To proceed, we write

h(Y
†
K |∆K = 1, Y0, X, T, S = 1) =

K∏
k=1

h(Y †k |∆K = 1, Y
†
k−1, Y0, X, T, S = 1) (13)

and posit a model for each component of the product. In our examples, we consider models

of the form:

h(Y †k |∆K = 1, Y
†
k−1, Y0, X, T = t, S = 1) = hk,t(Y

†
k − µk,t(Y

†
k−1, Y0, X;αk,t))

where µk,t(Y
†
k−1, Y0, X;αk,t) is a specified function (depending on time k and treatment t)

of Y
†
k−1, Y0, X and αk,t, αk,t is an unknown parameter vector and hk,t is an unspecified

time/treatment-specific density function. The parameter vectors αk,t can be estimated by

minimizing the least squares objective function

n∑
i=1

I(Ti = t)∆K,i

(
K∏
k=1

τk,i

)
{Y †k,i − µk,t(Y

†
k−1, Y0, X;αk,t)}2
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Let α̂k,t denote the least squares estimator of αk,t. The density function hk,t can be estimated

by kernel density estimation based on the residuals {Y †k,i − µk,t(Y
†
k−1,i, Y0,i, Xi; α̂k,t) : Ti =

t,∆K,i = 1, τ1,i = . . . , τK,i = 1, i = 1, . . . , n}. Let ĥk,t denote the kernel density estimator of

hk,t. We then estimate f(Y K |∆K = 1, Y0, X, T, S = 1) by

f̂(Y K |∆K = 1, Y0, X, T, S = 1) =
K∏
k=1

ĥk,t(Y
†
k − µk,t(Y

†
k−1, Y0, X; α̂k,t))

∣∣∣∣dφ(Yk)

dYk

∣∣∣∣ .
In Section 2.6, we show how to draw Ymis under Assumption (2.5) using the Metroplis-

Hastings algorithm. For each individual i alive at tK and who is in a stratum s 6= 1, we impute

the missing functional outcomes by drawing from the estimated density that is proportional

to exp(βTZ)f(Ymis|∆K = 1, Yobs = Yobs,i, Y0 = Y0,i, X = Xi, T = Ti, S = s). For each

such individual, we draw M copies of the missing functional outcomes. This is then used to

create M complete datasets. For each complete dataset m, we estimate θ by θ̂m. Our overall

estimator of θ is θ̃ = 1
M

∑M
m=1 θ̂m. Confidence intervals can be constructed by non-parametric

bootstrap.

2.6 Imputation

The goal is to sample from (5) for all s 6= 1. That is, we want to sample from the conditional

density that is proportional to

exp(βTZ)f(Ymis|∆K = 1, Yobs, Y0, X, T, S = 1).

The closed form of f(Ymis|∆K = 1, Yobs, Y0, X, T, S = s) is in general not available. Thus,

numerical sampling techniques need to be applied to draw the samples (Robert and Casella,

1999).

We provide the following detailed steps of a random-walk Metropolis-Hastings algorithm

to sample from f(Ymis|∆K = 1, Yobs, Y0, X, T, S = s):

(1) Set l = 0. Choose arbitrary initial values for Ymis, denoted by Y
(0)
mis. Let Z(0) be the

primary functional endpoint with data (Yobs, Y
(0)
mis).
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(2) Set l = l + 1.

(3) Generate Y ′mis from a (multivariate) Gaussian distribution with mean Y
(l−1)
mis and variance

Λ.

(4) Calculate the acceptance ratio as

a =
exp{βTZ ′}f(Y ′mis|∆K = 1, Yobs, Y0, X, T, S = 1)

exp{βTZ(l−1)}f(Y
(l−1)
mis |∆K = 1, Yobs, Y0, X, T, S = 1)

=
exp{βTZ ′}f(Y ′mis, Yobs|∆K = 1, Y0, X, T, S = 1)

exp{βTZ(l−1)}f(Y
(l−1)
mis , Yobs|∆K = 1, Y0, X, T, S = 1)

where Z ′ and Z(l−1) are the primary functional endpoints with data (Yobs, Y
′
mis) and

(Yobs, Y
(l−1)
mis ), respectively.

(5) Accept Y
(l)
mis = Y ′mis with probability min(1, a) and Y

(l)
mis = Y

(l−1)
mis with probability 1 −

min(1, a).

(6) Repeat Steps 2-5 until the Markov chain converges.

(7) Draw random samples from the set {Y (l0)
mis , Y

(l0+1)
mis , . . .} as the imputed missing values,

where l0 corresponds to the burn-in number.

Note that out-of-boundary candidates Y ′mis are rejected at Step 5 since the acceptance

ratio will be 0. The tuning parameter Λ in Step 3 affects the acceptance rate. In practice,

calibration of Λ may be applied to achieve desirable acceptance rate. Note a higher acceptance

rate often corresponds to a slower convergence. Robert (1997) suggested an acceptance rate

of 1/4 for models of high dimension and 1/2 for models of dimension 1 or 2. As an example

of calibration, Muller (1991) proposed to successively modify Λ as the product of a scale

factor and the variance of the available samples. The calibration process continues until

the acceptance rate is close to 1/4 and the variance of the available samples stabilizes.

