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OVERVIEW	OF	STUDY	FINDINGS	AND	IMPACT	
	

If	you	have	completed	analyses	for	your	project,	summarize	your	primary	findings	(Limit	100	words).	(Your	
Final	Research	Report,	submitted	to	PCORI	for	peer	review,	will	contain	a	more	comprehensive	explanation	of	
your	project	findings.)	
	
We	developed	and	disseminated	methods	and	open	source	software	(called	SAMON	and	freely	available	
at	www.missingdatamatters.org)	for	conducting	sensitivity	analysis	of	randomized	trials	in	which	(1)	
outcomes	are	scheduled	to	be	assessed	at	fixed	points	in	times	after	randomization	and	(2)	some	
participants	prematurely	withdraw	and/or	skip	assessments.	We	also	developed	sensitivity	analysis	
methods	and	software	for	randomized	trials	in	which	participants	are	at	high	risk	of	death.	
	

• Summarize	any	significant	change(s)	from	the	funded	application,	including	changes	in	study	
protocol,	engagement	plan,	sample	size,	study	outcomes,	etc.,	including	the	reasons	for	these	
change(s),	and	the	effect	on	internal	and	external	validity	of	your	findings.	

	
Items	L1	–	L4	of	the	Deliverables	were	to	be	based	on	the	development	of	new	methods	and	software	
based	on	user	feedback	during	Years	1	and	2	of	the	project.	Despite	efforts	and	outreach,	we	did	not	
receive	any	substantive	feedback.						 	
	
	
	
	 	
	
	
		

	 	



Principal	Investigator	(Scharfstein,	Daniel,	Oscar)		
	

 

	 	 	 3	

MILESTONES	UPDATE		
	

	
Record	each	milestone	label,	name,	description,	and	projected	completion	date	(columns	A-D),	as	shown	in	Attachment	B	(Milestone	Schedule)	
of	your	Contract.	Complete	Columns	E,	F,	and	G	for	milestones	due	or	completed	during	the	current	reporting	period.	If	any	milestones	will	not	
be	completed,	list	the	reasons	why	and	the	implications	for	your	project.		
	
Column	E:	Check	appropriate	box	indicating	milestone	completion	status	during	reporting	period.	Additional	information	on	milestones	that	
were	not	completed	is	required	and	should	be	provided	in	the	section	below	this	table.	
Column	F:	Select	actual	date	of	milestone	completion.	
Column	G:	If	applicable,	select	appropriate	reason	for	delay/non-completion	of	projected	milestone	during	the	specified	reporting	period.	
Additional	information	on	milestones	that	were	not	completed	is	required	and	should	be	provided	in	the	section	below	this	table.	
	
	
Column	A	 Column	B	 Column	C	 Column	D	 Column	E	 Column	F	 Column	G	
Milestone	
Label		

(e.g.,	B-1,	
etc.)	

Milestone	Name	 Description	
Projected	
Completion	

Date	

Completed?	
(Yes/No)	

Date	
Completed	

If	Not	Completed,	Reason	for	
Delay	

	

B-1	 Website	 Expand	registration	
on	website	to	include	

PCO	researchers	

7/31/2014	 Yes No	 10/31/2014	 Choose	an	item.	

B-2	 Advisory	Board	 Convene	Meeting	 7/31/2014	 Yes No	 7/21/2014	 Choose	an	item.	
	

C	 Submit	Interim	Progress	
Report	

Interim	Progress	
Report	

7/31/2014	 Yes No	 7/31/2014	 Choose	an	item.	
	

D-1	 Case	studies/training	
materials	

Create	PCO-centered	
case	study	and	

training	materials	

1/31/2015	 Yes No	 1/31/2016	 Choose	an	item.	
	

D-2	 Short	courses	 Facilitate	two	short	
courses	

1/31/2015	 Yes No	 1/12/2015	 Choose	an	item.	
	

D-3	 Adobe	connect	session	 Adobe	connect	 1/31/2015	 Yes No	 1/12/2015	 Choose	an	item.	
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Column	A	 Column	B	 Column	C	 Column	D	 Column	E	 Column	F	 Column	G	
Milestone	
Label		

(e.g.,	B-1,	
etc.)	

Milestone	Name	 Description	
Projected	
Completion	

Date	

Completed?	
(Yes/No)	

Date	
Completed	

If	Not	Completed,	Reason	for	
Delay	

	

session	with	users	 	
D-4	 Manuscript	for	monotone	

missing	data	
Submit	case	study	to	
PCOR	focused	journal	

1/31/2015	 Yes No	 10/31/2016	 Other	(Specify	Below)	
Waiting	for	main	manuscript	to	
be	accepted	

E	 Submit	Interim	Progress	
Report	

Interim	Progress	
Report	

1/31/2015	 Yes No	 2/2/2015	 Choose	an	item.	
	

F	 Advisory	Board	 Convene	Meeting	 7/31/2015	 Yes No	 11/31/2015	 Choose	an	item.	
	

G	 Submit	Interim	Progress	
Report	

Interim	Progress	
Report	

7/31/2015	 Yes No	 8/21/2015	 Choose	an	item.	

H1	 Case	studies/training	
materials	

Create	PCO-centered	
case	study	and	

training	materials	

1/31/2016	 Yes No	 9/30/2016	 Choose	an	item.	
	

H2	 Short	courses	 Facilitate	two	short	
courses	

1/31/2016	 Yes No	 7/26/2016	 Choose	an	item.	
	

H3	 Adobe	connect	session	 Adobe	connect	
session	with	users	

1/31/2016	 Yes No	 5/24/2016	 Choose	an	item.	
	

H4	 Manuscript	for	non-
monotone	missing	data	

Submit	case	study	to	
PCOR	focused	journal	

1/31/2016	 Yes No	 5/31/2017	 Other	(Specify	Below)	
Waiting	for	main	manuscript	to	
be	accepted	

I	 Submit	Interim	Progress	
Report	

Interim	Progress	
Report	

1/31/2016	 Yes No	 2/19/2016	 Choose	an	item.	
	

J	 Advisory	Board	 Convene	Meeting	 7/31/2016	 Yes No	 	 Other	(Specify	Below)	
Confer	with	board	members	on	
an	as	needed	basis.	

K	 Submit	Interim	Progress	
Report	

Interim	Progress	
Report	

7/31/2016	 Yes No	 7/31/2016	 Choose	an	item.	
	

L1	 Case	studies/training	 Create	PCO-centered	 1/31/2017	 �Yes�No	 Click	here	to	
enter	a	date.	

Choose	an	item.	
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Column	A	 Column	B	 Column	C	 Column	D	 Column	E	 Column	F	 Column	G	
Milestone	
Label		

(e.g.,	B-1,	
etc.)	

Milestone	Name	 Description	
Projected	
Completion	

Date	

Completed?	
(Yes/No)	

Date	
Completed	

If	Not	Completed,	Reason	for	
Delay	

	

materials	 case	study	and	
training	materials	

L2	 Short	courses	 Facilitate	three	short	
courses	

1/31/2017	 �Yes�No	 Click	here	to	
enter	a	date.	

Other	(Specify	Below)	

L3	 Adobe	Connect	Session	 Adobe	connect	
session	with	users	

1/31/2017	 �Yes�No	 9/20/2016	 Choose	an	item.	
	

L4	 Manuscript	 Submit	case	study	to	
PCOR	focused	journal	

1/31/2017	 �Yes�No	 Click	here	to	
enter	a	date.	

Other	(Specify	Below)	
	

L5	 Submit	Book	 Book	 1/31/2017	 �Yes�No	 5/31/2017	 Other	(Specify	Below)	
In	Progress	

M	 Submit	Final	Progress	
Report	

Final	Progress	Report	 1/31/2017	 �Yes�No	 2/6/2017	 Choose	an	item.	
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RECRUITMENT,	ENROLLMENT,	AND	RETENTION	UPDATE	
	

Instructions	for	completing	recruitment,	enrollment,	and	retention	Table	1	and	Site	Information	
Complete	tables	and	site	information	for	the	final	reporting	period.	Complete	a	separate	Table	1,	
requested	site	information,	and	Table	2	for	each	distinct	project	activity	that	involves	recruitment	and	
enrollment	of	study	participants.	Each	of	the	following	may	be	distinct:	

o Prospective	trials	

o Observational	studies	

o Focus	groups	

o In-depth	interviews	

o Surveys	

o Recruitment	of	different	participant	populations	(e.g.,	patients,	providers,	caregivers)	

for	any	of	the	above	activities	

Example:		
If	your	project	conducts	in-depth	interviews	with	clinicians,	then	conducts	surveys	with	patients,	and	
then	conducts	a	randomized-controlled	trial	enrolling	patients,	then	you	need	to	complete	three	
tables	and	provide	the	requested	Site	Information	for	each	project	activity.	
	

Table	1	Recruitment,	Enrollment,	and	Retention	of	Study	Participants		
Project	Activity	(e.g.,	in-depth	interviews,	patient	focus	groups,	prospective	trial):	________	
Participant	population	(e.g.,	patients,	caregivers,	clinicians):	________________	

Column	A	 Column	B	 Column	C	 Column	D	 Column	E	 Column	F	 Column	G	

Date	of	
update	

	

Planned	
Sample	Size		

Total	
Screened	
(N)		

Total	
Eligible	(N)	

Total	
Enrolled	
(N)	

Total	Lost	to	
Follow-up	(N)	

%	Lost	to	
follow-up	

	 	 	 	 	 	 	

	
KEY	
Column	A:	Date	of	update		
Column	B:	Sample	size	(number	of	individuals	you	plan	to	enroll)	in	your	approved	research	plan.	For	
group-level	data	such	as	a	focus	group,	enter	the	numbers	of	groups,	not	the	number	of	participants	for	
each	group.	

Column	C:	Total	number	of	individuals	screened	for	eligibility	to	date.	This	is	the	number	approached	
and	tested	(e.g.,	lab	tests,	review	of	medical	history,	survey,	etc.)	to	determine	potential	eligibility	for	
the	project.	

Column	D:	Of	the	screened	individuals,	total	number	of	individuals	who	met	the	eligibility	criteria	to	
date.	

Column	E:	Of	the	eligible	individuals,	total	number	of	participants	enrolled	to	date.	

Column	F:	Number	of	participants	that	have	been	lost	to	follow-up	(enter	N/A	if	not	applicable	to	your	
project).	
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Column	G:	Percent	of	participants	lost	to	follow-up,	calculated	as	Total	lost	to	follow-up/Total	enrolled	*	
100.	

	

Site	Information		
Number	of	sites,	clinics	and/or	practices	from	which	you	recruited	study	participants?	____________.	If	
you	recruited	study	participants	from	sources	that	are	not	site	specific	(e.g.,	websites,	newspapers),	
please	provide	the	number	and	names	of	those	sources:	_______________________________________	

o Total	number	of	sites,	clinics,	and/or	practices	that	enrolled	at	least	1	participant:	

___________	

o Names	of	sites,	clinics,	and/or	practices	that	enrolled	at	least	1	participant:	______	

	
Please	describe	the	following:		

1. Summarize	your	systematic	effort	to	identify	potentially	eligible	individuals	for	enrollment	in	
your	project	over	the	duration	of	your	project,	including	a	summary	of	how	your	efforts	may	
have	changed	over	time	(i.e.,	how	did	you	find	potentially	eligible	individuals	for	your	project?).	
	

2. Summarize	your	systematic	effort	to	screen	individuals	who	appeared	eligible.	Refer	to	
Methodology	Standard,	PC-2,	and	describe	how	this	standard	was	met	over	the	course	of	your	
project	(i.e.,	of	the	individuals	identified,	how	did	you	approach	and	test	them	to	determine	
potential	eligibility?).	

a. Report	reasons	for	ineligibility	and	the	number	of	individuals	for	each	reason.	

	

3. Summarize	your	systematic	effort	to	document	information	about	eligible	individuals	who	
declined	to	enroll	in	the	project.	

a. Report	reasons	for	declining	and	the	number	of	individuals	for	each	reason.		
	

4. Summarize	your	systematic	effort	to	reduce	attrition	of	participants	enrolled	in	your	project	(as	

applicable).	

	

Complete	Table	2	by	listing	the	Racial/Ethnic	and	Gender	breakdown	of	the	participants	enrolled	in	your	
study	to	date.	Ensure	totals	are	calculated	and	appropriately	recorded.	If	you	have	not	collected	these	
data,	please	explain	why.	Add	a	separate	table	for	each	type	of	participant	recorded	in	Table	1	above.	

Table	2	Racial/Ethnic	and	Gender	Enrollment	Table*	 	

Race	 Male	(N)	 Female	(N)	 Total	(N)	

American	Indian/	
Alaska	Native	

	 	 	

Asian	
	 	 	

Black/	African	
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American	

Hawaiian/	Pacific	
Islander	

	 	 	

White	
	 	 	

Multi-race	
	 	 	

Other	
	 	 	

Ethnicity	 Male	(N)	 Female	(N)	 Total	(N)	

Hispanic	
(Latino/Latina)	

	 	 	

Non-Hispanic	 	 	 	

	
	
*If	more	detailed	information	is	available	regarding	racial/ethnic	subgroups	for	the	participants	in	your	
study,	please	share	a	separate	table	with	this	information	in	the	Additional	Documents	section.
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ACCOMPLISHMENTS	AND	CHALLENGES		
	
Discuss	and	document	study	progress	and	all	significant	events	in	the	final	(6-month)	reporting	period.	In	
particular,	please	discuss:	
	

	
1. Accomplishments	achieved	during	the	final	reporting	period,	with	reference	to	planned	project	

activities,	milestones,	and	planned	dissemination	(include	the	specific	milestone	label	as	relevant).		
	

Revised	manuscript	for	Biometrics.	Gave	3	hour	American	Statistical	Association	(ASA)	webinar	on	
9/20/16,	1	hour	ASA	webinar	(New	Jersey	chapter)	on	10/28/16	and	presentation	at	Novartis	on	
12/5/16.		Posted	a	new	version	of	software	on	10/29/16	that	handles	non-monotone	missing	data,	
includes	new	case	studies	and	addresses	some	feedback	from	an	FDA	beta	tester.	

	
	

2. Challenges	faced	during	the	final	reporting	period	regarding	the	project	(e.g.,	participant	retention	
challenges,	data	analysis	challenges)	and	how	they	have	been	addressed.		
	

This	project	is	co-funded	by	the	FDA.		As	discussed	in	our	previous	progress	reports,	the	manuscripts	
planned	under	the	PCORI	contract	are	of	a	more	applied	nature;	they	cannot	be	submitted	until	the	
more	foundational	articles	have	been	accepted.		Right	now,	the	foundational	article	underlying	SAMON	
received	an	excellent	first	review	at	Biometrics	and	a	revision	attending	to	the	reviewers’	comments	has	
been	submitted.		The	more	applied	PCOR-focused	version	of	a	paper	describing	SAMON	has	been	
drafted	and	will	be	submitted	once	the	foundational	article	has	been	accepted.			The	same	issue	applies	
to	the	non-monotone	missing	data	manuscript.		We	fully	intend	to	submit	PCOR	focused	case	study	
manuscripts	for	monotone	and	non-monotone	missing	data	and	the	book.			

	
3. A	summary	of	any	reports	submitted	to	the	sponsor,	a	DSMB,	an	IRB,	the	FDA,	or	other	regulatory	or	

oversight	body	about	unanticipated	problems	involving	risks	to	subjects	or	others	relating	to	the	
research	project	(e.g.,	adverse	events,	deviation	from	approved	protocol	that	places	subjects	at	
increased	risk	of	harm,	data	breach,	procedural	or	medication	error)	that	were	reported	during	the	
reporting	period.		N/A	
	

4. A	summary	of	any	significant	decisions,	findings,	recommendations,	actions	and	directions	of	a	DSMB,	
an	IRB,	the	FDA	or	any	other	regulatory	or	oversight	body	relating	to	the	research	project	during	the	
final	reporting	period.		N/A	
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ENGAGEMENT	REPORT	
	

1. Descriptive	information	on	engagement	of	patients	and/or	other	stakeholders	in	the	past	year	should	be	
reported	using	the	link	below.	This	report	is	intended	to	capture	the	perspective	of	the	research	team.	
Patient	and	stakeholder	partners	will	have	additional	opportunities	to	provide	input.		

	
Your	Username	is	your	PCORI	contract	number	(no	letters,	dashes,	or	spaces).	

	
https://live.datstathost.com/PCORI-Collector/Survey.ashx?Name=Engagement_Report_Login	

	

When	you	have	completed	the	questions,	record	your	confirmation	code:	f9282 
	
2. Now	please	report	on	your	experience	engaging	with	patients	and	other	stakeholders	across	your	entire	

PCORI	project:	
	
• What	were	the	most	notable	impacts,	both	positive	and	negative,	of	engaging	with	patients	and/or	

other	stakeholders	on	the	study	operations	(e.g.,	logistics,	budget,	efficiency,	etc.)?	Please	provide	
specific	examples.	

	
N/A	

	
• What	were	the	most	notable	impacts,	both	positive	and	negative,	of	engaging	with	patients	and/or	

other	stakeholders	on	the	study	quality	(e.g.,	scientific	rigor,	recruitment	and	retention,	credibility	of	
findings,	etc.)?	Please	provide	specific	examples.	

	
Collaborating	with	statisticians	was	instrumental	in	improving	the	rigor	of	our	methods.		Interacting	
with	software	developers	assisted	us	in	developing	SAS	procedures.		

	
• What	were	the	most	notable	impacts,	both	positive	and	negative,	of	engaging	with	patients	and/or	

other	stakeholders	on	the	usefulness	of	study	findings	to	patients	and	healthcare	decision	makers	and	
the	potential	for	uptake	of	findings?	Please	provide	specific	examples	of	each.	

	
Stakeholders	could	have	been	more	effective	in	assisting	with	uptake	our	methods	and	software	as	
well	as	identifying	PCOR	datasets.	

	

• Please	describe	any	impacts	of	engagement	on:	
o The	investigators,		
o The	study	participants,	N/A	
o Your	institution	N/A	

	
	Investigators	learned	new	statistical	methods	and	software	development	tools.		

	
• What	experiences	from	this	project	or	other	factors	affect	the	likelihood	that	you	will	engage	with	

patients	and/or	other	stakeholders	on	future	research	projects?		
	

As	a	methodology	and	software	development	project,	it	is	essential	to	engage	with	statisticians	and	
software	development	experts.	We	would	have	liked	more	successful	engagement	on	dissemination.	
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• Across	your	entire	project,	what	strategies	worked	well	for	engaging	with	patients	and	other	

stakeholders?	Why?		
	

We	reached	out	to	knowledgeable	individuals	and,	when	appropriate,	offered	co-authorship	on	
publication(s).	

	
• What	strategies,	if	any,	didn’t	work	as	well	as	intended	for	engaging	with	patients	and	other	

stakeholders?	Why?		
	

Stakeholders	are	not	enthusiastic	in	utilizing	our	methods	and	software	because	it	requires	extra	
work	and	there	are	no	incentives	to	do	so.		Until	the	FDA,	PCORI	and	leading	journals	“require”	
rigorous	sensitivity	analysis	of	randomized	trials	with	missing	data,	adoption	will	be	slow.	
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FINANCIAL	STATUS	UPDATE	
	

Provide	a	summary/narrative	of	any	changes	to	your	originally	approved	budget	during	the	entire	project	
period	of	performance	and	how	those	changes	have	affected	the	study	progress	(e.g.,	staffing	and	cost	
estimates).	
	
There	have	not	been	any	significant	deviations	in	costs	and	budget.	
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KEY	PERSONNEL	EFFORT	UPDATE	
	

	
Key	Personnel	changes	must	be	reported	(see	your	executed	funding	contract	for	changes	in	key	personnel	
that	require	prior	PCORI	approval	or	advance	written	notification).	Report	the	individual’s	role,	change	in	
percentage	effort,	and	an	explanation	for	changes.	If	you	have	more	than	five	changes	to	report,	please	
include	additional	information	under	“Explanation	of	Changes.”		
	
	

Name	(First,	Last)	 Title	 Contracted	Percentage	
Effort	 Actual	Percentage	Effort	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 %	 	 	 	 	 	 %	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 %	 	 	 	 	 	 %	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 %	 	 	 	 	 	 %	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 %	 	 	 	 	 	 %	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 %	 	 	 	 	 	 %	

	
Explanation	of	Changes:		 	 	 	 	 	
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PUBLICATIONS	UPDATE	

	

REMINDER:	Please	make	sure	that	all	publications/communication/media	pieces	contain	the	following	acknowledgement	of	PCORI	funding	and	
required	disclaimer:		

“Research	reported	in	this	[work,	publication,	article,	report,	presentation,	etc.]	was	[partially]	funded	through	a	Patient-Centered	Outcomes	
Research	Institute	(PCORI)	Award	(##-###-####).”	

	
	“The	[views,	statements,	opinions]	in	this	[work,	publication,	article,	report]	are	solely	the	responsibility	of	the	authors	and	do	not	
necessarily	represent	the	views	of	the	Patient-Centered	Outcomes	Research	Institute	(PCORI),	its	Board	of	Governors	or	Methodology	
Committee.”	

		
In	the	tables	below,	record	information	regarding	publications	and	presentations	(scientific	and	non-scientific)	related	to	your	PCORI-funded	
research	that	occurred	as	of	the	reporting	date.	Retain	information	submitted	in	previous	reports.		
		
Publications	and/or	presentations	by	any	member	of	the	research	team,	including	patient	and	stakeholder	partners,	should	include	those:	
		

• In	preparation	to	be	submitted	
• That	have	been	submitted	to	a	publication	
• That	have	been	accepted	to	a	publication	
• That	are	in-press	
• That	have	been	published	

	
Please	send	any	submitted	or	published	manuscripts,	other	publications,	and	conference	abstracts,	as	described	in	the	Additional	Documents	
section.		
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Please	provide	this	additional	information	for	accepted	or	published	manuscripts	only.	

	 For	ACCEPTED	or	PUBLISHED	manuscripts	
Title	 Authors	***	

		
Publication	
date	

Volume	
(issue)	

Page	#s	 PMID	

Inference	in	Randomized	Trials	with	Death	
and	Missingness	

Wang,	Chenguang;	Scharfstein,	Daniel;	
Colantuoni,	Elizabeth;	Girard,	Timothy;	Yan,	
Ying		

	10/2016	
	

		 		 		

On	the	Analysis	of	Tuberculosis	Studies	
with	Intermittent	Missing	Data	

Scharfstein,	Daniel;	Rotnitzky,	Andrea;	
Abraham,	Maria;	McDermott,	Aidan;	
Chaisson,	Richard;	Geiter,	Lawrence	

12/2015	 9	 2215-2236	 	

***	Include	all	authors,	using	format:	Last	name	1,	First	name	1;	Last	name	2,	first	name	2;	etc.		
	

Other	Publications	(e.g.,	book	chapter,	report,	organizational	journals,	newsletters,	blogs,	other	lay	press)	



Principal	Investigator	(Scharfstein,	Daniel,	Oscar)		
	

	

	 	 	 16	

Title	 Publication	Type	 Status		 Name	of	
publication	

Authors	**	
		

Publication	date	 URL,	if	applicable	
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Statistical	
Methods	for	
Randomized,	
Controlled	Trials	

Scharfstein,	
Daniel;	Zhu,	
Yuxin;	Tsiatis,	
Anastasios	

		 		

Prospective	EHR-
Based	Clinical	
Trials:	The	
Challenge	of	
Missing	Data	

Editorial	 Published	 Journal	of	
General	Internal	
Medicine	

Kharazzi,	Hadi;	
Wang,	
Chenguang;	
Scharfstein,	
Daniel	

4/16/2014	 		

**	Include	all	authors,	using	format:	Last	name	1,	First	name	1;	Last	name	2,	first	name	2;	etc.		
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�	Community	
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in	the	project	
(Select	all	that	

apply)	

Conference	
or	Meeting	
Name,	if	
applicable	

Presentation	
Location	**	

URL,	if	
applicable	

Intended	
Audience	(Select	
all	that	apply)	

Global	Sensitivity	
Analysis	of	
Repeated	
Measures	Studies	
with	Informative	
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Aidan		
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Statistical	
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Global	Sensitivity	
Analysis	of	
Repeated	
Measures	Studies	
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University	
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Parametric	
Approach	
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Inference	in	
Randomized	
Trials	with	Death	
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Oral	 9/24/2014	 Wang,	
Chenguang	

Researcher	 ASA	
Biopharmac
eutical	
Section	
FDA-
Industry	
Workshop	

Rockville,	MD	 	 Researchers,	
Practitioners	

Global	Sensitivity	
Analysis	of	
Randomized	
Trials	with	
Missing	Data:	
Recent	Advances	

Short	
Course,	
In-Person	

12/8/2014	 Scharfstein,	
Daniel	

Researcher	 Deming	
Conference	

Atlantic	City,	
NJ	

	 Researchers,	
Practitioners	

Standards	in	the	
Prevention	and	
Handling	of	
Missing	Data	for	
Patient-Centered	
Outcomes	
Research	

Oral	 12/16/2014	 Li,	Tianjing	 Researcher	 Journal	
Club,	Johns	
Hopkins	
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Analysis	of	
Randomized	
Trials	with	
Missing	Data	
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Course,	
In-Person	
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1/12/2015	 Scharfstein,	
Daniel;	
McDermott,	
Aidan;	
Wang,	
Chenguang	

Researchers	 Johns	
Hopkins	
University	

Baltimore,	
MD	

	 Researchers,	
Practitioners	

Global	Sensitivity	
Analysis	of	
Randomized	
Trials	with	
Missing	Data	

Poster	 4/27/2015	 Scharfstein,	
Daniel	

Researcher	 FDA	ORSI	
Symposium	

Rockville,	MD	 	 Researchers,	
Practitioners,	
Policy	Makers	
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Global	Sensitivity	
Analysis	of	
Randomized	
Trials	with	
Missing	Data	
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Course,	
In-Person	

5/17/2015	 Scharfstein,	
Daniel	

Researcher	 Society	of	
Clinical	
Trials	

Arlington,	VA	 	 Researchers,	
Practitioners	

Analysis	of	
Prospective	
Studies	with	
Missing	Data	

On-Line	
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7/31/2015	 Scharfstein,	
Daniel;	Li,	
Tianjing	

Researchers	 Johns	
Hopkins	
University	

Baltimore,	
MD	

	 Researchers,	
Practitioners,	
Policy	Makers	

Global	Sensitivity	
Analysis	of	
Randomized	
Trials	with	
Missing	Data:	A	
Frequentist	
Perspective	

Oral	 11/6/2015	 Scharfstein,	
Daniel	

Researcher	 FDA	–	
Center	for	
Tobacco	
Products	

Rockville,	MD	 	 Researchers,	
Practitioners,	
Policy	Makers	

Missing	Data	and	
Sensitivity	
Analyses	in	
Randomized	
Trials	

Oral	 11/12/2015	 Scharfstein,	
Daniel	

Researcher	 GlaxoSmith
Kline	

Valley	Forge,	
PA	

	 Researchers,	
Practitioners	

Global	Sensitivity	
Analysis	of	
Randomized	
Trials	with	
Missing	Data:	
From	the	
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Development	
Trenches	

Oral	 11/13/2015	 Scharfstein,	
Daniel	

Researcher	 National	
Institute	of	
Statistical	
Sciences	

Washington,	
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	 Researchers	

Analysis	of	
Randomized	
Trials	with	
Missing	Data	
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In-Person	
and	
Adobe	

11/30/2015	 Scharfstein,	
Daniel;	
McDermott,	
Aidan;	
Wang,	

Researchers	 FDA	 Rockville,	MD	 	 Researchers,	
Practitioners,	
Policy	Makers	



Principal	Investigator	(Scharfstein,	Daniel,	Oscar)		
	

	

	 	 	 20	

Connect	 Chenguang	
Inference	in	
Randomized	
Trials	with	Death	
and	Missingness	

Oral	 4/4/2016	 Scharfstein,	
Daniel	

Researcher	 Brown	
University	

Providence,	
RI	

	 Researchers,	
Practitioners.	

Analysis	of	
Randomized	
Trials	with	
Missing	Data	

Webinar	 5/24/16	 Scharfstein,	
Daniel	

Researcher	 American	
Statistical	
Association	

	 	 Researchers,	
Practitioners	

Analysis	of	
Randomized	
Trials	with	
Missing	Data	
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Course,	
In-Person	
and	
Adobe	
Connect	

6/22/2016	 Scharfstein,	
Daniel;	
McDermott,	
Aidan;	
Wang,	
Chenguang	

Researchers	 Johns	
Hopkins	
University	

Baltimore,	
MD	

	 Researchers,	
Practitioners		

Analysis	of	
Randomized	
Trials	with	
Missing	Data	
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Course,	
In-Person		

7/26/2015	 Scharfstein,	
Daniel	

Researcher	 University	
of	
Washington	

Seattle,	WA	 	 Researchers,	
Practitioners,		

Analysis	of	
Randomized	
Trials	with	
Missing	Data	

Webinar	 9/20/16	 Scharfstein,	
Daniel	

Researcher	 American	
Statistical	
Association	

	 	 Researchers,	
Practitioners	

Inference	in	
Randomized	
Trials	with	Death	
and	Missingness	
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Demonstration	

Webinar	 10/28/16	 Wang,	
Chenguang	

Researcher	 American	
Statistical	
Association	
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	 	 Researchers,	
Practitioners	

Analysis	of	
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Oral	 12/5/16	 Scharfstein,	
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Researcher	 Novartis	 East	
Hanover,	NJ	

	 Practitioners	

*	Last,	First	
**City,	State	or	online	(e.g.,	webinar)		
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Additional	Dissemination	Updates		
	

1. How	will	your	study	findings	and	other	lessons	learned	be	shared	with:	

• Your	study	participants	
• Research	partners	(i.e.,	researchers,	patients	and	other	stakeholders	engaged	in	the	planning	and	conduct	of	your	study)	
• Other	investigators	

	
Through	publications,	project	website,	short	courses	and	webinars.	

	
2. Who	are	the	key	end-users	of	your	findings?	How	will	these	individuals	or	organizations	use	the	information?	

FDA,	Pharma,	Clinical	trial	statisticians.		They	should	use	our	methods	and	software	to	evaluate	the	robustness	of	their	trial	results	to	
missing	data	assumptions.	

	
3. How	will	your	study	findings	and	other	lessons	learned	be	shared	with	these	end-users?	

Through	publications,	project	website,	short	courses	and	webinars.	
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DATA	SHARING	
	

Please	describe	the	data	management	and	sharing	plan	that	you	have	implemented	to	enable	sharing	of	

Research	Project	data	(e.g.,	full	analyzable	data	set,	full	protocol,	full	statistical	analysis	plan	and	analytic	

code)	in	a	manner	that	is	consistent	with	applicable	privacy,	confidentiality	and	other	legal	

requirements.	

We	posted	R	and	SAS	versions	of	the	software	SAMON	on	the	www.missingdatamatters.org	
website.		An	R	version	of	a	software	package	(called	idem)	for	conducting	sensitivity	analysis	of	
randomized	trials	with	death	and	missingness	is	posted	on	CRAN.		Example	datasets	are	posted	as	
part	of	our	software	distribution.	
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FUTURE	DIRECTIONS	

	

	

1. What,	if	anything,	will	you	do	differently	in	future	research	as	a	result	of	your	experience	with	this	

PCORI	project?		

	

Be	more	realistic	about	the	timeline	for	deliverable	of	manuscripts.		The	time	scale	for	publication	of	
statistical	methods	papers	is	very	long	and	application	papers	cannot	be	submitted	until	the	methods	
papers	have	been	accepted.			
	
Set	up	deliverables	that	are	not	contingent	on	feedback	from	the	user	community.		Our	last	set	of	
deliverables	were	based	on	the	development	of	methods	and	software	based	on	feedback	from	beta	
testers.		With	the	exception	of	a	beta	tester	hired	by	the	FDA,	we	received	no	meaningful	feedback.	
	 	



Principal	Investigator	(Scharfstein,	Daniel,	Oscar)		

	
	

	 	

	 24	

PROGRESS	STATEMENT	FOR	PUBLIC	USE		
	

	

Summarize	project	findings	and	impact,	as	well	as	engagement/stakeholder	experiences	using	

nontechnical	language	that	is	ready	for	public	use.	(Note:	This	information	may	be	publicly	disseminated	

by	PCORI.)	Limit	250	words.	
	

Missing	outcome	data	are	a	widespread	problem	in	clinical	trials,	including	those	with	patient	
centered	outcomes.		In	the	presence	of	missing	data,	inference	about	treatment	effects	relies	on	
unverifiable	assumptions.	It	is	widely	recognized	that	the	way	to	address	this	problem	is	to	posit	
varying	assumptions	about	the	missing	data	mechanism	and	evaluate	how	inference	about	treatment	
effects	is	affected	by	these	assumptions.		In	this	project,	we	created	and	disseminated	novel	statistical	
methods	and	software	for	evaluating	the	robustness	of	trial	results	to	missing	data	assumptions.		The	
software	is	posted	on	the	project	website	http://www.missingdatamatters.org/.		To	illustrate	the	
methods	and	software,	six	case	studies	were	developed.	During	the	project,	six	in-person	short	
courses	were	delivered,	along	with	three	webinars,	one	videotaped	lecture,	nine	oral	presentations	
and	one	poster.		In	addition,	two	manuscripts	were	accepted	for	publication,	one	has	been	revised	
and	one	is	under	revision;	additional	manuscripts	and	a	book	are	in	preparation.		Throughout	the	
project,	we	were	engaged	with	statistical	methodologists	and	software	developers	as	well	as	the	FDA,	
a	key	stakeholder	and	co-funder.		Despite	wide	dissemination	efforts,	uptake	of	our	methods	and	
software	has	been	slower	than	expected.	Until	investigators	are	incentivized	by	FDA,	PCORI,	NIH	and	
journals	to	rigorously	evaluate	the	robustness	of	trial	results	to	missing	data	assumptions,	adoption	of	
our	technology	is	likely	to	be	slow.	Once	the	incentives	are	in	place,	our	tools	will	be	ready	for	use.	
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ADDITIONAL	DOCUMENTS	
All	attachments	should	be	combined	with	this	document	and	submitted	to	PCORI	as	one	PDF	to	fundedpfa@pcori.org.		

	

Any	relevant	document,	not	already	delivered,	such	as:	
• Copies	of	drafts	of	instruments,	data	dictionaries,	educational	materials,	manuals,	or	

other	project	materials		

• Minutes	or	summaries	from	patient	and/or	stakeholder	meetings	

• Bibliographies		

• Summaries	from	DSMB	meetings	

• Final	study	protocol	

• Other	communications	efforts		

• Copies	of	reports	from	any	consultants	or	advisors,	where	applicable		

• Other	documents	or	materials,	as	appropriate		

• Websites,	blogs,	or	other	Internet-based	links		

• Public	affairs	or	popular	press	coverage	of	the	study	online,	on	television,	radio,	etc.		

• Abstracts	from	presentations	made	to	professional	groups	or	associations		

• Submitted	and	published	manuscripts	
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1. Introduction

We consider a prospective cohort study design in which outcomes are scheduled to be

collected after enrollment at fixed time-points and the parameter of interest is the mean

outcome at the last scheduled study visit. We are concerned with drawing inference about this

target parameter in the setting where some study participants prematurely stop providing

outcome data.

Identifiability of the target parameter requires untestable assumptions about the nature

of the process that leads to premature withdrawal. A common benchmark assumption,

introduced by Rubin (1976), is that a patient’s decision to withdraw between visits k and

k + 1 depends on outcomes through visit k (i.e., past), but not outcomes after visit k (i.e.,

future). This assumption has been referred to as missing at random (MAR). A weaker version

of this assumption, termed sequential ignorability (SI), posits that the withdrawal decision

depends on outcomes through visit k, but not the outcome at the last scheduled study visit

(Birmingham et al., 2003). The former assumption yields identification of the entire joint

distribution of the outcomes, while the latter assumption only admits identification of the

distribution of the outcome at the last scheduled visit. Both parametric (see, for example,

Schafer, 1997; Little and Rubin, 2014) and semi-parametric (see, for example, van der Laan

and Robins, 2003; Tsiatis, 2006) approaches have been proposed for drawing inference about

the target parameter under these assumptions.

For such untestable assumptions, it is important to conduct a sensitivity analysis to

evaluate the robustness of the resulting inferences (see, for example, Little et al., 2010;

ICH, 1998; CHMP, 2009). As reviewed by Scharfstein et al. (2014), sensitivity analyses

can generally be classified as ad-hoc, local and global. Ad-hoc sensitivity analysis involves

analyzing the data using a variety of methods and evaluating whether the inferences they

yield are consistent with one another (CHMP, 2009). Local sensitivity analysis evaluates
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how inferences vary in a small neighborhood of the benchmark assumption (see, for example,

Copas and Eguchi, 2001; Verbeke et al., 2001; Troxel et al., 2004; Ma et al., 2005). In contrast,

global sensitivity analysis considers how inferences vary over a much larger neighborhood

of the benchmark assumption (see, for example, Nordheim, 1984; Baker et al., 1992; Little,

1994; Rotnitzky et al., 1998; Scharfstein et al., 1999; Robins et al., 2000; Rotnitzky et al.,

2001; Birmingham et al., 2003; Vansteelandt et al., 2006; Daniels and Hogan, 2008; Little

et al., 2010; Scharfstein et al., 2014).

In addition to untestable assumptions, testable restrictions are needed to combat the so-

called “curse of dimensionality” (Robins et al., 1997). Scharfstein et al. (2014) developed a

global sensitivity analysis approach whereby the untestable and testable assumptions were

guaranteed to be compatible. Their testable assumptions were based on a fully parametric

model for the distribution of the observable data. In our own practice, we have found it

particularly challenging to posit parametric models that correspond well with the observed

data, as we illustrate in Section 4 below. This has motivated the current paper, in which

we relax distributional assumptions and develop a more flexible, semi-parametric extension

of the Scharfstein et al. (2014) approach. The techniques of Daniels and Hogan (2008) and

Linero and Daniels (2015) provide Bayesian solutions to the same problem and also ensure

the compatibility of the untestable and testable assumptions. However, in contrast to our

proposal, the scalability of their approach to settings including a large number of post-

baseline assessments has yet to be demonstrated.

The paper is organized as follows. In Section 2, we introduce the data structure and the

define the target parameter of interest. We also review the identification assumptions of

Scharfstein et al. (2014). In Section 3, we present our inferential approach. In Section 4, we

present results from the re-analysis of a clinical trial in which there was substantial premature
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withdrawal. In Section 5, we describe the results of a simulation study. We provide concluding

remarks in Section 6.

2. Data structure, target parameter, assumptions and identifiability

2.1 Data structure and target parameter

Let k = 0, 1, . . . , K refer in chronological order to the scheduled assessment times, with

k = 0 corresponding to baseline. Let Yk denote the outcome scheduled to be measured at

assessment k. Define Rk to be the indicator that an individual is on-study at assessment k.

We assume that all individuals are present at baseline, that is, P (R0 = 1) = 1. Furthermore,

we assume that individuals do not contribute any further data once they have missed a visit,

so that P (Rk+1 = 0 | Rk = 0) = 1 for each k. This pattern is often referred to as monotone

drop-out. Let C = max{k : Rk = 1} and note that C = K implies that the individual must

have completed the study. For any given vector z = (z1, z2, . . . , zK), we use the notational

convention zk = (z0, z1, . . . , zk) and zk = (zk+1, zk+2, . . . , zK). For each individual, the data

unit O = (C, Y C) is drawn from some distribution P ∗ contained in the non-parametric model

M of distributions. The observed data consist of n independent draws O1, O2, . . . , On from

P ∗. Throughout, the superscript ∗ will be used to denote the true value of the quantity to

which it is appended.

By factorizing the distribution of O in terms of chronologically ordered conditional distri-

butions, any distribution P ∈M can be represented by

• F0(y0) := P (Y0 6 y0);

• Fk+1(yk+1 | yk) := P
(
Yk+1 6 yk+1 | Rk+1 = 1, Y k = yk

)
, k = 0, 1, . . . , K − 1;

• Hk+1(ȳk) := P
(
Rk+1 = 0 | Rk = 1, Y k = yk

)
, k = 0, 1, . . . , K − 1.

Our main objective is to draw inference about µ∗ := E∗(YK), the true mean outcome at visit

K in a hypothetical world in which all patients are followed to that visit.
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2.2 Assumptions

Assumptions are required to draw inference about µ∗ based on the available data. We consider

a class of assumptions whereby an individual’s decision to drop out in the interval between

visits k and k + 1 is not only influenced by past observable outcomes but by the outcome

at visit k + 1. Towards this end, we adopt the following two assumptions introduced in

Scharfstein et al. (2014):

Assumption 1: For k = 0, 1, . . . , K − 2,

P ∗
(
YK 6 y | Rk+1 = 0, Rk = 1, Y k+1 = yk+1

)
= P ∗

(
YK 6 y | Rk+1 = 1, Y k+1 = yk+1

)
.

This says that in the cohort of patients who (1) are on-study at assessment k, (2) share the

same outcome history through that visit and (3) have the same outcome at assessment k+1,

the distribution of YK is the same for those last seen at assessment k and those still on-study

at k + 1.

Assumption 2: For k = 0, 1, . . . , K − 1,

dG∗k+1(yk+1 | yk) ∝ exp{ρk+1(yk, yk+1)}dF ∗k+1(yk+1 | yk) ,

where G∗k+1(yk+1 | yk) := P ∗
(
Yk+1 6 yk+1 | Rk+1 = 0, Rk = 1, Y k = yk

)
and ρk+1(yk, yk+1) is

a known, pre-specified function of yk and yk+1.

Conditional on any given history yk, this assumption relates the distribution of Yk+1 for those

patients who drop out between assessments k and k + 1 to those patients who are on study

at k+ 1. The special case whereby ρk+1 is constant in yk+1 for all k implies that, conditional

on the history yk, individuals who drop out between assessments k and k+ 1 have the same

distribution of Yk+1 as those on-study at k + 1. If instead ρk+1 is an increasing (decreasing)

function of yk+1 for some k, then individuals who drop-out between assessments k and k+ 1

tend to have higher (lower) values of Yk+1 than those who are on-study at k + 1.
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Setting

`∗k+1(yk) := logit
{
H∗k+1(yk)

}
− log

{∫
exp{ρk+1(yk, u)}dF ∗k+1(u | yk)

}
,

it can be shown that Assumptions 1 and 2 jointly imply that

logit
{
P ∗
(
Rk+1 = 0 Rk = 1, Y k+1 = yk+1, YK = yK

)}
= `∗k+1(yk) + ρk+1(yk, yk+1) .

We note that since H∗k+1 and F ∗k+1 are identified from the distribution of the observed data,

so is `∗k+1(yk). Furthermore, we observe that ρk+1 quantifies the influence of Yk+1 on the risk

of dropping out between assessments k and k+ 1, after controlling for the past history yk. In

particular, YK is seen to not additionally influence this risk. When ρk+1 does not depend on

yk+1, we obtain an assumption weaker than missing at random but stronger than sequential

ignorability – we refer to it as SI-1. Under SI-1, the decision to withdraw between visits k

and k + 1 depends on outcomes through visit k but not on the outcomes at visits k + 1 and

K. For specified ρk+1, Assumptions 1 and 2 place no restriction on the distribution of the

observed data. As such, ρk+1 is not an empirically verifiable function.

Assumptions 1 and 2 allow the existence of unmeasured common causes of Y0, Y1, . . . , YK ,

but does not allow these causes to directly impact, for patients on study at visit k, the

decision to drop out before visit k+ 1. This is no different than under missing at random or

sequential ignorability. To allow for a direct impact, one could utilize the sensitivity analysis

model of Scharfstein, Rotnitzky and Robins (1998), which specifies

logit
{
P ∗
(
Rk+1 = 0 Rk = 1, Y k = yk, YK = yK

)}
= h∗k+1(yk) + qk+1(yk, yK) ,

where

h∗k+1(yk) := logit
{
H∗k+1(yk)

}
− log

{∫
exp{ρk+1(yk, u)}dF ∗K,k(u | Rk = 1, yk)

}
and F ∗K,k(u | Rk = 1, yk) := P ∗(YK 6 u|Rk = 1, Y k = yk). Here, qk+1(yk, yK) quantifies the

influence of the outcome scheduled to be measured at the end of the study on the conditional

hazard of last being seen at visit k given the observable past yk. The key disadvantage of
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this model is that we have found that it is challenging for scientific experts to articulate how

a distal endpoint affects a more proximal event (i.e., drop-out).