Furthermore, various diagnostics such as Geweke diagnostic may be applied to evaluate the

convergence of the Markov chain (Cowles and Carlin, 1996).
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3. Data Analysis

3.1 HT-ANAM 302 Study

For the analysis of the HT-ANAM 302 Study, the imputation incorporated the following

baseline covariates: Eastern Cooperative Oncology Group (ECOG) performance status (0 or

1 vs. 2), age ( 6 65 vs. > 65), sex, body mass index (BMI) (underweight, < 18.5, or not),

and weight loss over the prior 6 months (WL) (6 10% vs. > 10%). In this example, we set

BL = 24 and BU = 140. We specify the following models for µk,t(Y
†
k−1, Y0, X;αk,t):

µ1,t(Y0, X,α1,t) = α1,t,1 + α1,t,2Y0 + α1,t,3ECOG+ α1,t,4AGE

+ α1,t,5SEX + α1,t,6BMI + α1,t,7WL

µ2,t(Y
†
1, Y0, X;α2,t) = α2,t,1 + α2,t,2Y0 + α2,t,3ECOG+ α2,t,4AGE

+ α2,t,5SEX + α2,t,6BMI + α2,t,7WL+ α2,t,8Y
†
1

To estimate θ, 10 imputed datasets were generated. A total of 500 bootstrap samples were

used to characterize uncertainty (i.e., percentile confidence intervals, standard errors). The

bootstrap process takes into account variation due to model fitting. Under the benchmark

assumptions, θ̂ = 0.30 (95% CI: 0.18 to 0.37, p < 0.0001) (Table 2), which indicates

that patients treated with Anamorelin have a significantly higher probability of having a

better clinical outcome, as described by the composite of LBM and survival, than patients

treated with placebo. The left panel of Figure 1 displays the treatment-specific cumulative

distribution functions of the composite endpoint for this study. In the placebo group, we

estimate that more than half the patients will survive and have an average change in LBM

from baseline greater than -0.98 kg (95% CI: -1.53 kg to -0.51 kg). In the Anamorelin group,

we estimate that more than half the patients will survive and have an average change in

LBM from baseline greater than 0.69 kg (95% CI: 0.33 kg to 0.87 kg) (Table 2).

For the sensitivity analysis, we ranged βT from −0.5 to 0.5. This range corresponds to

an induced shift, relative to the benchmark imputation, of about 1.5 kg in the mean of the
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imputed average LBM change, which represents a clinically important change (Figure 2). The

top left panel of Figure 3 presents estimates of θ and its associated 95% confidence interval

as a function of β0 (i.e., sensitivity analysis parameter in the placebo arm), for two extreme

values of β1 = −0.5, 0.5 (i.e., sensitivity analysis parameter in the Anamorelin arm). For all

the sensitivity scenarios including the “worst” scenario, the lower bound of the 95% CI for

θ is always greater than 0 suggesting that the conclusions from the benchmark analysis are

robust. The top right panel of Figure 3 presents the treatment-specific estimates (along with

95% confidence intervals) of the median of the composite endpoint and its 95% confidence

interval as a function of βT for this study. The left panel of Figure 4 presents a contour plot

of the p-values associated with testing the null hypothesis θ = 0 for each combination of β0

and β1 for this study. The figures shows that, for all combinations, the null hypothesis is

rejected in favor of Anamorelin.

We conclude that Anamorelin is superior to placebo in terms of improving the composite

endpoint, driven by improvements in LBM.

3.2 ABC Trial

In the ABC Trial, the imputation incorporated patient age (AGE) and years of education

(EDU). In this example, there is no Y0 and we set BL = 0 and BU = 100. We specify the

following models for µk,t(Y
†
k−1, X;αk,t):

µ1,t(X,α1,t) = α1,t,1 + α1,t,2EDU + α1,t,3AGE + α1,t,4EDU ∗ AGE

µ2,t(Y
†
1, X;α2,t) = α2,t,1 + α2,t,2EDU + α2,t,3AGE + α2,t,4EDU ∗ AGE + α2,t,5Y

†
1

To estimate θ, 10 imputed datasets were generated. Under the benchmark assumptions,

θ̂ = 0.18 (95% CI: 0.03 to 0.33, p = 0.023), indicating that a randomly selected SAT+SBT

patient has a greater probability of being ranked higher than a randomly selected UC+SBT

patient (Table 2). The right panel of Figure 1 displays the treatment-specific cumulative

distribution functions of the composite endpoint for this study. For the UC+SBT group, we
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estimate that 50% of the subjects will survive past 72 days (95% CI: survive past 30 days to

survive to 1-year). In the SAT+SBT group, we estimate that 50% of subjects will survive to

12 months with cognitive scores of 30 or greater (95% CI: survive past 357 days to survive

with cognitive score of 37) (Table 2).

We allowed the sensitivity parameter βT to vary between −0.2 and 0.2 corresponding to

a shift the imputed mean 12 month cognition scores, relative to the benchmark imputation,

of 5-15 units (Figure 2), a difference that is clinically significant. The sensitivity analysis

reveals that the SAT+SBT group is favored over the control group in all of the scenarios

(Figure 3 and 4). However, the difference between the two arms is not statistically significant

for scenarios when β0 for the UC+SBT arm is greater than 0 and β1 for the SAT+SBT arm

is less than −0.04. That is, there must be differential missing data mechanisms in the two

arms in order to ”lose statistical significance”.

Based on the primary and sensitivity analysis results, we conclude that there is robust

evidence that a difference exists between the control and the intervention arms in the

composite endpoints of survival and cognitive performance, favoring the intervention arm.

[Table 2 about here.]

[Figure 1 about here.]

[Figure 2 about here.]

[Figure 3 about here.]

[Figure 4 about here.]

4. Discussion

In this paper, we proposed a global sensitivity analysis approach for randomized clinical

trials with death and intermittent missing data. Our method is based on the construction

of a composite endpoint that mixes both the survival and the functional outcome data.
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Treatment effect estimation and comparison are based on ranks. Complete case missing

value constraints are considered as the benchmark assumption for missing data imputation.

Sensitivity analysis is further conducted to evaluate the robustness of the findings through

exponential tilting.

We emphasize that there exists multiple approaches to address the ”truncation by death”

issue. Which approach is the “best” depends on the target of inference (Kurland et al., 2009).

Provided that death and the functional outcome can be ordered in a scientifically meaningful

way, the composite endpoint approach is desirable when the goal is to globally evaluate the

efficacy and safety of a medical intervention under the intention to treat paradigm.

The ranking scheme we proposed is similar to the “untied worst-rank score analysis”

in Lachin (1999). An alternative approach, the “worst-rank score analysis”, ranks all the

patients who died (∆K = 0) the same and is also commonly used. The proposed method

can easily incorporate alternatives to death such as ”unable to complete” the functional

evaluation as may occur in studies similar to the ABC Trial. The principle for choosing the

ranking scheme, nonetheless, is that the ranking orders should be clinically meaningful and

closely related to the goal of evaluating the efficacy and safety of the treatment.

In the proposed approach, we assume that the survival status is always known and there

is no censoring. Such an assumption is generally reasonable for well-controlled clinical trials

with relatively short study durations. When this assumption does not hold, we need to extend

the imputation strategy to first impute the survival time for censored subjects. Depending

on the imputed survival length, missing data may nor may not need to be imputed for these

subjects.

We proposed numerical sampling techniques, specifically the random-walk Metroplis Hast-

ings algorithm, for sampling the missing outcomes. Alternatively, the slice sampling algo-

rithm (Neal, 2003) can be applied to take into account the restricted ranges of the missing
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outcomes. The computation load may be reduced for special cases in which there is a closed

form expression for the target distributions.

5. Software

A web-based software is developed for the proposed method. The software is available at

http://sow.familyds.com/shiny/composite/. Source code in the form of R code, together

with a sample data set is available on request from the authors.
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Table 1
Treatment-specific summaries of death prior to week 12 (month 12), and missingness of LBM (cognition scores)

among survivors from the HT-ANAM 302 Study (ABC Trial).

HT-ANAM 302 Study Placebo Anamorelin
n = 157 n = 322

Died Prior to Week 12 24 (15.3%) 54 (16.8%)
Survivors with complete data 93 (59.2%) 185 (57.5%)

Survivors missing only Week 6 3 (1.9%) 17 (5.3%)
Survivors missing only Week 12 17 (10.8%) 31 (9.6%)

Survivors missing both Weeks 6 and 12 20 (12.7%) 35 (10.9%)

ABC Trial UC + SBT SAT + SBT
n = 94 n = 93

Died Prior to Month 12 58 (61.7%) 38 (40.9%)
Survivors with complete data 18 (19.1%) 32 (34.4%)

Survivors missing only Month 3 1 (1.1%) 0 (0.0%)
Survivors missing only Month 12 8 (8.5%) 8 (8.6%)

Survivors missing both Months 3 and 12 9 (9.6%) 15 (16.1%)
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Table 2
Hypothesis testing, estimation of θ and median (p50) of the distribution of the composite endpoint under benchmark

assumptions. For estimation of the median, tx indicates a survival time of x days

θ̂ (95% CI) p-value

HT-ANAM 302 Study 0.30(0.18,0.37) < 0.0001

ABC Trial 0.18(0.03,0.33) 0.023

p̂50 (95% CI)

HT-ANAM 302 Study Placebo -0.98(-1.53,-0.51)
Anamorelin 0.69( 0.33, 0.87)

ABC Trial UC + SBT t72(t30, t365)
SAT + SBT 30 (t357, 37)