2.3 Identifiability of target parameter

Under Assumptions 1 and 2 with given ρk+1, the parameter µ∗ is identifiable. To establish

identifiability, it suffices to demonstrate that µ∗ can be expressed as a functional of the

distribution of the observed data. In the current setting, this follows immediately by noting,

through repeated applications of the law of iterated expectations, that

µ∗ = µ(P ∗) = E∗

[
RKYK∏K−1

k=0 [1 + exp{`∗k+1(Y k) + ρk+1(Y k, Yk+1)}]−1

]
The functional µ(P ∗) can be equivalently expressed as∫

y0

· · ·
∫
yK

yK

K−1∏
k=0

[
dF ∗k+1(yk+1 | yk)

{
1−H∗k+1(yk)

}
+

exp{ρk+1(yk, yk+1)}dF ∗k+1(yk+1 | yk)∫
exp{ρk+1(yk, u)}dF ∗k+1(u | yk)

H∗k+1(yk)

]
dF ∗0 (y0) . (1)

3. Statistical inference

3.1 Naive substitution estimator

Given a fixed function ρk+1, Scharfstein et al. (2014) proposed to estimate µ∗ via the

substitution principle. Specifically, they consider specifying parametric models for both F ∗k+1

and H∗k+1, estimating parameters in these models by maximizing the likelihood function,

estimating F ∗0 nonparametrically using the empirical distribution function, and finally, esti-

mating (1) by Monte Carlo integration using repeated draws from the resulting estimates of

F ∗k+1, H
∗
k+1 and F ∗0 . Since the expression in (1) represents a smooth functional of F ∗0 and of

the finite-dimensional parameters of the models for F ∗k+1 and H∗k+1, the resulting estimator of

µ∗ is n1/2-consistent and, suitably normalized, tends in distribution to a mean-zero Gaussian

random variable.

While simple to describe and easy to implement, this approach has a major drawback: the
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inferences it generates will be sensitive to correct specification of the parametric models

imposed on F ∗k+1 and H∗k+1. Since the fit of these models is empirically verifiable, the

plausibility of the models imposed can be scrutinized in any given application. In several

instances, we have found it difficult to find models providing an adequate fit to the observed

data. This is a serious problem since model misspecification will generally lead to inconsistent

inference, which can translate into inappropriate and misleading scientific conclusions. To

provide greater robustness, we instead adopt a more flexible modeling approach.

As noted above, the distribution P ∗ can be represented in terms of {(F ∗k+1, H
∗
k+1) : k =

0, 1, . . . , K−1}. Suppose that P ∗ is contained in the submodel M0 ⊂M of distributions that

exhibit a first-order Markovian structure in the sense that Fk+1(yk+1 | yk) = Fk+1(yk+1 | yk)

and Hk+1(ȳk) = Hk+1(yk). We can then estimate F ∗0 by the empirical distribution based on

the sample of observed Y0 values, while F ∗k+1 and H∗k+1 can be estimated using the Nadaraya-

Watson kernel estimators

F̂k+1,λF (yk+1 | yk) :=

∑n
i=1Rk+1,iI(Yk+1,i 6 yk+1)φλF (Yk,i − yk)∑n

i=1Rk+1,iφλF (Yk,i − yk)
and (2)

Ĥk+1,λH (yk) :=

∑n
i=1Rk,i(1−Rk+1,i)φλF (Yk,i − yk)∑n

i=1Rk,iφλF (Yk,i − yk)
, (3)

where φ is a symmetric probability density function, φλ refers to the rescaled density y 7→

φ(y/λ)/λ, and (λF , λH) is a vector of tuning parameters. In practice, the values of these

tuning parameters need to be carefully chosen to ensure the resulting estimators of F ∗k+1

and H∗k+1 perform well. As discussed next, we select the tuning parameters via J-fold cross

validation.

Writing F := (F1, F2, . . . , FK) and H := (H1, H2, . . . , HK), and denoting a typical realiza-

tion of the prototypical data unit as o = (c, yc), we may define the loss functions

LF (F ;F ◦)(o) :=
K−1∑
k=0

rk+1

∫
{I(yk+1 6 u)− Fk+1(u | yk)}2 dF ◦k+1(u) ,

LH(H;H◦)(o) :=
K−1∑
k=0

rk [rk+1 − {1−Hk+1(yk)}]2H◦k+1
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with F ◦ := (F ◦1 , F
◦
2 , . . . , F

◦
K) and H◦ := (H◦1 , H

◦
2 , . . . , H

◦
K) defined by F ◦k+1(u) := P (Yk+1 6

u | Rk+1 = 1) and H◦k+1 := P (Rk+1 = 0 | Rk = 1). Here, F ◦ and H◦ represent collections

of distributions and probabilities that can be estimated nonparametrically without the need

for smoothing. It can be shown that the true risk mappings F 7→ E∗[LF (F ;F ◦∗)(O)] and

H 7→ E∗[LH(H;H◦∗)(O)] are minimized at F = F ∗ and H = H∗, where F ◦∗ and H◦∗ denote

the true value of F ◦ and H◦, respectively. Given a random partition of the dataset into J

validation samples {V1, V2, . . . , VJ} with sample sizes n1, n2 . . . , nJ , taken to be approximately

equal, the oracle selectors for λF and λH are (van der Vaart et al., 2006)

λ̃F := argmin
λF

1

J

J∑
j=1

E∗[LF (F̂
(j)
λF

; F̂ ◦)(O)] and λ̃H := argmin
λH

1

J

J∑
j=1

E∗[LH(Ĥ
(j)
λH

; Ĥ◦)(O)].

Here, F̂
(j)
k+1,λF

and Ĥ
(j)
k+1,λH

are obtained by computing (2) and (3), respectively, on the dataset

obtained by excluding individuals in Vj. The estimates of nuisance parameter estimators F̂ ◦k+1

and Ĥ◦k+1 are given by the empirical distribution of the observed values of Yk+1 within the

subset of individuals with Rk+1 = 1 and by the empirical proportion of individuals with

Rk+1 = 0 among those with Rk = 1, respectively. The quantities λ̃F and λ̃H cannot be

computed in practice since P ∗ is unknown. Empirical tuning parameter selectors are given

by

λ̂F := argmin
λF

R̂F (λF ) and λ̂H := argmin
λH

R̂H(λH),

where

R̂F (λF ) :=
1

J

J∑
j=1

1

nj

∑
i∈Vj

LF (F̂
(j)
λF

; F̂ ◦)(Oi)

=
1

J

J∑
j=1

1

nj

∑
i∈Vj

K−1∑
k=0

Rk+1,i

[∑
`Rk+1,`{I(Yk+1,i 6 Yk+1,l)− F̂ (j)

k+1,λF
(Yk+1,l | Yk,i)}2∑

`Rk+1,`

]

and

R̂H(λH) :=
1

J

J∑
j=1

1

nj

∑
i∈Vj

LH(Ĥ
(j)
λH

; Ĥ◦)(Oi)
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=
1

J

J∑
j=1

1

nj

∑
i∈Vj

K−1∑
k=0

Rk,i[Rk+1,i − {1− Ĥ(j)
k+1,λH

(Yk,i)}]2
∑

`Rk,`(1−Rk+1,`)∑
`Rk,`

.

The naive substitution estimator of µ∗ is µ(P̂ ), where P̂ is determined by (2) and (3)

computed with tuning parameters (λ̂F , λ̂H).

3.2 Generalized Newton-Raphson estimator

3.2.1 Preliminaries. In order to estimate F ∗k+1 andH∗k+1, smoothing techniques, as used in

(2) and (3), must be utilized in order to borrow strength across subgroups of individuals with

differing observed outcome histories. The implementation of smoothing techniques requires

the selection of tuning parameters governing the extent of smoothing. As in the above

procedure, tuning parameters are generally chosen to achieve an optimal finite-sample bias-

variance trade-off for the quantity requiring smoothing - here, conditional distribution and

probability mass functions. However, this trade-off may be problematic, since the resulting

plug-in estimator µ(P̂ ) defined in Section 3.1 may suffer from excessive and asymptotically

nonnegligible bias due to inadequate tuning. This may prevent the naive estimator from

having regular asymptotic behavior, upon which statistical inference is generally based. In

particular, the resulting estimator may have a slow rate of convergence, and common methods

for constructing confidence intervals, such as the Wald and bootstrap intervals, can have poor

coverage properties. Such naive plug-in estimators must therefore be regularized in order to

serve as an appropriate basis for drawing statistical inference, as is discussed in greater detail

below.

If the parameter of interest is a sufficiently smooth functional on the space of possible

data-generating distributions, it is sensible to expect a first-order expansion of the form

µ(P )− µ(P ∗) =

∫
D(P )(o)d(P − P ∗)(o) +Rem(P, P ∗) (4)

to hold, where D(P )(o) is the evaluation at an observation value o of a so-called gradient of

µ at P , and Rem(P, P ∗) is a second-order remainder term tending to zero as P tends to P ∗.
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This is established formally in the context of the current problem in Lemma 1. Here, much

in parallel to its counterpart in multivariate calculus, the gradient D is an analytic object

used to compute, at any given data-generating distribution P , the change in µ(P ) following

a slight perturbation of P . In general, the gradient is not uniquely defined, although it must

be the case that any gradient D is such that D(P )(O) has mean zero and finite variance

under sampling from P . A discussion on gradients of statistical parameters can be found,

for example, in Pfanzagl (1982) and in Appendix A.4 of van der Laan and Rose (2011).

Provided (4) holds and for a given estimator P̂ of P ∗, algebraic manipulations leads to

µ(P̂ )− µ(P ∗) =

∫
D(P̂ )(o)d(P̂ − P ∗)(o) +Rem(P̂ , P ∗)

=
1

n

n∑
i=1

D(P ∗)(Oi) +

∫
[D(P̂ )(o)−D(P ∗)(o)]d(Pn − P ∗)(o)

− 1

n

n∑
i=1

D(P̂ )(Oi) +Rem(P̂ , P ∗) ,

where Pn denotes the empirical distribution based on O1, O2, . . . , On. If P̂ is a sufficiently

well-behaved estimator of P ∗, it is often the case that the terms
∫

[D(P̂ )(o)−D(P ∗)(o)]d(Pn−

P ∗)(o) and Rem(P̂ , P ∗) are asymptotically negligible. However, when P̂ involves smoothing,

as in the setting considered in this paper, the term n−1
∑n

i=1D(P̂ )(Oi) generally tends to

zero too slowly to allow µ(P̂ ) to be an asymptotically linear estimator of µ∗. Nonetheless,

the corrected estimator

µ̂ = µ(P̂ ) +
1

n

n∑
i=1

D(P̂ )(Oi)

is regular and asymptotically linear with influence function D(P ∗), provided that the afore-

mentioned terms are asymptotically negligible. Consequently, µ̂ converges to µ∗ in probability

and n1/2(µ̂−µ∗) tends in distribution to a zero-mean Gaussian random variable with variance

σ2 :=
∫
D(P ∗)(o)2dP ∗(o). This estimator is, in fact, a direct generalization of the one-

step Newton-Raphson procedure used in parametric settings to produce an asymptotically
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efficient estimator. This correction approach was discussed early on by Ibragimov and Khas-

minskii (1981), Pfanzagl (1982) and Bickel (1982), among others.

An alternative estimation strategy would consist of employing targeted minimum loss-

based estimation (TMLE) to reduce bias due to inadequate tuning (van der Laan and

Rubin, 2006). TMLE proceeds by modifying the initial estimator P̂ into an estimator P̃

that preserves the consistency of P̂ but also satisfies the equation n−1
∑n

i=1D(P̃ )(Oi) = 0.

As such, the TMLE-based estimator µ̃ := µ(P̃ ) of µ∗ does not require additional correction

and is asymptotically efficient. In preliminary simulation studies (not shown here), we found

no substantial difference between the TMLE µ̃ and our proposed one-step estimator µ̂. In

this case, we favor the latter because of its greater ease of implementation.

3.2.2 Estimator based on canonical gradient: definition and properties. In our problem,

the one-step estimator can be constructed using any gradient D of the parameter µ defined

on the model M0. Efficiency theory motivates the use of the canonical gradient, often called

the efficient influence function, in the construction of the above estimator. The resulting

estimator is then not only asymptotically linear but also asymptotically efficient relative to

model M0. The canonical gradient can be obtained by projecting any other gradient onto the

tangent space, defined at each P ∈M0 as the closure of the linear span of all score functions

of regular one-dimensional parametric models through P . A comprehensive treatment of

efficiency theory can be found in Pfanzagl (1982) and Bickel et al. (1993).

In our analysis, we restrict our attention to the class of selection bias functions of the

form ρk+1(yk, yk+1) = αρ(yk+1), where ρ is a specified function of yk+1 and α is a sensitivity

analysis parameter. With this choice, α = 0 corresponds to our benchmark assumption (SI-

1), which is weaker than missing at random (MAR) but stronger than sequential ignorability

(SI). For the parameter chosen, the canonical gradient D†(P ) relative to M0, suppressing
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notational dependence on α, is given by

D†(P )(o) := a0(y0) +
K−1∑
k=0

rk+1bk+1(yk+1, yk) +
K−1∑
k=0

rk{1− rk+1 −Hk+1(yk)}ck+1(yk) ,

where expressions for a0(y0), bk+1 and ck+1 are given in Appendix A. In this paper we suggest

the use of the following one-step estimator

µ̂ := µ(P̂ ) +
1

n

n∑
i=1

D†(P̂ )(Oi)

which stems from linearization (4), as formalized in the following lemma.

Lemma 1: For any P ∈M0, the linearization

µ(P )− µ(P ∗) =

∫
D†(P )(o)d(P − P ∗)(o) +Rem(P, P ∗)

holds for a second-order remainder term Rem(P, P ∗) defined in Appendix B.

In the above lemma, the expression second-order refers to the fact that Rem(P, P ∗) can be

written as a sum of the integral of the product of two error terms each tending to zero as P

tends to P ∗, that is,

Rem(P, P ∗) =
K−1∑
k=0

∫
u∗k(o) {Ψk(P )(o)−Ψk(P

∗)(o)} {Θk(P )(o)−Θk(P
∗)(o)} dP ∗(o) (5)

for certain smooth operators Ψ0, . . . ,ΨK−1,Θ0, . . . ,ΘK−1 and weight functions u∗0, . . . , u
∗
K−1

that possibly depend on P ∗. The proof of Lemma 1 follows from the derivations in Web

Appendices A and B.

The proposed estimator is asymptotically efficient relative to model M0 under certain

regularity conditions, as outlined below.

Theorem 1: If

(a)
∫

[D†(P̂ )(o)−D†(P ∗)(o)]d(Pn − P ∗)(o) = oP (n−1/2), and

(b) Rem(P̂ , P ∗) = oP (n−1/2)

then it holds that

µ̂ = µ∗ +
1

n

n∑
i=1

D†(P ∗)(Oi) + oP (n−1/2)
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and therefore µ̂ is an asymptotically efficient estimator of µ∗ relative to model M0.

This result not only justifies the use of µ̂ in practice but also suggests that a Wald-type

asymptotic 100× (1− γ)% confidence interval for µ∗ can be constructed as(
µ̂−

zγ/2σ̂√
n
, µ̂+

zγ/2σ̂√
n

)
, (6)

where σ̂2 := 1
n

∑n
i=1D

†(P̂ )(Oi)
2 is a consistent estimator of the asymptotic variance of

n1/2(µ̂−µ∗) under mild conditions and zγ/2 is the (1− γ/2)-quantile of the standard normal

distribution.

Alternative sufficient conditions can be established to guarantee that conditions (a) and

(b) of the theorem above hold. For example, a simple application of Lemma 19.24 of van der

Vaart (2000) implies that condition (a) holds provided it can be established that

(i) D†(P̂ ) is a consistent estimator of D†(P ∗) in the L2(P
∗)-norm in the sense that∫ [

D†(P̂ )(o)−D†(P ∗)(o)
]2
dP ∗(o)

P−→ 0, and

(ii) for some P ∗-Donsker class F , D†(P̂ ) falls in F with probability tending to one.

Since our estimator P̂ is based on kernel regression, and is therefore consistent, condition (i)

holds by a simple application of the continuous mapping theorem. Condition (ii) is standard

in the analysis of estimators based on data-adaptive estimation of nuisance parameters

– Giné and Nickl (2008) presents an excellent study of the conditions under which it is

expected to hold. Condition (b) is satisfied as a result of the following argument. The use of

cross-validation allows the optimal rate n−2/5 to be achieved for the estimator P̂ since the

latter is constructed using univariate kernel smoothers. By a repeated use of the Cauchy-

Schwartz inequality on the various summands of Rem(P̂ , P ∗) in (5), the continuous mapping

theorem allows us to show that, since each term in Rem(P̂ , P ∗) is a second-order difference

involving smooth transformations of components of P̂ and P , Rem(P̂ , P ∗) tends to zero
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in probability at a rate faster than n−1/2 under very mild conditions, including that the

probabilities π̂(Yj−1, Yj) are bounded away from zero with probability tending to one.

3.3 Practical considerations in confidence interval construction

For given α, there are many ways to construct confidence intervals for µ∗. As indicated above,

an influence function-based asymptotic confidence interval is given by (6). In Section 5, we

present the results of a simulation study in which this confidence interval construction results

in poor coverage in moderately sized samples. The poor coverage can be explained in part by

the fact that σ̂2 can be severely downward biased in finite samples (Efron and Gong, 1983).

This side effect of poor variance estimation may be alleviated by resorting to alternative

pivots. The empirical likelihood methodology (Owen, 2001) is based on the influence function

and forms a pivot whose signed square root is asymptotically standard normal without

explicit variance estimation. Variance stabilization (Tibshirani, 1988; DiCiccio et al., 2006)

aims to single out a suitable reparametrization of µ, say h(·), such that the asymptotic

variance of n1/2{h(µ̂) − h(µ)} is exactly or approximately 1. However, simulation results

(not reported) highlight that none of these procedures exhibit appreciably better coverage

accuracy than (6) .

There is hope that resampling-based procedures may be used to improve performance. In

considering such procedures, we must keep an eye on computational feasibility. A first idea

is to consider the jackknife estimator for σ2,

σ̂2
JK := (n− 1)

n∑
i=1

{µ̂(−i) − µ̂(·)}2

where µ̂(−i) is the estimator of µ∗ with the ith individual deleted from the dataset and

µ̂(·) := 1
n

∑n
i=1 µ̂

(−i). This estimator is known to be conservative (Efron and Stein, 1981), but

is the “method of choice if one does not want to do bootstrap computations” (Efron and

Gong, 1983). Using the jackknife, confidence intervals take the form of (6) with σ̂ replaced
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by σ̂JK . Our simulation study in Section 5 demonstrates that these intervals perform better

than interval (6) although some undercoverage is still present.

Another possible approach would be to utilize the Studentized bootstrap, wherein confi-

dence intervals are formed by choosing cutpoints based on the distribution of{
µ̂(b) − µ̂
ŝe(µ̂(b))

: b = 1, 2, . . . , B

}
(7)

where µ̂(b) is the estimator of µ∗ based on the bth bootstrap dataset and ŝe(µ̂(b)) is an

estimator of the standard error of µ̂(b). One can consider standard error estimators based

on the influence function or jackknife. An equal-tailed (1− γ) confidence interval takes the

form
(
µ̂− t1−γ/2ŝe(µ̂), µ̂− tγ/2ŝe(µ̂)

)
, where tq is the qth quantile of (7). A symmetric (1−γ)

confidence interval takes the form
(
µ̂− t∗1−γ ŝe(µ̂), µ̂+ t∗1−γ ŝe(µ̂)

)
, where t∗1−γ is selected so

that the sampling distribution of (7) assigns probability mass 1−γ between −t∗1−γ and t∗1−γ.

We can either adopt a non-parametric or parametric approach to the bootstrap. The

advantage of the non-parametric bootstrap is that it does not require a model for the

distribution of the observed data. Since our analysis depends on correct specification of

a semiparametric model and on estimation of such a model, it appears sensible to use this

model to bootstrap the observed data. In our data analysis and simulation study, we use

the estimated distribution of the observed data to generate bootstrapped observed datasets.

Our simulation study in Section 5 suggests that the symmetric Studentized bootstrap with

jackknifed standard errors performs best.

4. SCA-3004 Study

SCA-3004 was a randomized, double-blind, placebo-controlled, parallel-group, multi-center,

international study designed to evaluate the efficacy and safety of once-monthly, injectable

paliperidone palmitate (PP1M), as monotherapy or as an adjunct to pre-study mood stabi-

lizers or antidepressants, relative to placebo (PBO) in delaying the time to relapse in patients
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with schizoaffective disorder (SCA) (Fu et al., 2014). The study included multiple phases.

After initial screening, an open-label phase consisted of a 13-week, flexible-dose, lead-in

period and a 12-week, fixed-dose, stabilization period. Stable patients entered a 15-month,

double-blind, relapse-prevention phase and were randomized (1:1) to receive either PP1M or

placebo injections at baseline (Visit 0) and every 28 days (Visits 1–15). An additional clinic

visit (Visit 16) was scheduled 28 days after the last scheduled injection. In the study, 170

and 164 patients were randomized to the PBO and PP1M arms, respectively. One placebo

patient was removed because of excessive influence on the analysis – an expanded discussion

can be found in Section 6.

The research question driving this maintenance-of-effect study was whether or not out-

comes in patients with schizoaffective disorder are better maintained if they continued

on treatment rather than being withdrawn from treatment and given placebo. Given the

explanatory nature of the research question, an ideal study would follow all randomized

patients through Visit 16 while maintaining them on their randomized treatment and ex-

amine symptomatic and functional outcomes at that time point. Since clinical relapse,

largely determined by symptoms (e.g., Positive and Negative Symptom scale) and clinical

response to symptoms (e.g., hospitalization), can have a major negative impact on the lives of

participants and lead to irreversible harm, there is an ethical requirement that investigators

and clinicians be highly vigilant, look for the first signs of relapse, and intervene to prevent

adverse short-term and long-term outcomes. As a consequence, the study design required

that patients who had signs of relapse be withdrawn from the study. Thus, follow-up clinical

data were unavailable post-relapse. In addition to this source of missing data, some patients

discontinued due to adverse events, withdrew consent or were lost to follow-up. In the trial,

38% and 60% of patients in the PBO and PP1M arms, respectively, were followed through

Visit 16 (p<0.001).
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We focus our analysis on patient function as measured by the Personal and Social Perfor-

mance (PSP) scale. The PSP scale is a validated clinician-reported instrument that has

been extensively used. It is scored from 1 to 100, with higher scores indicating better

functioning based on evaluation of four domains (socially useful activities, personal/social

relationships, self-care, and disturbing/aggressive behaviors). It has been argued that a

clinically meaningful difference in PSP scores is between 7 and 12 points (Patrick et al.,

2009).

We seek to estimate, for each treatment group, the mean PSP at Visit 16 in the coun-

terfactual world in which all patients are followed and treated through Visit 16. Since

symptoms and function are correlated, the observed PSP data are likely to be a highly biased

representation of the counterfactual world of interest. The mean PSP score among completers

was 76.53 and 76.96 in the PBO and PP1M arms, respectively; the estimated difference is

-0.43 (95% CI: -3.34 to 2.48), indicating a non-significant treatment effect (p=0.77).

In Figure 1, we display the treatment-specific trajectories of mean PSP score, stratified by

last visit time. For patients who prematurely terminate the study, it is interesting to notice

that there tends to be a worsening of mean PSP scores at the last visit on study.

[Figure 1 about here.]

Before implementing our proposed sensitivity analysis procedure, we implemented the

approach of Scharfstein et al. (2014). For each treatment group, we modeled H∗k+1 using

logistic regression with visit-specific intercepts and a common effect of Yk. Additionally,

we modeled F ∗k+1 both using beta and truncated normal regression, each with visit-specific

intercepts and a common effect of Yk. Using estimates of the parameters from these models,

we simulated 500,000 datasets for each treatment group. We compared the proportion

dropping out before visit k + 1 among those on study at visit k based on the actual and

simulated datasets. We also compared the empirical distribution of PSP scores among those
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on study at visit k+1 based on these datasets using the Kolmogorov-Smirnov statistics. The

results for the simulations involving the truncated normal regression and beta regression

models are shown in the first and second rows of Figure 2, respectively. The figure suggests

that these models do not fit the observed data well. For both the truncated normal and beta

regression models, inspection of the actual and simulated distribution of PSP scores at each

study visit reveals large discrepancies. For the beta regression model, the contrast between

the simulated and actual drop-out probabilities for the PP1M arm is particularly poor.

We contrast the fit of these models to the non-parametric smoothing approach proposed in

this paper. For estimation of F ∗k+1 and H∗k+1 based on data from the PBO arm, the optimal

choices of λF and λH are 1.81 and 5.18, respectively. The corresponding optimal choices for

the PP1M arm were 1.16 and 8.53. Using the estimated F ∗k+1 and H∗k+1 and optimal choices

of λF and λH , we simulated, as before, 500,000 observed datasets for each treatment group.

The results of this simulation in comparison to the actual observed data is shown in the

bottom row of Figure 2. In sharp contrast to the parametric modeling approach, the results

show excellent agreement between the actual and simulated datasets. For each treatment

group, inspection of the actual and simulated distribution of PSP scores at the study visit

with the largest Kolmogorov-Smirnov statistics reveals only small discrepancies.

[Figure 2 about here.]

Under SI-1, that is, when α = 0, the estimated counterfactual means of interest are 73.31

(95% CI: 69.71 to 76.91) and 74.52 (95% CI: 72.28 to 76.75) for the PBO and PP1M arms,

respectively. The estimated treatment difference is −1.20 (95% CI: -5.34 to 2.93). Relative to

the complete-case analysis, the SI-1 analysis corrects for bias in a direction that is anticipated:

the estimated means under SI-1 are lower and, since there is greater drop-out in the PBO arm,

there is a larger correction in that arm. As a consequence, the estimated treatment effect is

more favorable to PP1M, although the 95% CI still includes 0. For comparative purposes, the
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plug-in procedure produces estimates of the means that are slightly lower (73.79 and 74.63)

and an estimated treatment difference that is slightly larger (-0.84). The logistic-truncated

normal and logistic-beta models for the distribution of the observed data produce markedly

different results under SI-1. For the logistic-truncated model the estimated means are 70.62

(95% CI: 67.01 to 74.24) and 74.68 (95% CI: 72.89 to 76.48) with an estimated difference

of -4.06 (95% CI: -8.13 to 0.01); for the logistic-beta model, the estimated means are 64.42

(95% CI: 55.15 to 73.69) and 70.55 (95% CI: 67.53 to 73.56) with an estimated difference of

-6.13 (95% CI: -15.96 to 3.71).

In our sensitivity analysis, we chose ρ as depicted in Figure 3. The shape of the function

is chosen so that when comparing patients on the low end (6 30) and high end (> 80) of

the PSP scale there is relatively less difference in the risk of drop-out than when comparing

patients in the middle of the PSP scale (30-80). For example, consider two cohorts of patients

who are on study through assessment k and have the same history of measured factors

through that assessment. If the first and second cohort of patients have PSP scores at k+1 of

30 (40:50:60:70:80) and 20 (30:40:50:60:70), respectively, then the log odds ratio of dropping

out between visits k and k+1 is α times 0.01 (0.18, 0.40, 0.30, 0.09, 0.01) for the first relative

to the second cohort. When α > 0 (α < 0), patients with higher PSP scores are more (less)

likely to drop out. Since lower PSP scores represent worse function, it is most plausible that

α 6 0. For completeness, we ranged the treatment-specific α values from -20 to 20.

[Figure 3 about here.]

In Figure 4, we display the estimated treatment-specific mean PSP at Visit 16 as a function

of α along with 95% pointwise confidence intervals. Figure 5 displays a contour plot of the

estimated differences between mean PSP at Visit 16 for PBO versus PP1M for various

treatment-specific combinations of α. The point (0,0) corresponds to the SI-1 assumption

in both treatment arms. There are no treatment-specific combinations of α for which the
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estimated treatment differences are clinically meaningful or statistically significant (at the

0.05 level). Figure 6 displays the estimated treatment-specific difference in mean PSP at Visit

16 between non-completers and completers as a function of α. For each treatment group

and α, the estimated mean among non-completers is back-calculated from the estimated

overall mean (µ̂), the observed mean among completers (
∑

iRK,iYK,i/
∑

iRK,i) and the

proportion of completers (
∑

iRK,i/n). The differences in the negative range of α are in the

clinically meaningful range, suggesting that the considered choices of the sensitivity analysis

parameters are reasonable.

[Figure 4 about here.]

[Figure 5 about here.]

[Figure 6 about here.]

5. Simulation study

As in our goodness-of-fit evaluation above, we simulated, using the estimated F ∗k and H∗k

and optimal choices of λF and λH , 1,000 datasets for each treatment group. For purposes of

the simulation study, we treat the best fit to the observed data as the true data generating

mechanism. We evaluate the performance of our procedures for various α values ranging

from -10 to 10. The target for each α is the mean computed using formula (1).

The results of our simulation study are displayed in Tables 1 and 2. In Table 1, we

report for each treatment group and each α the bias and mean-squared error (MSE) for

the plug-in estimator µ(P̂ ) and the one-step estimator µ̂. The results show that the one-

step estimator has less bias and lower MSE than the plug-in estimator, although the dif-

ferences are not dramatic. In Table 2, we report, for each treatment group and each α,

95% confidence interval coverage for six confidence interval procedures: (1) normality-based

confidence interval with influence function-based standard error estimator (Normal-IF); (2)
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normality-based confidence interval with jackknife-based standard error estimator (Normal-

JK); (3) equal-tailed, Studentized-t bootstrap confidence interval with influence function-

based standard error estimator (Bootstrap-IF-ET); (4) equal-tailed, Studentized-t bootstrap

confidence interval with jackknife-based standard error estimator (Bootstrap-JK-ET); (5)

symmetric, Studentized-t bootstrap confidence interval with influence function-based stan-

dard error estimator (Bootstrap-IF-S); (6) symmetric, Studentized-t bootstrap confidence

interval with jackknife-based standard error estimator (Bootstrap-JK-S). Bootstrapping was

based on 1,000 datasets.

[Table 1 about here.]

[Table 2 about here.]

We found that the normality-based confidence interval with influence function-based stan-

dard error estimator underperformed for both treatment groups and all choices of the

sensitivity analysis parameters. In general, the confidence interval procedures that used

jackknife standard errors performed better than their counterparts that used the influence

function-based standard error estimator. The symmetric, Studentized-t bootstrap confidence

interval with jackknife-based standard error estimator (Bootstrap-JK-S) exhibited the most

consistent performance across treatment groups and sensitivity analysis parameters.

Our simulation studies reveal some evidence of possible residual bias of the one-step estima-

tor in the context considered. The latter is based upon the use of kernel smoothing in order

to estimate the various conditional distribution functions required in the evaluation of µ. It

may be possible to achieve better small-sample behavior by employing alternative conditional

distribution function estimators with better theoretical properties – examples of such include

the estimators described in Hall et al. (1999). An ensemble learning approach, such as the

Super Learner (van der Laan et al., 2007), may also yield improved function estimators

and decrease the residual bias of the resulting one-step estimator. Nevertheless, because the
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construction of the one-step estimator relies on a first-order asymptotic representation, the

benefits from improved function estimation may possibly be limited by the relatively small

sample size investigated in this simulation study. The use of correction procedures based on

higher-order asymptotic representations, as described in Robins et al. (2008), van der Vaart

et al. (2014), Carone et al. (2014) and Dı́az et al. (2016), for example, may lead to improved

performance in smaller samples.

6. Discussion

In this paper, we have developed a semi-parametric method for conducting a global sensitivity

analysis of repeated measures studies with monotone missing data. We have developed an

open-source software package that implements the methods discussed in this paper. The

package is called SAMON and can be found at www.missingdatamatters.org.

Our approach does not, as of yet, accommodate auxiliary covariates Vk scheduled to be

measured at assessment k. Incorporating V k into the conditioning arguments of Assumptions

1 and 2 can serve to increase the plausibility of these assumptions. In particular, V k can be

allowed to influence the decision, for patients on study at visit k, to drop out between visits k

and k+ 1, and the unmeasured common causes of Y0, Y1, . . . , YK can be allowed to indirectly

impact the decision to drop out through their relationship with V k. In the context of SCA-

3004, it would be useful to incorporate the PANSS (Positive and Negative Symptom Scale)

and CGI (Clinical Global Impressions) scores as auxiliary covariates as they are related to

planned patient withdrawal as well as correlated with PSP. In future work, we plan to extend

the methods developed here to accommodate auxiliary covariates. An extension that handles

multiple reasons for drop-out is also worthwhile.

In this paper, we imposed a first-order Markovian assumption in modeling the distribution

of the observed data. The plausibility of this assumption was considered in the data analysis

as we have evaluated the goodness-of-fit of our model, as illustrated in the bottom row of



Global Sensitivity Analysis for Studies with Informative Drop-out 23

Figure 2. The Markovian assumption can be relaxed by incorporating the past history using

(1) a specified function of the past history, (2) semiparametric single index models (Hall

and Yao, 2005) or (3) recently developed methods in data adaptive non-parametric function

estimation (van der Laan, 2015).

For given α, our estimator of µ∗ is essentially an α-specific weighted average of the observed

outcomes at visit K. As a result, it does not allow extrapolation outside the support of

these outcomes. We found that one patient in the PBO arm who completed the study

with the lowest observed PSP score at the final visit had a very large influence on the

analysis. Under SI-1 and other values of α, this patient affected the estimated mean in

the PBO group by more than 3 points. In contrast to our approach, a mixed modeling

approach, which posits a multivariate normal model for the joint distribution of the full

data, does allow extrapolation. Inference under this approach is valid under MAR and correct

specification of the multivariate normality assumption. We found that this approach provides

much more precise inference, yielding a statistically significant treatment effect in favor of

PP1M (treatment effect = -4.7, 95% CI: -7.7 to -1.8). Further, this approach was insensitive

to the PBO patient that we removed from our analysis. The disadvantages of the mixed

model approach are its reliance on normality and the difficulty of incorporating it into global

sensitivity analysis.

In SCA-3004 there is a difference, albeit not a statistically significant one, in baseline PSP

score between treatment groups. The PBO arm has a lower baseline mean PSP score than

the PP1M arm (71.2 vs. 72.9). Our method can easily address this imbalance by subtracting

out this difference from our effect estimates or by formally modeling change from baseline.

In either case, the treatment effect estimates would be less favorable to PP1M. It is notable

that a mixed model analysis that models change from baseline does yield a statistically

significant effect in favor of PP1M. It may also be of interest to adjust the treatment effect



24 Biometrics, 000 0000

estimates for other baseline covariates, either through regression or direct standardization.

We will address this issue in future work. We also plan to develop methods for handling

intermittent missing outcome data.
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Appendix A: Explicit Form of Canonical Gradient

The derivation of the canonical gradient is provided in Web Appendix A. Here, we present

its explicit form.
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Let πk+1(yk, yk+1) = [1 + exp{`k+1(yk) + αρ(yk+1)}]−1, where

`k+1(yk) := logit {Hk+1(yk)} − log

{∫
exp{ρk+1(yk, u)}dFk+1(u | yk)

}
.

Let π(yK) =
∏K−1

k=0 πk(yk, yk+1),

wk+1(yk) = E [exp{αρ(Yk+1)} | Rk+1 = 1, Yk = yk] ,

and gk+1(yk+1, yk) = {1−Hk+1(yk)}wk+1(yk) + exp{αρ(yk+1)}Hk+1(yk).

The canonical gradient is expressed as

D†(P )(o) := a0(y0) +
K−1∑
k=0

rk+1bk+1(yk+1, yk) +
K−1∑
k=0

rk{1− rk+1 −Hk+1(yk)}ck+1(yk)

where

a0(y0) = E

[
RKYK

π(Y K)
Y0 = y0

]
− µ(P )

bk+1(yk+1, yk)

= E

[
RKYK

π(Y K)
Rk+1 = 1, Yk+1 = yy+1, Yk = yk

]
− E

[
RKYK

π(Y K)
Rk+1 = 1, Yk = yk

]
+ E

[
RKYK

π(Y K)

[
exp{αρ(Yk+1)}
gk+1(Yk+1, Yk)

]
Rk+1 = 1, Yk = yk

]
Hk+1(yk)

{
1− exp{αρ(yk+1)}

wk+1(yk)

}
ck+1(yk)

= E

[
RKYK

π(Y K)

[
exp{αρ(Yk+1)}
gk+1(Yk+1, Yk)

]
Rk = 1, Yk = yk

]
− E

[
RKYK

π(Y K)

[
1

gk+1(Yk+1, Yk)

]
Rk = 1, Yk = yk

]
wk+1(yk)

Appendix B: Explicit Form of the Remainder Term

The derivation of the remainder term is provided in Web Appendix B. Here, we present its

explicit form.

Rem(P, P ∗) = µ(P )− µ(P ∗) +

∫
D†(P )(o)dP ∗(o)

=
K−1∑
k=0

Rem1,k(P, P
∗) +

K−1∑
k=1

Rem2,k(P, P
∗) +

K−1∑
k=2

Rem3,k(P, P
∗) ,
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where we define

Rem1,k(P, P ∗) := E∗
[
RkE

∗
[
Rk+1e

αr(Yk+1)
∣∣∣Rk = 1, Yk

]
Rem1,k,1(P, P ∗)(O)Rem1,k,2(P, P ∗)(O)

]
,

Rem1,k,1(P, P ∗)(O) :=
E
[

RKYKe
αr(Yk+1)∏

j 6=k+1 πj(Yj−1,Yj)
Rk = 1, Yk

]
E[Rk+1eαr(Yk+1) Rk = 1, Yk]

−
E∗
[

RKYKe
αr(Yk+1)∏k

j=1 πj(Yj−1,Yj)
∏K
j=k+2

π∗j (Yj−1,Yj)
Rk = 1, Yk

]
E∗[Rk+1eαr(Yk+1) Rk = 1, Yk]

,

Rem1,k,2(P, P ∗)(O) :=
H∗
k+1(Yk)

E∗[Rk+1eαr(Yk+1) Rk = 1, Yk]
− Hk+1(Yk)

E
[
Rk+1eαr(Yk+1) Rk = 1, Yk

] ,
Rem2,k(P, P ∗) := E∗ [RkRem2,k,1(P, P ∗)(O)Rem2,k,2(P, P ∗)(O)] ,

Rem2,k,1(P, P ∗)(O) := E∗

[
RKYK∏K

j=k+1 πj(Yj−1, Yj)
Rk = 1, Yk

]
− E

[
RKYK∏K

j=k+1 πj(Yj−1, Yj)
Rk = 1, Yk

]
,

Rem2,k,2(P, P ∗)(O) := E

[
1∏k

j=1 πj(Yj−1, Yj)
Rk = 1, Yk

]
− E∗

[
1∏k

j=1 πj(Yj−1, Yj)
Rk = 1, Yk

]
,

Rem3,k(P, P ∗) := E∗ [RkRem3,k,1(P, P ∗)(O)Rem3,k,2(P, P ∗)(O)] ,

Rem3,k,1(P, P ∗)(O) := E∗

[
RKYK∏K

j=k+1 πj(Yj−1, Yj)
Rk = 1, Yk

]
− E

[
RKYK∏K

j=k+1 πj(Yj−1, Yj)
Rk = 1, Yk

]

Rem3,k,2(P, P ∗)(O) := E

[
1∏k

j=1 πj(Yj−1, Yj)
Rk = 1, Yk, Yk−1

]
− E∗

[
1∏k

j=1 πj(Yj−1, Yj)
Rk = 1, Yk, Yk−1

]
.

Under suitable norms and provided reasonable regularity conditions hold, each function

o 7→ Remj,k,i(P, P
∗)(o) tends to zero as P tends to P ∗, illustrating thus that Rem(P, P ∗) is

indeed a second-order term.

Appendix C: Proof of Theorem 1

We can write that

µ̂− µ∗ = µ(P̂ )− µ(P ∗) +
1

n

n∑
i=1

D†(P̂ )(Oi)

= −
∫
D†(P̂ )(o)dP ∗(o) +Rem(P̂ , P ∗) +

1

n

n∑
i=1

D†(P̂ )(Oi)

=
1

n

n∑
i=1

D†(P ∗)(Oi) +

∫ [
D†(P̂ )(o)−D†(P ∗)(o)

]
d(Pn − P ∗)(o) +Rem(P̂ , P ∗).

Under conditions (a) and (b), we obtain that µ̂ is an asymptotically linear estimator of µ∗

with influence function D†(P ∗). Since D†(P ∗) is the canonical gradient of µ at P ∗ relative

to M0, we conclude that µ̂ is asymptotically efficient relative to M0.
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Figure 1: Treatment-specific trajectories of mean PSP scores, stratified by last visit time.
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Figure 2: Left column: Comparison of the proportion dropping out before visit k + 1
among those on study at visit k based on the actual and simulated datasets. Right column:
Comparison, using the Kolmogorov-Smirnov statistics, of the empirical distribution of PSP
scores among those on study at visit k + 1 based on the actual and simulated datasets.
First row: Logistic regression for conditional probabilities of drop-out and truncated normal
regressions for outcomes; Second row: Logistic regression for conditional probabilities of drop-
out and beta regressions for outcomes; Third row: Non-parametric smoothing for conditional
probabilities of drop-out and for outcomes.
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Figure 3: Selection bias function

0 20 40 60 80 100

y

0.0

0.2

0.4

0.6

0.8

1.0

ρ
(y
)



34 Biometrics, 000 0000

Figure 4: Treatment-specific mean PSP at Visit 16 as a function of α, along with 95%
pointwise confidence intervals.
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Figure 5: Contour plot of the estimated differences between mean PSP at Visit 16 for PBO
vs. PP1M for various treatment-specific combinations of α.
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Figure 6: Treatment-specific differences between the mean PSP for non-completers and
completers, as a function of α.
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Table 1: Treatment-specific simulation results: Bias and mean-squared error (MSE) for the

plug-in (µ(P̂ )) and one-step (µ̂) estimators, for various choices of α.

PBO PP1M
α Estimator µ∗ Bias MSE µ∗ Bias MSE

-10 µ(P̂ ) 72.89 0.76 1.75 73.76 0.41 1.36
µ̂ 0.50 1.58 0.31 1.26

-5 µ(P̂ ) 73.38 0.52 1.42 74.25 0.26 1.14
µ̂ 0.31 1.32 0.16 1.05

-1 µ(P̂ ) 73.74 0.38 1.23 74.59 0.17 1.02
µ̂ 0.19 1.18 0.06 0.95

0 µ(P̂ ) 73.80 0.36 1.21 74.63 0.16 1.01
µ̂ 0.18 1.17 0.08 0.95

1 µ(P̂ ) 73.84 0.35 1.19 74.67 0.18 1.01
µ̂ 0.17 1.15 0.05 0.94

5 µ(P̂ ) 74.00 0.30 1.13 74.67 0.16 1.00
µ̂ 0.13 1.11 0.04 0.93

10 µ(P̂ ) 74.15 0.24 1.08 74.84 0.15 0.97
µ̂ 0.10 1.08 0.06 0.91
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Table 2: Treatment-specific simulation results: Confidence interval coverage for the influence
function (IF), Studentized bootstrap (SB), and fast double bootstrap (FDB) procedures, for
various choices of α.

PBO PP1M
α Procedure Coverage Coverage

-10 Normal-IF 86.1% 88.6%
Normal-JK 92.1% 92.6%
Bootstrap-IF-ET 90.2% 91.9%
Bootstap-JK-ET 92.4% 93.7%
Bootstap-IF-S 92.3% 92.7%
Bootstap-JK-S 93.9% 94.3%

-5 Normal-IF 89.0% 91.7%
Normal-JK 94.1% 94.2%
Bootstrap-IF-ET 91.7% 92.6%
Bootstap-JK-ET 93.6% 94.9%
Bootstap-IF-S 94.1% 94.2%
Bootstap-JK-S 95.1% 95.1%

-1 Normal-IF 90.8% 93.4%
Normal-JK 94.9% 94.8%
Bootstrap-IF-ET 91.0% 94.0%
Bootstap-JK-ET 92.8% 94.9%
Bootstap-IF-S 94.4% 94.7%
Bootstap-JK-S 95.0% 95.3%

0 Normal-IF 90.7% 93.5%
Normal-JK 95.0% 94.9%
Bootstrap-IF-ET 92.8% 93.9%
Bootstap-JK-ET 94.3% 95.0%
Bootstap-IF-S 95.3% 94.7%
Bootstap-JK-S 96.0% 95.1%

1 Normal-IF 90.9% 93.5%
Normal-JK 94.9% 94.8%
Bootstrap-IF-ET 92.8% 93.5%
Bootstap-JK-ET 94.2% 95.0%
Bootstap-IF-S 95.3% 94.6%
Bootstap-JK-S 96.0% 95.2%

5 Normal-IF 91.5% 93.7%
Normal-JK 94.6% 95.1%
Bootstrap-IF-ET 92.6% 93.8%
Bootstap-JK-ET 93.8% 94.7%
Bootstap-IF-S 94.9% 95.1%
Bootstap-JK-S 96.0% 95.5%

10 Normal-IF 92.1% 93.4%
Normal-JK 94.8% 95.0%
Bootstrap-IF-ET 92.9% 93.8%
Bootstap-JK-ET 93.9% 94.8%
Bootstap-IF-S 94.7% 95.0%
Bootstap-JK-S 95.6% 95.4%



Web Appendix A

In this section, we derive the efficient influence function in the nonparametric model M (EIF ) and in the Markov-
restricted model M0 (EIF0). To find EIF , we use the fact that the canonical gradient of target parameter is the efficient
influence function in model M [1]. To find the EIF0, we project EIF onto to tangent space for the M0.

Let P denote a distribution in M , characterized by Pk(yk−1) = P (Rk = 1|Rk−1 = 0, Y k−1 = ykk−1), Fk(yk|yk−1) =

P (Yk ≤ yk|Rk = 1, Y k−1 = yk−1) and F0(y0) = P (Y0 ≤ y0). In what follows, expectations are taken with respect to P . Let
{Pη : η} denote a parametric submodel of M passing through P (i.e., Pη=0 = P ). Let s(O) be the score for η evaluated at
η = 0. Let T denote the tangent space of M . The canonical gradient is defined as the unique element D ∈ T that satisfies

∂

∂η
µ(Pη)

∣∣
η=0

= E[s(O)D(O)].

We consider parametric submodels, indexed by η = (ε0, εk, υk : k = 1, . . . ,K), characterized by

dF0,η0 = dF0(y0) {1 + ε0h0(y0)} : E[h0(Y0)] = 0

dFk,ηk(yk|yk−1) = dFk(yk|yk−1) {1 + εkhk(yk)} : E[hk(Y k)|Rk = 1, Y k−1] = 0

Pk,υk(yk−1) =
Pk(yk−1) exp{υklk(yk−1)}

Pk(yk−1) exp{υklk(yk−1)}+ 1− Pk(yk−1)
: lk(·) is any function of yk−1

The associated score functions evaluated at η = 0 are h0(Y0), Rkhk(Y k) and Rk−1{Rk − Pk(Y k−1)}lk(Y k−1).
The target parameter as a functional of Pη is

µ(Pη) =

∫
· · ·
∫
yK

K∏
j=1

{
dFj(yj |yj−1)

{
1 + εjhj(yj)

}{ Pj(yj−1) exp{υj lj(yj−1)}
Pj(yj−1) exp{υj lj(yj−1)}+ 1− Pj(yj−1)

}

+
dFj(yj |yj−1) exp{αr(yj)}

{
1 + εjhj(yj)

}{ 1−Pj(yj−1)

Pj(yj−1) exp{υj lj(yj−1)}+1−Pj(yj−1)

}
∫

exp{αr(yj)}dFj(yj |yj−1)
{

1 + εjhj(yj)
}

 dF0(y0) {1 + ε0h0(y0)}

In what follows, we represent Pk(yk−1), dFk(yk|yk−1), dF0(y0), αr(yk), hk(yk) and lk(yk−1) by Pk, Qk, Q0, rk, hk and
lk, respectively. The derivative with respect to ε0 (evaluated at η = 0) is dε0(h0) equal to∫

· · ·
∫
yK

K∏
j=1

{
QjPj +

Qj exp{αrj}{1− Pj}∫
exp{αrj}Qj

}
Q0h0

The derivative with respect to εk (evaluated at η = 0) is dεk(hk) equal to∫
· · ·
∫
yK
∏
j 6=k

{
QjPj +

Qj exp{αrj}{1− Pj}∫
exp{αr(yj)Qj}

}

×

{
QkPkhk +

{∫
exp{αrk}Qk

}
exp{αrk}Qkhk −Qk exp{αrk}

∫
exp{αrk}Qkhk

{
∫

exp{αrk}Qk}2
(1− Pk)

}
Q0

The derivative with respect to υk (evaluated at η = 0) is dυk(lk) equal to∫
· · ·
∫
yK

K∏
j 6=k

{
QjPj +

Qj exp{αrj}(1− Pj)∫
exp{αrj}Qj

}{
Qk {Pk(1− Pk)lk} −

Qk exp(rk) {Pk(1− Pk)lk}{∫
exp(rk)Qk

} }
Q0

Any element of can be expressed as T can be expressed as

a(Y0) +

K∑
k=1

Rkbk(Y k) +

K∑
k=1

Rk−1(Rk − Pk)ck(Y k−1)

where E[a(Y0)] = 0, E[bj(Y j)|Rj = 1, Y j−1] = 0 and cj(·) is any function of Y j−1. We need to find functions a(Y0),bk(Y k)
and ck(Y k−1) such that

E[a(Y0)h0(Y0)] = dε0(h0)

E[Rkbk(Y k)hk(Y k)] = dεk(hk)

E[Rk−1(Rk − Pk)2ck(Y k−1)lk(Y k−1)] = dνk(lk)

1



First, notice that

E[a0(Y0)h0(Y0)] =

∫
y0

a0(y0)h0(y0)Q0

and

dε0(h0) =

∫
y0


∫
· · ·
∫
yK

K∏
j=1

{
QjPj +

Qj exp{αrj}(1− Pj)∫
exp{αrj}Qj

}h0Q0

Thus, E[a∗0(Y0)h0(Y0)] = dε0(h0) where

a∗0(Y0) =

∫
y1

· · ·
∫
yK

yK

∏K
j=1

{
QjPj +

Qj exp{αrj}(1−Pj)∫
exp{αrj}Qj

}
∏K
j=1QjPj

K∏
j=1

QjPj = E

[
RKYK∏K

j=1

(
1 + exp

{
gj(Y j−1) + αr(Yj)

})−1 Y0

]

with gk = log ({1− Pk} /Pk)− log
∫

exp(rk)Qk. Note that a∗0(Y0) does not have mean zero; it actually has mean µ. We can
substract out its mean to obtain a0(Y0) = a∗0(Y0)− µ; note that E[a0(Y0)h0(Y0)] = dε0(h0).

Second, notice that

E
[
Rkbk(Y k)hk(Y k)

]
=

∫
y0

· · ·
∫
yk

bk(yk)hk(yk)


k∏
j=1

QjPj

Q0

and

dεk(hk)

=

∫
y0

· · ·
∫
yk

∫
yk+1

· · ·
∫
yK

yK
∏K
j=1

{
QjPj +

Qj exp{αrj}(1−Pj)∫
exp{αrj}Qj

}
∏K
j=1QjPj




K∏
j=k+1

QjPj

{
hk −

exp{αrk} (1− Pk)
∫
y∗k

exp{αr∗k}Q∗kh∗k
Pk
{∫

exp{αrk}Qk
}2

+ exp{αrk}(1− Pk)
∫

exp{αrk}Qk

}
k∏
j=1

QjPj

Q0

=

∫
y0

· · ·
∫
yk

∫
yk+1

· · ·
∫
yK

yK
∏K
j=1

{
QjPj +

Qj exp{αrj}(1−Pj)∫
exp{αrj}Qj

}
∏K
j=1QjPj




K∏
j=k+1

QjPj

hk


k∏
j=1

QjPj

Q0−

∫
y0

· · ·
∫
yk−1

∫
yk

∫
yk+1

· · ·
∫
yK

yK
∏K
j=1

{
QjPj +

Qj exp{αrj}(1−Pj)∫
exp{αrj}Qj

}
∏K
j=1QjPj


Qk

K∏
j=k+1

QjPj

{
exp{αrk} (1− Pk)

∫
y∗k

exp{αr∗k}Q∗kh∗k
Pk
{∫

exp{αrk}Qk
}2

+ exp{αrk}(1− Pk)
∫

exp{αrk}Qk

}Pk
k−1∏
j=1

QjPj

Q0

=

∫
y0

· · ·
∫
yk

∫
yk+1

· · ·
∫
yK

yK
∏K
j=1

{
QjPj +

Qj exp{αrj}(1−Pj)∫
exp{αrj}Qj

}
∏K
j=1QjPj




K∏
j=k+1

QjPj


hk


k∏
j=1

QjPj

Q0−

∫
y0

· · ·
∫
yk−1

∫
y∗k

∫
yk

∫
yk+1

· · ·
∫
yK

yK
∏K
j=1

{
QjPj +

Qj exp{αrj}(1−Pj)∫
exp{αrj}Qj

}
∏K
j=1QjPj


Qk

K∏
j=k+1

QjPj

{
exp{αrk} (1− Pk)

Pk
{∫

exp{αrk}Qk
}2

+ exp{αrk}(1− Pk)
∫

exp{αrk}Qk

}]
exp{αr∗k}h∗k

Q∗kPk
k−1∏
j=1

QjPj

Q0

=

∫
y0

· · ·
∫
yk

E

[
RKYK∏K

j=1

(
1 + exp

{
gj(Y j−1) + αr(Yj)

})−1 Rk = 1, Y k = yk

]
hk


k∏
j=1

QjPj

Q0−

∫
y0

· · ·
∫
yk

E

[
RKYK∏K

j=1

(
1 + exp

{
gj(Y j−1) + αr(Yj)

})−1{
exp{αrk} (1− Pk)

Pk
{∫

exp{αrk}Qk
}2

+ exp{αrk}(1− Pk)
∫

exp{αrk}Qk

}
Rk = 1, Y k−1 = yk−1

]
exp{αrk}hk


k∏
j=1

QjPj

Q0

2



Thus E
[
Rkb

∗
k(Y k)hk(Y k)

]
= dεk(hk), where

b∗k(Y k)

= E

[
RKYK∏K

j=1

(
1 + exp

{
gj(Y j−1) + αr(Yj)

})−1 |Rk = 1, Y k

]
−

E

[
RKYK∏K

j=1

(
1 + exp

{
gj(Y j−1) + αr(Yj)

})−1
{

exp(rk) (1− Pk)

Pk
{∫

exp{αrk}Qk
}2

+ exp{αrk}(1− Pk)
∫

exp{αrk}Qk

}
|Rk = 1, Y k−1

]
×

exp{αrk}

Note that b∗k(Y k) does not have mean 0 given Rk = 1 and Y k−1. We can substract out E[b∗k(Y k)|Rk = 1, Y k−1] to obtain

bk(Y k)

= E

[
RKYK∏K

j=1

(
1 + exp

{
gj(Ȳj−1) + αr(Yj)

})−1 |Rk = 1, Y k

]
− E

[
RKYK∏K

j=1

(
1 + exp

{
gj(Y j−1) + αr(Yj)

})−1 |Rk = 1, Y k−1

]
−

E

[
RKYK∏K

j=1

(
1 + exp

{
gj(Y j−1) + αr(Yj)

})−1
{

exp(αrk) (1− Pk)

Pk
{∫

exp{αrk}Qk
}2

+ exp{αrk}(1− Pk)
∫

exp{αrk}Qk

}
|Rk = 1, Y k−1

]
×

exp{αrk}+

E

[
RKYK∏K

j=1

(
1 + exp

{
gj(Y j−1) + αr(Yj)

})−1
{

exp(αrk) (1− Pk)

Pk
{∫

exp{αrk}Qk
}2

+ exp{αrk}(1− Pk)
∫

exp{αrk}Qk

}
|Rk = 1, Y k−1

]
×

E
[
exp{αrk}|Rk = 1, Y k−1

]
Note that E

[
Rkbk(Y k)hk(Y k)

]
= dεk(hk) since E

[
h(Yk)|Rk = 1, Y k−1

]
= 0.

Third, notice that

E[Rk−1(Rk − Pk)2ck(Y k−1)lk(Y k−1)] =

∫
y0

· · ·
∫
yk−1

ck(yk−1)Pk(1− Pk)lk(yk−1)


k−1∏
j=1

QjPj

Q0

and

dυk(lk)

=

∫
y0

· · ·
∫
yk−1

∫
yk

· · ·
∫
yK

yK

∏K
j=1

{
QjPj +

Qj exp{αrj}(1−Pj)∫
exp{αrj}Qj

}
∏K
j=1QjPj

Qk − Qk exp{αrk}
{
∫
exp{αrk}Qk}

QkPk + Qk exp{αrk}(1−Pk)∫
exp{αrk}Qk


K∏
j=k

QjPj


×

Pk(1− Pk)lk


k−1∏
j=1

QjPj

Q0

Thus,

ck(Y k−1) = E

 RKYK∏K
j=1

(
1 + exp

{
gj(Y j−1) + αr(Yj)

})−1
 1− exp{αrk}

{
∫
exp{αrk}Qk}

Pk + exp{αrk}(1−Pk)∫
exp{αrk}Qk

 Rk−1 = 1, Y k−1


This completes the derivation of EIF .

The tangent space for M0, T0, has elements of the form:

ã(Y0) +

K∑
k=1

Rk b̃k(Yk,Yk−1) +

K∑
k=1

Rk−1(Rk − Pk)c̃k(Yk−1)

where E[ã(Y0)] = 0 and E[b̃k(Yk, Yk−1)|Rk = 1, Yk−1] = 0. The projection of EIF onto T0 has ã(Y0) = a(Y0), b̃k(Yk, Yk−1) =
E[bk(Y k)|Rk = 1, Yk, Yk−1] and c̃k(Yk−1) = E[ck(Y k−1)|Rk−1 = 1, Yk−1]. This completes the derivation of EIF0
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Web Appendix B

In this section, we derive an expression for Rem(P, P ∗) = µ(P ) − µ(P ∗) −
∫
D(P )(o)d(P − P ∗). To start, we note that

we can write

µ(P ∗) =

K∑
k=1

{
E∗

[(
1

π∗
k(Yk−1, Yk)

− 1

πk(Yk−1, Yk)

)
RKYK∏k−1

l=1 πl(Yl−1, Yl)
∏K
l=k+1 π

∗
l (Yl−1, Yl)

]}
+ E∗

[
RKYK∏K

l=1 πl(Yl−1, Yl)

]

Using this expression, we can write

Rem(P, P ∗) = −
K∑
k=1

{
E∗

[(
1

π∗k(Yk−1, Yk)
−

1

πk(Yk−1, Yk)

)
RKYK∏k−1

l=1 πl(Yl−1, Yl)
∏K
l=k+1 π

∗
l (Yl−1, Yl)

]}
−

E∗

[
RKYK∏K

l=1 πl(Yl−1, Yl)

]
+ E∗

[
E

[
RKYK∏K

l=1 πl(Yl−1, Yl)
Y0

]]
+

K∑
k=1

E∗

[
RkE

[
RKYK∏K

l=1 πl(Yl−1, Yl)
Rk = 1, Yk, Yk−1

]]
−

K∑
k=1

E∗

[
RkE

[
RKYK∏K

l=1 πl(Yl−1, Yl)
Rk = 1, Yk−1

]]
+

K∑
k=1

E∗

[
RkE

[
RKYK∏K

l=1 πl(Yl−1, Yl)

[
exp{αr(Yk)}
gk(Yk, Yk−1)

]
Rk = 1, Yk−1

]
Hk(Yk−1)

]
−

K∑
k=1

E∗

[
RkE

[
RKYK∏K

l=1 πl(Yl−1, Yl)

[
exp{αr(Yk)}
gk(Yk, Yk−1)

]
Rk = 1, Yk−1

]
Hk(Yk−1)

exp{αr(Yk)}
wk(Yk−1)

]
+

K∑
k=1

E∗

[
Rk−1{1−Rk −Hk(Yk−1)}E

[
RKYK∏K

l=1 πl(Yl−1, Yl)

[
exp{αr(Yk)}
gk(Yk, Yk−1)

]
Rk−1 = 1, Yk−1

]]
−

K∑
k=1

E∗

[
Rk−1{1−Rk −Hk(Yk−1)}E

[
RKYK∏K

l=1 πl(Yl−1, Yl)

[
1

gk(Yk, Yk−1)

]
Rk−1 = 1, Yk−1

]
wk(Yk−1)

]

Let Ek(Yk−1) = E [Rk exp{αr(Yk)} Rk−1 = 1, Yk−1]. Through the properties of conditional expectations, we can write

Rem(P, P ∗) = −
K∑
k=1

{
E∗

[
Rk−1

(
H∗k(Yk−1)

E∗k(Yk−1)
−
Hk(Yk−1)

Ek(Yk−1)

)
E∗

[
RKYK exp{αr(Yk)}∏k−1

l=1 πl(Yl−1, Yl)
∏K
l=k+1 π

∗
l (Yl−1, Yl)

Rk−1 = 1, Yk−1

]]}
−

E∗

[
RKYK∏K

l=1 πl(Yl−1, Yl)

]
+ E∗

[
E

[
RKYK∏K

l=1 πl(Yl−1, Yl)
Y0

]]
+

K∑
k=1

E∗

[
RkE

[
RKYK∏K

l=1 πl(Yl−1, Yl)
Rk = 1, Yk, Yk−1

]]
−

K∑
k=1

E∗

[
Rk−1

1−H∗k(Yk−1)

1−Hk(Yk−1)
E

[
RKYK∏K

l=1 πl(Yl−1, Yl)
Rk−1 = 1, Yk−1

]]
+

K∑
k=1

E∗

[
Rk−1

1−H∗k(Yk−1)

1−Hk(Yk−1)
E

[
RKYK∏K

l=1 πl(Yl−1, Yl)

[
exp{αr(Yk)}
gk(Yk, Yk−1)

]
Rk−1 = 1, Yk−1

]
Hk(Yk−1)

]
−

K∑
k=1

E∗

[
Rk−1E

[
RKYK∏K

l=1 πl(Yl−1, Yl)

[
exp{αr(Yk)}
gk(Yk, Yk−1)

]
Rk−1 = 1, Yk−1

]
Hk(Yk−1)

E∗k(Yk−1)

Ek(Yk−1)

]
+

K∑
k=1

E∗

[
Rk−1

{H∗k(Yk−1)−Hk(Yk−1)}
Hk(Yk−1)

E

[
RKYK∏K

l=1 πl(Yl−1, Yl)

[
exp{αr(Yk)}
gk(Yk, Yk−1)

]
Rk−1 = 1, Yk−1

]
Hk(Yk−1)

]
−

K∑
k=1

E∗

[
Rk−1

{
H∗k(Yk−1)−Hk(Yk−1)

1−Hk(Yk−1)

}
E

[
RKYK∏K

l=1 πl(Yl−1, Yl)

[
1

gk(Yk, Yk−1)

]
Rk−1 = 1, Yk−1

]
Ek(Yk−1)

]

1



Using the fact that 1
πk(Yk−1,Yk)

= 1 + Hk(Yk−1)
Ek(Yk−1)

exp{αr(Yk)}, we can write

Rem(P, P ∗)

= −
K∑
k=1

{
E∗

[
Rk−1

(
H∗k(Yk−1)

E∗k(Yk−1)
−
Hk(Yk−1)

Ek(Yk−1)

)
E∗

[
RKYK exp{αr(Yk)}∏k−1

l=1 πl(Yl−1, Yl)
∏K
l=k+1 π

∗
l (Yl−1, Yl)

Rk−1 = 1, Yk−1

]]}
−

E∗

[
RKYK∏K

l=1 πl(Yl−1, Yl)

]
+ E∗

[
E

[
RKYK∏K

l=2 πl(Yl−1, Yl)
Y0

]]
+ E∗

[
E

[
RKYK exp{αr(Y1)}∏K

l=2 πl(Yl−1, Yl)
Y0

]
H1(Y0)

E1(Y0)

]
+

K∑
k=1

E∗

[
RkE

[
RKYK∏K

l=1 πl(Yl−1, Yl)
Rk = 1, Yk, Yk−1

]]
−

K∑
k=1

E∗

[
Rk−1

1−H∗k(Yk−1)

1−Hk(Yk−1)
E

[
RKYK∏k−1

l=1 πl(Yl−1, Yl)
∏K
l=k+1 πl(Yl−1, Yl)

Rk−1 = 1, Yk−1

]]
−

K∑
k=1

E∗

[
Rk−1

1−H∗k(Yk−1)

1−Hk(Yk−1)
E

[
RKYK exp{αr(Yk)}∏k−1

l=1 πl(Yl−1, Yl)
∏K
l=k+1 πl(Yl−1, Yl)

Rk−1 = 1, Yk−1

]
Hk(Yk−1)

Ek(Yk−1)

]
+

K∑
k=1

E∗

[
Rk−1

1−H∗k(Yk−1)

1−Hk(Yk−1)
E

[
RKYK exp{αr(Yk)}∏k−1

l=1 πl(Yl−1, Yl)
∏K
l=k+1 πl(Yl−1, Yl)

Rk−1 = 1, Yk−1

]
Hk(Yk−1)

Ek(Yk−1)

]
−

K∑
k=1

E∗

[
Rk−1E

[
RKYK exp{αr(Yk)}∏k−1

l=1 πl(Yl−1, Yl)
∏K
l=k+1 πl(Yl−1, Yl)

Rk−1 = 1, Yk−1

]
Hk(Yk−1)

Ek(Yk−1)

E∗k(Yk−1)

Ek(Yk−1)

]
+

K∑
k=1

E∗

[
Rk−1

{
H∗k(Yk−1)−Hk(Yk−1)

Hk(Yk−1)

}
E

[
RKYK exp{αr(Yk)}∏k−1

l=1 πl(Yl−1, Yl)
∏K
l=k+1 πl(Yl−1, Yl)

Rk−1 = 1, Yk−1

]
Hk(Yk−1)

Ek(Yk−1)

]
−

K∑
k=1

E∗

[
Rk−1

{
H∗k(Yk−1)−Hk(Yk−1)

1−Hk(Yk−1)

}
E

[
RKYK∏k−1

l=1 πl(Yl−1, Yl)
∏K
l=k+1 πl(Yl−1, Yl)

Rk−1 = 1, Yk−1

]]

Cancelling and combining terms, we obtain

Rem(P, P ∗)

= −
K∑
k=1

{
E∗

[
Rk−1

(
H∗k(Yk−1)

E∗k(Yk−1)
−
Hk(Yk−1)

Ek(Yk−1)

)
E∗

[
RKYK exp{αr(Yk)}∏k−1

l=1 πl(Yl−1, Yl)
∏K
l=k+1 π

∗
l (Yl−1, Yl)

Rk−1 = 1, Yk−1

]]}
−

E∗

[
RKYK∏K

l=1 πl(Yl−1, Yl)

]
+ E∗

[
E

[
RKYK∏K

l=2 πl(Yl−1, Yl)
Y0

]]
+ E∗

[
E

[
RKYK exp{αr(Y1)}∏K

l=2 πl(Yl−1, Yl)
Y0

]
H1(Y0)

E1(Y0)

]
+

K∑
k=1

E∗

[
RkE

[
RKYK∏K

l=1 πl(Yl−1, Yl)
Rk = 1, Yk, Yk−1

]]
−

K∑
k=1

E∗

[
Rk−1E

[
RKYK∏k−1

l=1 πl(Yl−1, Yl)
∏K
l=k+1 πl(Yl−1, Yl)

Rk−1 = 1, Yk−1

]]
−

K∑
k=1

E∗

[
Rk−1E

[
RKYK exp{αr(Yk)}∏k−1

l=1 πl(Yl−1, Yl)
∏K
l=k+1 πl(Yl−1, Yl)

Rk−1 = 1, Yk−1

]
Hk(Yk−1)

Ek(Yk−1)

E∗k(Yk−1)

Ek(Yk−1)

]
+

K∑
k=1

E∗

[
Rk−1

{
H∗k(Yk−1)−Hk(Yk−1)

Hk(Yk−1)

}
E

[
RKYK exp{αr(Yk)}∏k−1

l=1 πl(Yl−1, Yl)
∏K
l=k+1 πl(Yl−1, Yl)

Rk−1 = 1, Yk−1

]
Hk(Yk−1)

Ek(Yk−1)

]
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Through further algebraic manipulation, we obtain that Rem(P, P ∗) = Rem1(P, P
∗) +Rem2(P, P

∗), where
Rem1(P, P

∗)

= −
K∑
k=1

{
E∗

[
Rk−1E

∗
k(Yk−1)

(
H∗k(Yk−1)

E∗k(Yk−1)
−
Hk(Yk−1)

Ek(Yk−1)

)

E∗
[

RKYK exp{αr(Yk)}∏k−1
l=1

πl(Yl−1,Yl)
∏K

l=k+1
π∗
l
(Yl−1,Yl)

Rk−1 = 1, Yk−1

]
E∗k(Yk−1)

−
E

[
RKYK exp{αr(Yk)}∏k−1

l=1
πl(Yl−1,Yl)

∏K
l=k+1

πl(Yl−1,Yl)
Rk−1 = 1, Yk−1

]
Ek(Yk−1)





and

Rem2(P, P
∗) = −E∗

[
RKYK∏K

l=1 πl(Yl−1, Yl)

]
+

K∑
k=1

E∗

[
RkE

[
RKYK∏K

l=1 πl(Yl−1, Yl)
Rk = 1, Yk, Yk−1

]]
−
K−1∑
k=1

E∗

[
RkE

[
RKYK∏K

l=1 πl(Yl−1, Yl)
Rk = 1, Yk

]]

Notice that Rem1(P, P
∗) is second order. It remains to show that Rem2(P, P

∗) is second order. In our derivation, we use
the fact that, for k = 1, . . . ,K − 1,

E

[
RKYK∏K

l=k+1 πl(Yl−1, Yl)
Rk = 1, Yk, Yk−1

]
= E

[
RKYK∏K

l=k+1 πl(Yl−1, Yl)
Rk = 1, Yk

]

and

E∗

[
RkE

[
1∏k

l=1 πl(Yl−1, Yl)
Rk = 1, Yk

]
E∗

[
RKYK∏K

l=k+1 πl(Yl−1, Yl)
Rk = 1, Yk

]]

= E∗

[
Rk+1E

[
1∏k

l=1 πl(Yl−1, Yl)
Rk = 1, Yk

]
E∗

[
RKYK∏K

l=k+1 πl(Yl−1, Yl)
Rk+1 = 1, Yk+1, Yk

]]

= E∗

[
Rk+1

πk+1(Yk, Yk+1)
E

[
1∏k

l=1 πl(Yl−1, Yl)
Rk = 1, Yk

]
E∗

[
RKYK∏K

l=k+2 πl(Yl−1, Yl)
Rk+1 = 1, Yk+1

]]

= E∗

[
Rk+1E

[
1∏k+1

l=1 πl(Yl−1, Yl)
Rk+1 = 1, Yk+, Yk

]
E∗

[
RKYK∏K

l=k+2 πl(Yl−1, Yl)
Rk+1 = 1, Yk+1

]]

We can write

Rem2(P, P
∗) =− E∗

[
R1E

∗
[

1

π1(Y1, Y0)
R1 = 1, Y1

]
E∗

[
RKYK∏K

l=2 πl(Yl−1, Yl)
R1 = 1, Y1

]]
+

E∗

[
R1E

∗
[

1

π1(Y1, Y0)
R1 = 1, Y1

]
E

[
RKYK∏K

l=2 πl(Yl−1, Yl)
R1 = 1, Y1

]]
−

E∗

[
R1E

[
1

π1(Y1, Y0)
R1 = 1, Y1

]
E

[
RKYK∏K

l=2 πl(Yl−1, Yl)
R1 = 1, Y1

]]
+

K∑
k=2

E∗

[
RkE

[
1∏k

l=1 πl(Yl−1, Yl)
Rk = 1, Yk, Yk−1

]
E

[
RKYK∏K

l=k+1 πl(Yl−1, Yl)
Rk = 1, Yk

]]
−

K−1∑
k=2

E∗

[
RkE

[
1∏k

l=1 πl(Yl−1, Yl)
Rk = 1, Yk

]
E

[
RKYK∏K

l=k+1 πl(Yl−1, Yl)
Rk = 1, Yk

]]

We add the following zero terms to Rem2(P, P
∗):

A(P, P ∗) =

K−1∑
k=1

{
E∗

[
RkE

[
1∏k

l=1 πl(Yl−1, Yl)
Rk = 1, Yk

]
E∗

[
RKYK∏K

l=k+1 πl(Yl−1, Yl)
Rk = 1, Yk

]]
−

E∗

[
RkE

[
1∏k

l=1 πl(Yl−1, Yl)
Rk = 1, Yk

]
E∗

[
RKYK∏K

l=k+1 πl(Yl−1, Yl)
Rk = 1, Yk

]]}

=

K−1∑
k=1

E∗

[
RkE

[
1∏k

l=1 πl(Yl−1, Yl)
Rk = 1, Yk

]
E∗

[
RKYK∏K

l=k+1 πl(Yl−1, Yl)
Rk = 1, Yk

]]
−

K∑
k=2

E∗

[
RkE

[
1∏k

l=1 πl(Yl−1, Yl)
Rk = 1, Yk, Yk−1

]
E∗

[
RKYK∏K

l=k+1 πl(Yl−1, Yl)
Rk = 1, Yk

]]

3



B(P, P ∗) =

K−1∑
k=2

{
E∗

[
RkE

∗

[
1∏k

l=1 πl(Yl−1, Yl)
Rk = 1, Yk, Yk−1

]
E∗

[
RKYK∏K

l=k+1 πl(Yl−1, Yl)
Rk = 1, Yk

]]
−

E∗

[
RkE

∗

[
1∏k

l=1 πl(Yl−1, Yl)
Rk = 1, Yk, Yk−1

]
E∗

[
RKYK∏K

l=k+1 πl(Yl−1, Yl)
Rk = 1, Yk

]]}
+{

E∗

[
RkE

∗

[
1∏k

l=1 πl(Yl−1, Yl)
Rk = 1, Yk, Yk−1

]
E

[
RKYK∏K

l=k+1 πl(Yl−1, Yl)
Rk = 1, Yk

]]
−

E∗

[
RkE

∗

[
1∏k

l=1 πl(Yl−1, Yl)
Rk = 1, Yk, Yk−1

]
E

[
RKYK∏K

l=k+1 πl(Yl−1, Yl)
Rk = 1, Yk

]]}

So,

Rem2(P, P
∗) =− E∗

[
R1E

∗
[

1

π1(Y1, Y0)
R1 = 1, Y1

]
E∗

[
RKYK∏K

l=2 πl(Yl−1, Yl)
R1 = 1, Y1

]]
+

E∗

[
R1E

∗
[

1

π1(Y1, Y0)
R1 = 1, Y1

]
E

[
RKYK∏K

l=2 πl(Yl−1, Yl)
R1 = 1, Y1

]]
−

E∗

[
R1E

[
1

π1(Y1, Y0)
R1 = 1, Y1

]
E

[
RKYK∏K

l=2 πl(Yl−1, Yl)
R1 = 1, Y1

]]
+

E∗

[
R1E

[
1

π1(Y1, Y0)
R1 = 1, Y1

]
E∗

[
RKYK∏K

l=2 πl(Yl−1, Yl)
R1 = 1, Y1

]]
+

K∑
k=2

E∗

[
RkE

[
1∏k

l=1 πl(Yl−1, Yl)
Rk = 1, Yk, Yk−1

]
E

[
RKYK∏K

l=k+1 πl(Yl−1, Yl)
Rk = 1, Yk

]]
−

K−1∑
k=2

E∗

[
RkE

[
1∏k

l=1 πl(Yl−1, Yl)
Rk = 1, Yk

]
E

[
RKYK∏K

l=k+1 πl(Yl−1, Yl)
Rk = 1, Yk

]]
+

K−1∑
k=2

E∗

[
RkE

[
1∏k

l=1 πl(Yl−1, Yl)
Rk = 1, Yk

]
E∗

[
RKYK∏K

l=k+1 πl(Yl−1, Yl)
Rk = 1, Yk

]]
−

K∑
k=2

E∗

[
RkE

[
1∏k

l=1 πl(Yl−1, Yl)
Rk = 1, Yk, Yk−1

]
E∗

[
RKYK∏K

l=k+1 πl(Yl−1, Yl)
Rk = 1, Yk

]]
+

K−1∑
k=2

{
E∗

[
RkE

∗

[
1∏k

l=1 πl(Yl−1, Yl)
Rk = 1, Yk, Yk−1

]
E∗

[
RKYK∏K

l=k+1 πl(Yl−1, Yl)
Rk = 1, Yk

]]
−

E∗

[
RkE

∗

[
1∏k

l=1 πl(Yl−1, Yl)
Rk = 1, Yk, Yk−1

]
E∗

[
RKYK∏K

l=k+1 πl(Yl−1, Yl)
Rk = 1, Yk

]]}
+{

E∗

[
RkE

∗

[
1∏k

l=1 πl(Yl−1, Yl)
Rk = 1, Yk, Yk−1

]
E

[
RKYK∏K

l=k+1 πl(Yl−1, Yl)
Rk = 1, Yk

]]
−

E∗

[
RkE

∗

[
1∏k

l=1 πl(Yl−1, Yl)
Rk = 1, Yk, Yk−1

]
E

[
RKYK∏K

l=k+1 πl(Yl−1, Yl)
Rk = 1, Yk

]]}
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Through algebra,

Rem2(P, P
∗) =− E∗

[
R1

{
E∗
[

1

π1(Y1, Y0)
R1 = 1, Y1

]
− E

[
1

π1(Y1, Y0)
R1 = 1, Y1

]}
{
E∗

[
RKYK∏K

l=2 πl(Yl−1, Yl)
R1 = 1, Y1

]
− E

[
RKYK∏K

l=2 πl(Yl−1, Yl)
R1 = 1, Y1

]}]
+

K−1∑
k=2

E∗

[
Rk

{
E∗

[
1∏k

l=1 πl(Yl−1, Yl)
Rk = 1, Yk, Yk−1

]
− E

[
1∏k

l=1 πl(Yl−1, Yl)
Rk = 1, Yk, Yk−1

]}
{
E∗

[
RKYK∏K

l=k+1 πl(Yl−1, Yl)
Rk = 1, Yk

]
− E

[
RKYK∏K

l=k+1 πl(Yl−1, Yl)
Rk = 1, Yk

]}]
−

K−1∑
k=2

E∗

[
RkE

[
1∏k

l=1 πl(Yl−1, Yl)
Rk = 1, Yk

]
E

[
RKYK∏K

l=k+1 πl(Yl−1, Yl)
Rk = 1, Yk

]]
+

K−1∑
k=2

E∗

[
RkE

[
1∏k

l=1 πl(Yl−1, Yl)
Rk = 1, Yk

]
E∗

[
RKYK∏K

l=k+1 πl(Yl−1, Yl)
Rk = 1, Yk

]]
−

K−1∑
k=2

E∗

[
RkE

∗

[
1∏k

l=1 πl(Yl−1, Yl)
Rk = 1, Yk, Yk−1

]
E∗

[
RKYK∏K

l=k+1 πl(Yl−1, Yl)
Rk = 1, Yk

]]
+

K−1∑
k=2

E∗

[
RkE

∗

[
1∏k

l=1 πl(Yl−1, Yl)
Rk = 1, Yk, Yk−1

]
E

[
RKYK∏K

l=k+1 πl(Yl−1, Yl)
Rk = 1, Yk

]]

We now use the fact that, for all k = 2, . . . ,K − 1 and fk(Yk),

E∗

[
RkE

∗

[
1∏k

l=1 πl(Yl−1, Yl)
Rk = 1, Yk, Yk−1

]
fk(Yk)

]
= E∗

[
RkE

∗

[
1∏k

l=1 πl(Yl−1, Yl)
Rk = 1, Yk

]
fk(Yk)

]

to conclude that

Rem2(P, P
∗) =−

K−1∑
k=1]

E∗

[
Rk

{
E∗

[
1∏k

l=1 πl(Yl−1, Yl)
Rk = 1, Yk

]
− E

[
1∏k

l=1 πl(Yl−1, Yl)
Rk = 1, Yk

]}
{
E∗

[
RKYK∏K

l=k+1 πl(Yl−1, Yl)
Rk = 1, Yk

]
− E

[
RKYK∏K

l=k+1 πl(Yl−1, Yl)
Rk = 1, Yk

]}]
+

K−1∑
k=2

E∗

[
Rk

{
E∗

[
1∏k

l=1 πl(Yl−1, Yl)
Rk = 1, Yk, Yk−1

]
− E

[
1∏k

l=1 πl(Yl−1, Yl)
Rk = 1, Yk, Yk−1

]}
{
E∗

[
RKYK∏K

l=k+1 πl(Yl−1, Yl)
Rk = 1, Yk

]
− E

[
RKYK∏K

l=k+1 πl(Yl−1, Yl)
Rk = 1, Yk

]}]

In this form, it is easy to see that Rem2(P, P
∗) is second order.
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Abstract

Randomized trials with patient reported outcomes are commonly plagued by missing data.
The analysis of such trials relies on untestable assumptions about the missing data mechanism.
To address this issue, it has been recommended that the sensitivity of the trial results to as-
sumptions should be a mandatory reporting requirement. In this paper, we describe a formal
methodology for conducting sensitivity analysis of randomized trials in which outcomes are
scheduled to be measured at fixed points in time after randomization and some subjects prema-
turely withdraw from study participation. Our methods are motivated by a placebo-controlled
randomized trial designed to evaluate a treatment for bipolar disorder. We present a com-
prehensive data analysis and a simulation study to evaluate the performance of our methods.
A software package entitled SAMON (R and SAS versions) that implements our methods is
available at www.missingdatamatters.org.

1 Introduction

Missing outcome data are a widespread problem in clinical trials, including those with patient-
reported outcomes. Since such outcomes require active engagement of patients and patients, while
encouraged, are not required to remain or provide data while on-study, high rates of missing data
can be expected.

To understand the magnitude of this issue, we reviewed all randomized trials 1 reporting five
major patient-reported outcomes (SF-36, SF-12, Patient Health Questionnaire-9, Kansas City Car-
diomyopathy Questionnaire, Minnesota Living with Heart Failure Questionnaire) published in five
leading general medical journals (New England Journal of Medicine, Journal of the American Med-
ical Association, Lancet, British Medical Journal, PLoS One) between January 1, 2008 and January
31, 2017. We identified 145 studies, which are summarized in Table 3. There is large variation
in the percentages of missing data, with 78.6% of studies reporting percentages greater than 10%,
43.4% greater than 20% and 24.8% greater than 30%. Fielding et al. conducted a similar review of
clinical trials reporting quality of life outcomes in four of these journals during 2005/6 and found a
comparable distribution of missing data percentages. Given the quality of these journals, it is likely
that the percentages reported in Fielding et al. and in Table 1 are an optimistic representation
of percentages of missing data across the universe of clinical trials with patient-reported outcomes
published in the medical literature.

1We focused on randomized trials in which patients in each treatment group were scheduled to be interviewed at
a common set of post baseline assessment times. We excluded crossover trials, 10 trials in which patients were at
high risk of death during the scheduled follow-up period, and 6 studies which did not report follow-up rates at the
assessment times.
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Missing outcome data complicates the inferences that can be drawn about treatment effects.
While unbiased estimates of treatment effects can be obtained from trials with no missing data, this
is no longer true when data are missing on some patients. The essential problem is that inference
about treatment effects relies on unverifiable assumptions about the nature of the mechanism that
generates the missing data. While we may know the reasons for missing data, we do not know the
distribution of outcomes for patients with missing data, how it compares to that of patients with
observed data and whether differences in these distributions can be explained by the observed data.

It is widely recognized that the way to address the problem caused by missing outcome data
is to posit varying assumptions about the missing data mechanism and evaluate how inference
about treatment effects is affected by these assumptions. Such an approach is called ”sensitivity
analysis.” A 2010 National Research Council (NRC) report entitled ”The Prevention and Treatment
of Missing Data in Clinical Trials” and a follow-up manuscript published in the New England
Journal of Medicine recommends:

Sensitivity analyses should be part of the primary reporting of findings from clinical
trials. Examining sensitivity to the assumptions about the missing data mechanism
should be a mandatory component of reporting.

Li et al. (2012) echoed this recommendation (see Standard 8) in their PCORI sponsored report
entitled ”Minimal Standards in the Prevention and Handling of Missing Data in Observational and
Experimental Patient Centered Outcomes Research”.

The set of possible assumptions about the missing data mechanism is very large and cannot be
fully explored. As discussed in Scharfstein et al. (2014), there are, broadly speaking, three main
approaches to sensitivity analysis: ad-hoc, local and global.

• Ad-hoc sensitivity analysis involves analyzing data using a few different analytic methods
(e.g., last or baseline observation carried forward, complete or available case analysis, mixed
models, imputation) and evaluating whether the resulting inferences are consistent. The
problem with this approach is that consistency of inferences across the various methods does
not imply that there are no reasonable assumptions under which the inference about the
treatment effect is different.

• Local sensitivity analysis (Verbeke et al., 2001; Copas and Eguchi, 2001; Troxel, Ma and
Heitjan, 2004; Ma, Troxel and Heitjan, 2005) evaluates whether inferences are robust in a
small neighborhood around a reasonable benchmark assumption, such as the classic missing at
random assumption (Little and Rubin, 2014). Unfortunately, this approach does not address
whether the inferences are robust to plausible assumptions outside of the local neighborhood.

• Global sensitivity analysis (Rotnitzky, Robins and Scharfstein, 1998; Scharfstein, Rotnitzky
and Robins, 1999; Robins, Rotnitzky and Scharfstein, 2000; Rotnitzky et al., 2001; Daniels
and Hogan, 2008) emphasized in Chapter 5 of the NRC report, evaluates robustness of results
across a much broader range of assumptions that include a reasonable benchmark assumption
and a collection of additional assumptions that trend toward best and worst case assumptions.
From this analysis, it can be determined how much deviation from the benchmark assumption
is required in order for the inferences to change. If the deviation is judged to be sufficiently far
from the benchmark assumption, then greater credibility is lent to the benchmark analysis; if
not, the benchmark analysis can be considered to be fragile. Some researchers have dubbed
this approach “tipping point analysis” (Yan, Lee and Li, 2009; Campbell, Pennello and Yue,
2011).
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In this paper, we consider randomized clinical trials in which patient-reported outcomes are
scheduled to be measured at baseline (prior to randomization) and at a fixed number of post-
baseline assessment times. We assume that some patients discontinue participation prior to the
final assessment time and that all outcomes are observed while the patients are on-study. This
assumption implies that there is no intermittent missing outcome data. We discuss a method
and associated software for conducting global sensitivity analysis of such trials. We explicate our
methodology in the context of a randomized trial designed to evaluate the efficacy of quetiapine
fumarate for the treatment of patients with bipolar disorder.

2 Quetiapine Bipolar Trial

The Quetiapine Bipolar trial was a multi-center, placebo-controlled, double-dummy study in which
patients with bipolar disorder were randomized equally to one of three treatment arms: placebo,
Quetiapine 300 mg/day or Quetiapine 600 mg/day (Calabrese et al., 2005). Randomization was
stratified by type of bipolar disorder: 1 or 2. A key secondary patient-reported endpoint was the
short-form version of the Quality of Life Enjoyment Satisfaction Questionnaire (QLESSF, Endicott
et al., 1993), which was scheduled to be measured at baseline, week 4 and week 8.2

In this paper, we will focus on the subset of 234 patients with bipolar 1 disorder who were
randomized to either the placebo (n=116) or 600 mg/day (n=118) arms.3 We seek to compare
the mean QLESSF outcomes at week 8 between these two treatment groups, in a world in which
there are no missing outcomes. Unfortunately, this comparison is complicated because patients
prematurely withdrew from the study. Figure 1 displays the treatment-specific trajectories of
mean QLESSF scores, stratified by last available measurement. Notice that only 65 patients (56%)
in placebo arm and 68 patients (58%) in the 600mg/day arm had a complete set of QLESSF scores.
Further, the patients with complete data tend to have higher average QLESSF scores, suggesting
that a complete-case analysis could be biased.

3 Global Sensitivity Analysis

Chapter 5 of the NRC report [90] lays out a general framework for global sensitivity analysis. In
this framework, inference about treatment effects requires two types of assumptions: (i) untestable
assumptions about the distribution of outcomes among those with missing data and (ii) testable
assumptions that serve to increase the efficiency of estimation (see Figure 24). Type (i) assumptions
are required to “identify” parameters of interest: identification means that one can mathematically
express parameters of interest (e.g., treatment arm-specific means, treatment effects) in terms of
the distribution of the observed data. In other words, if one were given the distribution of the
observed data and given a type (i) assumption, then one could compute the value of the parameter
of interest (see arrows in Figure 2). In the absence of identification, one cannot learn the value
of the parameter of interest based only on knowledge of the distribution of the observed data.
Identification implies that the parameters of interest can, in theory, be estimated if the sample size
is large enough.

2Data were abstracted from the clinical study report available at http://psychrights.org/research/
Digest/NLPs/Seroquel/UnsealedSeroquelStudies/. The number of patients that were abstracted does not exactly
match the number of patients reported in Calabrese et al., 2005.

3These sample sizes exclude three randomized patients - one from placebo and two from 600 mg/day Quetiapine.
From each group, one patient was removed because of undue influence on the analysis. In the 600 mg/day Quetiapine
arm, one patient had incomplete questionaire data at baseline.

4A model is a set of distributions, which we represent by circles in Figure 2.
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Figure 1: Treatment-specific (left: placebo; right: 600 mg/day Quetiapine) trajectories of mean
QLESSF scores, stratified by last available measurement. Blue, brown and orange represent the
trajectories of patients last seen at visits 0, 1 and 2, respectively. The number in parentheses at
the end of each trajectory represents the number of associated patients.
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There are an infinite number of ways of positing type (i) assumptions. It is impossible to
consider all such assumptions. A reasonable way of positing these assumptions is to

(a) stratify individuals with missing outcomes according to the data that were able to be collected
on them and the occasions at which the data were collected, and

(b) separately for each stratum, hypothesize a connection (or link) between the distribution of
the missing outcomes with the distribution of these outcomes for patients who share the same
recorded data and for whom the distribution is identified.

The connection that is posited in (b) is a type (i) assumption. The problem with this approach
is that the stratum of people who share the same recorded data will typically be very small (e.g.,
the number of patients who share exactly the same baseline data will be very small). As a result,
it is necessary to draw strength across strata by “smoothing.” Smoothing is required because, in
practice, we are not working with large enough sample sizes. Without smoothing, the data analysis
will not be informative because the uncertainty (i.e., standard errors) of the parameters of interest
will be too large to be of substantive use. Thus, it is necessary to impose type (ii) smoothing
assumptions (represented by the inner circle in Figure 2). Type (ii) assumptions are testable (i.e.,
place restrictions on the distribution of the observed data) and should be scrutinized via model
checking.

The global sensitivity framework proceeds by parameterizing (i.e., indexing) the connections
(i.e., type (i) assumptions) in (b) above via sensitivity analysis parameters. The parameterization
is configured so that a specific value of the sensitivity analysis parameters (typically set to zero)
corresponds to a benchmark connection that is considered reasonably plausible and sensitivity
analysis parameters further from the benchmark value represent more extreme departures from the
benchmark connection.

The global sensitivity analysis strategy that we propose is focused on separate inferences for
each treatment arm, which are then combined to evaluate treatment effects. Until the last part of
this section, our focus will be on estimation of the mean outcome at week 8 (in a world without
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Figure 2: Schematic representation of the global sensitivity analysis framework. Circles represent
modeling restrictions placed on the distribution of the observed data, with the outer circle indi-
cating no restrictions and the inner circle indicating type (ii) restrictions. The arrows indicate a
mappings from the distribution of the observed data to the true mean, which depends on the type
(i) assumptions.

missing outcomes) for one of the treatment groups and we will suppress reference to treatment
assignment.

3.1 Notation and Data Structure

Let Y0, Y1 and Y2 denote the QLESSF scores scheduled to be collected at baseline, week 4 and
week 8, respectively. Let Rk be the indicator that Yk is observed. We assume R0 = 1 and that
Rk = 0 implies Rk+1 = 0 (i.e., missingness is monotone). We refer to a patient as on-study at visit
k if Rk = 1, as discontinued prior to visit k if Rk = 0 and last seen at visit k − 1 if Rk−1 = 1 and
Rk = 0. We define Y obs

k to be equal to Yk if Rk = 1 and equal to nil if Rk = 0.
The observed data for an individual are O = (Y0, R1, Y

obs
1 , R2, Y

obs
2 ), which is drawn from some

distribution P ∗ contained within a set of distributionsM (to be discussed later). Throughout, the
superscript ∗ will be used to denote the true value of the quantity to which it is appended. Any
distribution P ∈M can be represented in terms of the following distributions: f(Y0), P [R1 = 1|Y0],
f(Y1|R1 = 1, Y0), P [R2 = 1|R1 = 1, Y1, Y0] and f(Y2|R2 = 1, Y1, Y0).

We assume that n independent and identically distributed copies of O are observed. The goal is
to use these data to draw inference about µ∗ = E∗[Y2]. When necessary, we will use the subscript
i to denote data for individual i.

3.2 Benchmark Assumption (Missing at Random)

Missing at random (Little and Rubin, 2014) is a widely used assumption for analyzing longitudinal
studies with missing outcome data. To understand this assumption, we define the following strata:

• A0(y0): patients last seen at visit 0 with Y0 = y0.

• B1(y0): patients on-study at visit 1 with Y0 = y0.

• A1(y1, y0): patients last seen at visit 1 with Y1 = y1 and Y0 = y0.
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• B2(y1, y0): patients on-study at visit 2 with Y1 = y1 and Y0 = y0.

Missing at random posits the following type (i) “linking” assumptions:

• For all y0, the distribution of Y1 and Y2 for patients in strata A0(y0) is the same as the
distribution of Y1 and Y2 for patients in strata B1(y0)

• For all y0, y1, the distribution of Y2 for patients in strata A1(y1, y0) is the same as the distri-
bution of Y2 for patients in strata B2(y1, y0)

Mathematically, we can express these assumptions as follows:

f∗(Y1, Y2|R1 = 0, Y0 = y0︸ ︷︷ ︸
A0(y0)

) = f∗(Y1, Y2|R1 = 1, Y0 = y0︸ ︷︷ ︸
B1(y0)

) for all y0 (1)

and

f∗(Y2|R2 = 0, R1 = 1, Y1 = y1, Y0 = y0︸ ︷︷ ︸
A1(y1,y0)

) = f∗(Y2|R2 = 1, Y1 = y1, Y0 = y0︸ ︷︷ ︸
B2(y1,y0)

) for all y1, y0 (2)

Using Bayes’ rule, we can re-write these expressions as:

P ∗[R1 = 0|Y2 = y2, Y1 = y1, Y0 = y0] = P ∗[R1|Y0 = y0] (3)

and

P ∗[R2 = 0|R1 = 1, Y2 = y2, Y1 = y1, Y0 = y0] = P ∗[R2 = 0|R1 = 1, Y1 = y1, Y0 = y0] (4)

Written in this way, missing at random implies that the drop-out process is stochastic with the
following properties:

• The decision to discontinue the study before visit 1 is like the flip of a coin with probability
depending on the value of the outcome at visit 0.

• For those on-study at visit 1, the decision to discontinue the study before visit 2 is like the
flip of a coin with probability depending on the value of the outcomes at visits 1 and 0.

Under missing at random, µ∗ is identified. That is, it can be expressed as a function of the
distribution of the observed data. Specifically,

µ∗ = µ(P ∗) =

∫
y0

∫
y1

∫
y2

y2dF
∗
2 (y2|y1, y0)dF ∗1 (y1|y0)dF ∗0 (y0) (5)

where F ∗2 (y2|y1, y0) = P ∗[Y2 ≤ y2|R2 = 1, Y1 = y1, Y0 = y0], F
∗
1 (y1|y0) = P ∗[Y1 ≤ y1|R1 = 1, Y0 =

y0] and F ∗0 (y0) = P ∗[Y0 ≤ y0].
Before proceeding to the issue of estimation, we will build a class of assumptions around the

missing at random assumption using a modeling device called exponential tilting (Barndorff-Nielsen
and and Cox, 1979).
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3.3 Missing Not at Random and Exponential Tilting

To build a class of missing not at random assumptions, consider Equation (1) of the missing at
random assumption. This equation is equivalent to the following two assumptions:

f∗(Y2|R1 = 0, Y1 = y1, Y0 = y0︸ ︷︷ ︸
A0(y1,y0)

) = f∗(Y2|R1 = 1, Y1 = y1, Y0 = y0︸ ︷︷ ︸
B1(y1,y0)

) for all y0, y1 (6)

and
f∗(Y1|R1 = 0, , Y0 = y0︸ ︷︷ ︸

A0(y0)

) = f∗(Y1|R1 = 1, Y0 = y0︸ ︷︷ ︸
B1(y0)

) for all y0 (7)

where

• A0(y1, y0) ⊂ A0(y0): patients last seen at visit 0 with Y0 = y0 and Y1 = y1.

• B1(y1, y0) ⊂ B1(y0): patients on-study at visit 1 with Y0 = y0 and Y1 = y1.

Equation (6) posits the following type (i) ”linking” assumption:

• For all y0 and y1, the distribution of Y2 for patients in strata A0(y1, y0) is the same as the
distribution of Y2 for patients in strata B1(y1, y0)

It has been referred to as the ”non-future” dependence assumption (Diggle and Kenward, 1994)
because it implies that R1 (i.e., the decision to drop-out before visit 1) is independent of Y2 (i.e.,
the future outcome) after conditioning on the Y0 (i.e., the past outcome) and Y1 (i.e., the most
recent outcome). We will retain this assumption.

Next, we impose the following exponential tilting ”linking” assumptions:

f∗(Y1|R1 = 0, Y0 = y0︸ ︷︷ ︸
A0(y0)

) ∝ f∗(Y1|R1 = 1, Y0 = y0︸ ︷︷ ︸
B1(y0)

) exp{αr(Y1)} for all y0 (8)

f∗(Y2|R2 = 0, R1 = 1, Y1 = y1, Y0 = y0︸ ︷︷ ︸
A1(y1,y0)

) ∝ f∗(Y2|R2 = 1, Y1 = y1, Y0 = y0︸ ︷︷ ︸
B2(y1,y0)

) exp{αr(Y2)} for all y0, y1

(9)
where r(·) is a specified function which we will assume to be an increasing function of its argument
and α is a sensitivity analysis parameter. The missing not at random class of assumptions that we
propose involves Equations (6), (8) and (9), where r(·) is considered fixed and α is a sensitivity
analysis parameter that serves as the class index. Importantly, notice how (8) reduces to (7) and
(9) reduces to (2) when α = 0. Thus, when α = 0, the MAR assumption is obtained. When α > 0
(< 0), notice that (8) and (9) imply

• For all y0, the distribution of Y1 for patients in strata A0(y0) is weighted more heavily (i.e.,
tilted) to higher (lower) values than the distribution of Y1 for patients in strata B1(y0)

• For all y0, y1, the distribution of Y2 for patients in strata A1(y1, y0) is weighted more heavily
weighted (i.e., tilted) to higher (lower) values than the distribution of Y2 for patients in strata
B2(y1, y0)

The amount of ”tilting” increases with the magnitude of α.
Using Bayes’ rule, we can re-write expressions (6), (8) and (9) succinctly as:

logit P ∗[R1 = 0|Y2 = y2, Y1 = y1, Y0 = y0] = l∗1(y0) + αr(y1) (10)
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and
logit P ∗[R2 = 0|R1 = 1, Y2 = y2, Y1 = y1, Y0 = y0] = l∗2(y1, y0) + αr(y2) (11)

where
l∗1(y0;α) = logit P ∗[R1 = 0|Y0 = y0]− logE∗[exp{αr(Y1)}|R1 = 1, Y0 = y0]

and

l∗2(y1, y0;α) = logit P ∗[R2 = 0|R1 = 1, Y1 = y1, Y0 = y0]−
logE∗[exp{αr(Y2)}|R2 = 1, Y1 = y1, Y0 = y0]

Written in this way, the drop-out process is stochastic with the following properties:

• The decision to discontinue the study before visit 1 is like the flip of a coin with probability
depending on the value of the outcome at visit 0 and, in a specified way, the value of the
outcome at visit 1.

• For those on-study at visit 1, the decision to discontinue the study before visit 2 is like the
flip of a coin with probability depending on the value of the outcomes at visits 1 and 0 and,
in a specified way, the value of the outcome at visit 2.

For given α, µ∗ is identified. Specifically, µ∗ = µ(P ∗;α) equals∫
y0

∫
y1

∫
y2

y2

{
dF ∗2 (y2|y1, y0){1−H∗2 (y1, y0)}+

dF ∗2 (y2|y1, y0) exp{αr(y2)}∫
y′2
dF ∗2 (y′2|y1, y0) exp{αr(y′2)}

H∗2 (y1, y0)

}
×{

dF ∗1 (y1|y0){1−H∗1 (y0)}+
dF ∗1 (y1|y0) exp{αr(y1)}∫
y′1
dF ∗1 (y′1|y0) exp{αr(y′1)}

H∗1 (y0)

}
dF ∗0 (y0) (12)

where H∗2 (y1, y0) = P ∗[R2 = 0|R1 = 1, Y1 = y1, Y0 = y0] and H∗1 (y0) = P ∗[R1 = 0|Y0 = y0]

4 Inference

For given α, formula (12) shows that µ∗ depends on F ∗2 (y2|y1, y0), F ∗1 (y1|y0), H∗2 (y1, y0) and H∗1 (y0).
Thus, it is natural to consider estimating µ∗ by ”plugging in” estimators of F ∗2 (y2|y1, y0), F ∗1 (y1|y0),
F ∗0 (y0), H

∗
2 (y1, y0) and H∗1 (y0) into (12). How can we estimate these latter quantities? With the

exception of F ∗0 (y0), it is tempting to think that we can use non-parametric procedures to estimate
these quantities. For example, a non-parametric estimate of F ∗2 (y2|y1, y0) would take the form:

F̂2(y2|y1, y0) =

∑n
i=1R2,iI(Y2,i ≤ y2)I(Y1,i = y1, Y0,i = y0)∑n

i=1R2,iI(Y1,i = y1, Y0,i = y0)

This estimator will perform very poorly (i.e., have high levels of uncertainly in moderate sample
sizes) because the number of subjects who complete the study (i.e., R2 = 1) and are observed to
have outcomes at visits 1 and 0 exactly equal to y1 and y0 will be very small and can only be
expected to grow very slowly as the sample size increases. As a result, a a plug-in estimator of µ∗

that uses such non-parametric estimators will perform poorly. We address this problem in three
ways.
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4.1 Testable Assumptions

First we make the estimation task slightly easier by assuming that

F ∗2 (y2|y1, y0) = F ∗2 (y2|y1) (13)

and
H∗2 (y1, y0) = H∗2 (y1) (14)

That is, (13) states that, among subjects who complete the study, information about Y0 does not
provide any information about the distribution of Y2 above and beyond information about Y1 and
(14) states that, among subjects on-study at visit 1, information about Y0 does not influence of the
risk of dropping out before visit 2 above and beyond information about Y1. These assumptions are,
with large enough samples, testable from the observed data. As such, we distinguish them from
type (i) assumptions and refer to them as type (ii) assumptions.

4.2 Kernel Smoothing with Cross-Validation

Second we estimate F ∗2 (y2|y1), F ∗1 (y1|y0), H∗2 (y1) and H∗1 (y0) using kernel smoothing techniques.
To motivate this idea, consider the following non-parametric estimate of F ∗2 (y2|y1)

F̂2(y2|y1) =

∑n
i=1R2,iI(Y2,i ≤ y2)I(Y1,i = y1)∑n

i=1R2,iI(Y1,i = y1)

This estimator will still perform poorly, although better than F̂2(y2|y1, y0), since there will be at
least as many completers with Y1 values equal to y1 than completers with Y1 and Y0 values equal to

y1 and y0, respectively. To improve its performance, we replace I(Y1,i = y1) by φ
(
Y1,i−y1
λF2

)
, where

φ(·) is the density function for a standard normal random variable and λF2 is a tuning parameter.
For fixed λF2 , let

F̂2(y2|y1;σF2) =

∑n
i=1R2,iI(Y2,i ≤ y2)φ

(
Y1,i−y1
λF2

)
∑n

i=1R2,iφ
(
Y1,i−y1
λF2

)
This estimator allows all completers to contribute, not just those with Y1 values equal to y1; it
assigns weight to completers according to how far their Y1 values are from y1, with closer values
assigned more weight. The larger λF2 , the larger the influence of values of Y1 further from y1 on
the estimator. As λF2 → ∞, the contribution of each completer to the estimator becomes equal,
yielding bias but low variance. As λF2 → 0, only completers with Y1 values equal to y1 contribute,
yielding low bias but high variance.

To address the bias-variance trade-off, cross validation (Hall, Racine and Li, 2004) is typically
used to select λF2 . In cross validation, the dataset is randomly divided into J (typically, 10)
approximately equal parts. Each part is called a validation set. Let Vj be the indices of the

subjects in the jth validation set. Let nj be the associated number of subjects. Let F̂
(j)
2 (y2|y1;λF2)

be the estimator of F ∗2 (y2|y1) based on the dataset that excludes the jth validation set (referred to
as the jth training set). If λF2 is a good choice then one would expect

CVF ∗2 (·|·)(λF2) =
1

J

J∑
j=1


1

nj

∑
i∈Vj

R2,i

∫ {
I(Y2,i ≤ y2)− F̂ (j)

2 (y2|Y1,i;λF2)
}2
dF̂ ◦2 (y2)︸ ︷︷ ︸

Distance for i ∈ Vj

 (15)
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will be small, where F̂ ◦2 (y2) is the empirical distribution of Y2 among subjects on-study at visit 2. In
(15), the quantity in the vertical braces is a measure of how well the estimator of F2(y2|y1) based on
the jth training set “performs” on the jth validation set. For each individual i in the jth validation
set with an observed outcome at visit 2, we measure, by the quantity above the horizontal brace in
(15), the distance (or loss) between the collection of indicator variables {I(Y2,i ≤ y2) : dF̂ ◦2 (y2) > 0}
and the corresponding collection of predicted values {F̂ (j)

2 (y2|Y1,i;λF2) : dF̂ ◦2 (y2) > 0}. The distance
for each of these individuals are then summed and divided by the number of subjects in the jth
validation set. Finally, an average across the J validation/training sets is computed. We can then
estimate F ∗2 (y2|y1) by F̂2(y2|y1; λ̂F2), where λ̂F2 = argmin CVF ∗2 (·|·)(λF2).

Using this idea, we can estimate F ∗1 (y1|y0) by

F̂1(y1|y0; σ̂F1) =

∑n
i=1R1,iI(Y1,i ≤ y1)φ

(
Y0,i−y0
σ̂F1

)
∑n

i=1R1,iφ
(
Y0,i−y0
σ̂F1

)
where σ̂F1 is the minimizer of

CVF ∗1 (·|·)(σF1) =
1

J

J∑
j=1

 1

nj

∑
i∈Vj

R1,i

∫ {
I(Y1,i ≤ y1)− F̂ (j)

1 (y1|Y0,i;σF1)
}2
dF̂ ◦1 (y1)


and F̂ ◦1 (y1) is the empirical distribution of Y1 among subjects on-study at visit 1. Further, we
estimate H∗k(yk−1) (k = 1, 2) by

Ĥk(yk−1; σ̂Hk
) =

∑n
i=1Rk−1,i(1−Rk,i)φ

(
Yk−1,i−yk−1

σ̂Hk

)
∑n

i=1Rk−1,iφ
(
Yk−1,i−yk−1

σ̂Hk

)
where σ̂Hk

is the minimizer of

CVH∗k(·)(σHk
) =

1

J

J∑
j=1

 1

nj

∑
i∈Vj

Rk−1,i{1−Rk,i − Ĥ
(j)
k (Yk−1,i; σ̂Hk

)}Ĥ◦k


and Ĥ◦k is the proportion of individual with drop out between visits k − 1 and k among those
on-study at visit k − 1.

4.3 Correction Procedure

The cross-validation procedure for selecting tuning parameters achieves optimal finite-sample bias-
variance trade-off for the quantities requiring smoothing, i.e., the conditional distribution functions
F ∗k (yk|yk−1) and probability mass functions H∗k(yk−1). This optimal trade-off is usually not op-
timal for estimating µ∗. In fact, the plug-in estimator of µ∗ could possibly suffer from excessive
and asymptotically non-negligible bias due to inadequate tuning. This may prevent the plug-in
estimator from enjoying regular asymptotic behavior, upon which statistical inference is generally
based. In particular, the resulting estimator may have a slow rate of convergence, and common
methods for constructing confidence intervals, such as the Wald and bootstrap intervals, can have
poor coverage properties. Thus, our third move is to “correct” the plug-in estimator. Specifically,
the goal is to construct an estimator that is “asymptotically linear” (i.e., can be expressed as the
average of i.i.d. random variables plus a remainder term that is asymptotically negligible).
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We now motivate the correction procedure. LetM be the class of distributions for the observed
data O that satisfy constraints (13) and (14). It can be shown that, for P ∈M,

µ(P ;α)− µ(P ∗;α) = −E∗[ψP (O;α)− ψP ∗(O;α)] + Rem(P, P ∗;α), (16)

where ψP (O;α) is a “derivative” of µ(·;α) at P and Rem(P, P ∗;α) is a “second-order” remainder
term which converges to zero as P tends to P ∗. This derivative is used to quantify the change in
µ(P ;α) resulting from small perturbations in P ; it also has mean zero (i.e., E∗[ψP ∗(O;α)] = 0).
The remainder term is second order in the sense that it can be written as or bounded by the product
of terms involving differences between (functionals of) P and P ∗.

Equation (16) plus some simple algebraic manipulation teaches us that

µ(P̂ ;α)︸ ︷︷ ︸
Plug-in

−µ(P ∗;α) =
1

n

n∑
i=1

ψP ∗(Oi;α)− 1

n

n∑
i=1

ψ
P̂

(Oi;α) (17)

+
1

n

n∑
i=1

{ψ
P̂

(Oi;α)− ψP ∗(Oi;α)− E∗[ψ
P̂

(O;α)− ψP ∗(O;α)]} (18)

+Rem(P̂ , P ∗;α) (19)

where P̂ is the estimated distribution of P ∗ discussed in the previous section. Under smoothness
and boundedness conditions, term (18) will be oP ∗(n

−1/2) (i.e., will converge in probabity to zero
even when it is multipled by

√
n). Provided P̂ converges to P ∗ at a reasonably fast rate, term

(19) will also be oP ∗(n
−1/2). The second term in (17) prevents us from concluding that the plug-in

estimator can be essentially represented as an average of i.i.d terms plus oP ∗(n
−1/2) terms. However,

by adding the second term in (17) to the plug-in estimator, we can construct a “corrected” estimator
that does have this representation. Formally, the corrected estimator is

µ̃α = µ(P̂ ;α)︸ ︷︷ ︸
Plug-in

+
1

n

n∑
i=1

ψ
P̂

(Oi;α)

The practical implication is that µ̃α converges in probability to µ∗ and

√
n (µ̃α − µ∗) =

1√
n

n∑
i=1

ψP ∗(Oi;α) + oP ∗(1)

With this representation, we see that ψP ∗(O;α) is the so-called influence function. By the cen-
tral limit theorem, we then know that

√
n (µ̃α − µ∗) converges to a normal random variable with

mean 0 and variance σ2α = E∗[ψP ∗(O;α)2]. The asymptotic variance can be estimated by σ̃2α =
1
n

∑n
i=1 ψP̂ (Oi;α)2. A (1 − γ)% Wald-based confidence interval for µ∗(α) can be constructed as

µ̃(α)± z1−γ/2σ̃α/
√
n, where zq is the qth quantile of a standard normal random variable.

The efficient influence function in model M is presented in Appendix A.

4.4 Confidence interval construction

For given α, there are many ways to construct confidence intervals for µ∗. Above, we discussed
the Wald-based technique. In Section 6, we present the results of a simulation study in which this
technqiue results in poor coverage in moderately sized samples. The poor coverage can be explained
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in part due to the fact that σ̃(α)2 can be severely downward biased in finite samples (Efron and
Gong, 1983).

Resampling-based procedures may be used to improve performance. A first idea is to consider
the jackknife estimator for σ2α:

σ̃2JK,α = (n− 1)
n∑
i=1

{µ̃(−i)α − µ̃(·)α }2

where µ̃
(−i)
α is the estimator of µ∗ with the ith individual deleted from the dataset and µ̃

(·)
α =

1
n

∑n
i=1 µ̃

(−i)
α . This estimator is known to be conservative (Efron and Stein, 1981), but is the

“method of choice if one does not want to do bootstrap computations” (Efron and Gong, 1983).
Using the jackknife estimator of the variance, one can construct a Wald confidence interval with
σ̃α replaced by σ̃JK,α. Our simulation study in Section 6 demonstrates that these latter intervals
perform better, but still have coverage lower than desired.

Another idea is to use studentized-t bootstrap. Here, confidence intervals are formed by choosing
cutpoints based on the distribution of µ̃(b)α − µ̃αs̃e

(
µ̃
(b)
α

) : b = 1, 2, . . . , B

 (20)

where µ̃
(b)
α is the estimator of µ∗ based on the bth bootstrap dataset and s̃e

(
µ̃
(b)
α

)
is an estimator

of the standard error of µ̃
(b)
α (e.g., σ̃α/

√
n or σ̃JK,α/

√
n ) . An equal-tailed confidence interval takes

the form: (
µ̃α − t1−γ/2s̃e

(
µ̃(b)α

)
, µ̃α − tγ/2s̃e

(
µ̃(b)α

))
,

where tq is the qth quantile of (20). A symmetric confidence interval takes the form:(
µ̃α − t∗1−γ s̃e

(
µ̃(b)α

)
, µ̃α + t∗1−γ s̃e

(
µ̃(b)α

))
,

where t∗1−γ is selected so that (1− γ) of the distribution of (20) is between −t∗1−γ and t∗1−γ .
In terms of bootstrapping, there are two main choices: non-parametric and parametric. The

advantage of non-parametric bootstrap is that it does not require a model for the distribution of
the observed data. Since our analysis depends on correct specification and on estimation of such a
model, it makes sense to use this model to bootstrap observed datasets. In our data analysis and
simulation study, we use the estimated distribution of the observed data to generate bootstrapped
observed datasets.

Our simulation study in Section 6 shows that the symmetric studentized-t bootstrap with
jackknife standard errors performs best. We used this procedure in our data analysis.

5 Analysis of Quetiapine Trial

The first step of the analysis is to estimate the smoothing parameters and assess the goodness of fit
of our models for H∗j (drop-out) and F ∗j (outcome). We assumed a common smoothing parameter
for the H∗j (j = 1, 2) models and a common smoothing parameter for F ∗j (j = 1, 2) models; F ∗0
was estimated by its empirical distribution. The estimated smoothing parameters for the drop-out
(outcome) model are 11.54 (6.34) and 9.82 (8.05) for the placebo and 600 mg arms, respectively. In
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the placebo arm, the observed percentages of last being seen at visits 0 and 1 among those at risk
at these visits are 8.62% and 38.68%, respectively. Estimates derived from the estimated model
for the distribution of the observed data are 7.99% and 38.19%, respectively. For the 600 mg arm,
the observed percentages are 11.02% and 35.24% and the model-based estimates are 11.70% and
35.08%. In the placebo arm, the Kolmogorov-Smirnov distances between the empirical distribution
of the observed outcomes and the model-based estimates of the distribution of outcomes among
those on-study at visits 1 and 2 are 0.013 and 0.033, respectively. In the 600 mg arm, these distances
are 0.013 and 0.022. These results suggest that our model for the observed data fits the observed
data well.

Under missing at random, the estimated values of µ∗ are 46.45 (95% CI: 42.35,50.54) and 62.87
(95% CI: 58.60,67.14) for the placebo and 600 mg arms, respectively. The estimated difference
between 600 mg and placebo is 16.42 (95% 10.34, 22.51), which represents both a statistically and
clinically significant improvement in quality of life in favor of Quetiapine. 5

In our sensitivity analysis, we set r(y) = y and ranged the sensitivity analysis parameter from
-10 and 10 in each treatment arm.6 Figure 3 presents treatment-specific estimates (along with 95%
pointwise confidence intervals) of µ∗ as a function of α. To help interpret the sensitivity analysis
parameter, Figure 4 displays treatment-specific differences between the estimated mean QLESSF
at Visit 2 among non-completers and the estimated mean among completers, as a function of α. For
example, when α = −10 non-completers are estimated to have more than 20 points lower quality of
life than completers; this holds for both treatment arms. In contrast, when α = 10 non-completers
are estimated to have 6 and 11 points higher quality of life than completers in the placebo and
Quetiapine arms, respectively. The plausibility of α can be judged with respect the plausibility of
these differences. In this setting, it may be considered unreasonable that completers are worse off
in terms of quality of life than non-completers, in which case α should be restricted to be less than
6 in the placebo arm and less than 3 in the Quentiapine arm.

Figure 5 displays a contour plot of the estimated differences between mean QLESSF at Visit 2
for Quentiapine vs. placebo for various treatment-specific combinations of the sensitivity analysis
parameters. The point (0,0) corresponds to the MAR assumption in both treatment arms. The
figure shows that the differences are statistically significant (represented by dots) in favor of Queti-
apine at almost all combinations of the sensitivity analysis parameters. Only when the sensitivity
analysis are highly differential (e.g., α(placebo) = 8 and α(Quetaipine) = −8) are the differences
no longer statistically significant. This figure shows that conclusions under MAR are highly robust.

6 Simulation Study

To evaluate the statistical properties of our proposed procedure, we conducted a realistic simulation
study that mimics the data structure in the Quetiapine study. We generated 2500 placebo and
Quetiapine datasets using the estimated distributions of the observed data from the Quentiapine
study as the true data generating mechanisms. For given treatment-specific α, these true data
generating mechanisms can be mapped to a true value of µ∗. For each dataset, the sample size was
to set to 116 and 118 in the placebo and Quetiapine arms, respectively.

Table 1 reports bias and mean-squared error for the plug-in and corrected estimators, as a
function of α. The bias tends to be low for both estimators and the mean-squared error is lower
for the corrected estimators, except at extreme values of α.

5All confidence intervals are symmetric studentized-t bootstrap with jackknife standard errors.
6According to Dr. Dennis Rivicki and Dr. Jean Endicott, there is no evidence to suggest that there is a differential

effect of a unit change in QLESSF on the hazard of drop-out based on its location on the scale.

13



Figure 3: Treatment-specific (left: placebo; right: 600 mg/day Quentiapine) estimates (along with
95% pointwise confidence intervals) of µ∗ as a function of α.
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Table 2 reports the coverage properties of six difference methods for constructing confidence
intervals: (1) Wald with influence function standard errors (Wald-IF), (2) Wald with jackknife stan-
dard errors (Wald-JK), (3) equal-tailed studentized parametric bootstrap with influence function
standard errors (Bootstrap-IF-ET), (4) equal-tailed studentized parametric bootstrap with jack-
knife standard errors (Bootstrap-JK-ET), (5) symmetric studentized parametric bootstrap with
influence function standard errors (Bootstrap-IF-S) and (6) symmetric studentized parametric boot-
strap with jackknife standard errors (Bootstrap-JK-S); 2000 parametric bootstraps were used. The
results demonstrate that using jackknife standard errors is superior to influence function standard
errors. In this simulation, the best performing procedures are Wald with jackknife standard errors
and symmetric studentized parametric bootstrap with jackknife standard errors, with the latter
experiencing, for some values of α, coverages 1-2% higher than nominal levels. In other simulations
(reported elsewhere), we have found that Wald with jacknife standard errors can have lower than
nominal levels of coverage. Thus, we recommend using symmetric studentized parametric bootstrap
with jackknife standard errors.

7 Discussion

Our review of leading medical journals demonstrated that missing data are a common occurrence
in randomized trials with patient-reported outcomes. As per the 2010 NRC report, it is essential
to evaluate the robustness of trial results to untestable assumptions about the underlying missing
data mechanism. In this paper, we have presented a methodology for conducting global (as op-
posed to ad-hoc or local) sensitivity analysis of trials in which (1) outcomes are scheduled to be
measured at fixed points after randomization and (2) missing data are monotone. While we de-
veloped our method in the context of a motivating example with two post-baseline measurements,
it naturally generalizes to studies with more measurements. Our sensitivity analysis is anchored
around the commonly used missing at random assumption. We have developed a software package
called SAMON to implement our procedure. R and SAS versions of the software are available at
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Figure 4: Treatment-specific differences between the estimated mean QLESSF at Visit 2 among
non-completers and the estimated mean among completers, as a function of α.
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Figure 5: Contour plot of the estimated differences between mean QLESSF at Visit 2 for Quentiap-
ine vs. placebo for various treatment-specific combinations of the sensitivity analysis parameters.
The point (0,0) corresponds to the MAR assumption in both treatment arms.
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Table 1: Treatment- and α-specific simulation results: Bias and mean-squared error (MSE) for the
plug-in (µ(P̂ ;α)) and corrected (µ̃α ) estimators, for various choices of α.

Placebo Quetiapine
α Estimator µ∗ Bias MSE µ∗ Bias MSE

-10 Plug-in 40.85 0.02 4.43 56.07 0.40 4.69
Corrected 0.43 4.56 0.42 4.72

-5 Plug-in 43.45 0.05 4.29 59.29 0.34 4.55
Corrected 0.27 4.26 0.24 4.35

-1 Plug-in 46.02 0.28 4.34 62.58 0.50 4.39
Corrected 0.18 4.22 0.14 4.00

0 Plug-in 46.73 0.36 4.44 63.42 0.55 4.36
Corrected 0.17 4.27 0.14 3.95

1 Plug-in 47.45 0.43 4.57 64.25 0.59 4.32
Corrected 0.16 4.36 0.15 3.92

5 Plug-in 50.48 0.66 5.33 67.34 0.59 4.20
Corrected 0.14 5.11 0.19 4.15

10 Plug-in 54.07 0.51 5.78 70.51 0.07 4.02
Corrected 0.04 6.30 -0.05 4.66

www.missingdatamatters.org.
We have found that our procedure can be sensitive to outliers. In fact, we discarded two patients

(one from each treatment arm) from the Quetiapine Study because of their undue influence. In the
placebo arm, the patient was a completer and had baseline, visit 1 and visit 2 raw scores of 17, 26
and 48, respectively. At α = 10, the scaled absolute DFBETA for this observation was 2.75 with
the next largest absolute DFBETA being 1.13. In the Quetiapine arm, the patient was a completer
and had baseline, visit 1 and visit 2 raw scores of 31, 29 and 18, respectively. At α = −10, the
scaled absolute DFBETA for this observation was 3.20 with the next largest absolute DFBETA
being 0.52. One way to address the issue of outliers would be the robustify the influence function
using ideas from the robust statistics literature (Huber and Ronchetti, 2009).

Our procedure does not currently handle intermittent missing data. In many randomized trials,
intermittent missing data is usually a second order concern. We propose imputing intermittent
observations, under a reasonable assumption (see, for example, Robins, 1997) to create a monotone
data structure and then apply the methods outlined in this paper with proper accounting for
uncertainty in the imputation process.

We believe that the methods and software that we have developed should be applied to all
trials with missing outcome data, including but limited to those that are patient-reported. Trial
results that are sensitive to untestable assumptions about the missing data mechanism should be
viewed with skepticism, while greater credence should be given those that exhibit robustness. Our
methods are not a substitute for study designs and procedures that minimize missing data.
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Table 2: Treatment- and α-specific simulation results: Confidence interval coverage for (1) Wald
with influence function standard errors (Wald-IF), (2) Wald with jackknife standard errors (Wald-
JK), (3) equal-tailed studentized parametric bootstrap with influence function standard errors
(Bootstrap-IF-ET), (4) equal-tailed studentized parametric bootstrap with jackknife standard er-
rors (Bootstrap-JK-ET), (5) symmetric studentized parametric bootstrap with influence function
standard errors (Bootstrap-IF-S) and (6) symmetric studentized parametric bootstrap with jack-
knife standard errors (Bootstrap-JK-S); 2000 parametric bootstraps were used.

Placebo Quetiapine
α Procedure Coverage Coverage
-10 Wald-IF 91.5% 90.5%

Wald-JK 95.0% 94.6%
Bootstrap-IF-ET 94.3% 93.8%
Bootstap-JK-ET 94.4% 93.4%
Bootstap-IF-S 95.2% 94.6%
Bootstap-JK-S 95.0% 94.6%

-5 Wald-IF 93.5% 92.9%
Wald-JK 95.0% 94.8%
Bootstrap-IF-ET 95.2% 94.6%
Bootstap-JK-ET 94.8% 94.6%
Bootstap-IF-S 95.4% 95.2%
Bootstap-JK-S 95.1% 95.2%

-1 Wald-IF 93.9% 94.2%
Wald-JK 94.9% 95.4%
Bootstrap-IF-ET 95.1% 94.8%
Bootstap-JK-ET 95.1% 94.6%
Bootstap-IF-S 95.3% 96.4%
Bootstap-JK-S 95.1% 96.3%

0 Wald-IF 93.8% 94.0%
Wald-JK 95.0% 95.4%
Bootstrap-IF-ET 94.6% 94.5%
Bootstap-JK-ET 94.6% 94.6%
Bootstap-IF-S 95.5% 96.6%
Bootstap-JK-S 95.2% 96.7%

1 Wald-IF 93.3% 93.7%
Wald-JK 95.1% 95.5%
Bootstrap-IF-ET 94.6% 94.6%
Bootstap-JK-ET 94.6% 94.6%
Bootstap-IF-S 95.5% 96.5%
Bootstap-JK-S 95.2% 96.5%

5 Wald-IF 90.8% 91.3%
Wald-JK 95.3% 95.7%
Bootstrap-IF-ET 93.2% 91.6%
Bootstap-JK-ET 93.8% 93.0%
Bootstap-IF-S 95.5% 95.4%
Bootstap-JK-S 95.8% 96.4%

10 Wald-IF 85.4% 87.8%
Wald-JK 94.9% 94.5%
Bootstrap-IF-ET 88.2% 87.0%
Bootstap-JK-ET 92.2% 89.7%
Bootstap-IF-S 94.6% 93.9%
Bootstap-JK-S 95.5% 95.1%
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Michiel L Vogelaar, Mirjam Tromp, Frank H van den Hoogen, A Rogier T Donders, An-
drea WM Evers, and Bart Jan Kullberg. Randomized trial of longer-term therapy for symp-
toms attributed to lyme disease. New England Journal of Medicine, 374(13):1209–1220, 2016.

22



[12] N Bergmann, S Ballegaard, P Bech, A Hjalmarson, J Krogh, F Gyntelberg, and J Faber.
The effect of daily self-measurement of pressure pain sensitivity followed by acupressure on
depression and quality of life versus treatment as usual in ischemic heart disease: a randomized
clinical trial. PLoS One, 9(5):e97553, 2014.

[13] JL Berk, OB Suhr, L Obici, Y Sekijima, SR Zeldenrust, T Yamashita, MA Heneghan,
PD Gorevic, WJ Litchy, JF Wiesman, E Nordh, M Corato, A Lozza, A Cortese, J Robinson-
Papp, T Colton, DV Rybin, AB Bisbee, Y Ando, S Ikeda, DC Seldin, G Merlini, M Skinner,
JW Kelly, and PJ Dyck. Repurposing diflunisal for familial amyloid polyneuropathy: a
randomized clinical trial. JAMA, 310(24):2658–67, 2013.

[14] H Bruhn, CM Bond, AM Elliott, PC Hannaford, AJ Lee, P McNamee, BH Smith, MC Wat-
son, R Holland, and D Wright. Pharmacist-led management of chronic pain in primary care:
results from a randomised controlled exploratory trial. BMJ Open, 3(4), 2013.

[15] C Burton, D Weller, W Marsden, A Worth, and M Sharpe. A primary care symptoms
clinic for patients with medically unexplained symptoms: pilot randomised trial. BMJ Open,
2:e000513, 2012.

[16] Jason W Busse, Mohit Bhandari, Thomas A Einhorn, Emil Schemitsch, James D Heck-
man, Paul Tornetta, Kwok-Sui Leung, Diane Heels-Ansdell, Sun Makosso-Kallyth, Gregory J
Della Rocca, et al. Re-evaluation of low intensity pulsed ultrasound in treatment of tibial
fractures (trust): randomized clinical trial. bmj, 355:i5351, 2016.

[17] Joseph R Calabrese, Paul E Keck Jr, Wayne Macfadden, Margaret Minkwitz, Terence A
Ketter, Richard H Weisler, Andrew J Cutler, Robin McCoy, Ellis Wilson, Jamie Mullen,
et al. A randomized, double-blind, placebo-controlled trial of quetiapine in the treatment of
bipolar i or ii depression. American Journal of Psychiatry, 2005.

[18] Gregory Campbell, Gene Pennello, and Lilly Yue. Missing data in the regulation of medical
devices. Journal of biopharmaceutical statistics, 21(2):180–195, 2011.

[19] M Cartwright, SP Hirani, L Rixon, M Beynon, H Doll, P Bower, M Bardsley, A Steventon,
M Knapp, C Henderson, A Rogers, C Sanders, R Fitzpatrick, J Barlow, and SP Newman.
Effect of telehealth on quality of life and psychological outcomes over 12 months (Whole
Systems Demonstrator telehealth questionnaire study): nested study of patient reported
outcomes in a pragmatic, cluster randomised controlled trial. BMJ, 346:f653, 2013.

[20] T Chalder, KA Goldsmith, PD White, M Sharpe, and AR Pickles. Rehabilitative therapies
for chronic fatigue syndrome: a secondary mediation analysis of the PACE trial. Lancet
Psychiatry, 2(2):141–52, 2015.

[21] Dixon Chibanda, Helen A Weiss, Ruth Verhey, Victoria Simms, Ronald Munjoma, Sim-
barashe Rusakaniko, Alfred Chingono, Epiphania Munetsi, Tarisai Bere, Ethel Manda, et al.
Effect of a primary care–based psychological intervention on symptoms of common mental
disorders in zimbabwe: A randomized clinical trial. JAMA, 316(24):2618–2626, 2016.

[22] H Christensen, PJ Batterham, JA Gosling, LM Ritterband, KM Griffiths, FP Thorndike,
N Glozier, B O’Dea, IB Hickie, and AJ Mackinnon. Effectiveness of an online insomnia
program (SHUTi) for prevention of depressive episodes (the GoodNight Study): a randomised
controlled trial. Lancet Psychiatry, 2016.

23



[23] DJ Cohen, B Van Hout, PW Serruys, FW Mohr, C Macaya, P den Heijer, MM Vrakking,
K Wang, EM Mahoney, S Audi, K Leadley, KD Dawkins, and AP Kappetein. Quality of
life after pci with drug-eluting stents or coronary-artery bypass surgery. N Engl J Med,
364(11):1016–26, 2011.

[24] SP Cohen, SA Strassels, L Foster, J Marvel, K Williams, M Crooks, A Gross, C Kurihara,
C Nguyen, and N Williams. Comparison of fluoroscopically guided and blind corticosteroid
injections for greater trochanteric pain syndrome: multicentre randomised controlled trial.
BMJ, 338:b1088, 2009.

[25] Lisa Conboy, Travis Gerke, Kai-Yin Hsu, Meredith St John, Marc Goldstein, and Rosa
Schnyer. The effectiveness of individualized acupuncture protocols in the treatment of gulf
war illness: A pragmatic randomized clinical trial. PloS one, 11(3):e0149161, 2016.

[26] K Cooley, O Szczurko, D Perri, EJ Mills, B Bernhardt, Q Zhou, and D Seely. Naturopathic
care for anxiety: a randomized controlled trial. PLoS One, 4(8):e6628, 2009.

[27] J. Copas and S. Eguchi. Local sensitivity approximations for selectivity bias. Journal of the
Royal Statistical Society, Series B, 63(871-895), 2001.

[28] P Coventry, K Lovell, C Dickens, P Bower, C Chew-Graham, D McElvenny, M Hann, A Cher-
rington, C Garrett, CJ Gibbons, C Baguley, K Roughley, I Adeyemi, D Reeves, W Waheed,
and L Gask. Integrated primary care for patients with mental and physical multimorbidity:
cluster randomised controlled trial of collaborative care for patients with depression comorbid
with diabetes or cardiovascular disease. BMJ, 350:h638, 2015.

[29] JR Curtis, AL Back, DW Ford, L Downey, SE Shannon, AZ Doorenbos, EK Kross, LF Reinke,
LC Feemster, B Edlund, RW Arnold, K O’Connor, and RA Engelberg. Effect of communi-
cation skills training for residents and nurse practitioners on quality of communication with
patients with serious illness: a randomized trial. JAMA, 310(21):2271–81, 2013.

[30] BH Cuthbertson, J Rattray, MK Campbell, M Gager, S Roughton, A Smith, A Hull, S Bree-
man, J Norrie, D Jenkinson, R Hernandez, M Johnston, E Wilson, and C Waldmann. The
practical study of nurse led, intensive care follow-up programmes for improving long term
outcomes from critical illness: a pragmatic randomised controlled trial. BMJ, 339:b3723,
2009.

[31] MJ Daniels and JW Hogan. Missing Data in Longitudinal Studies: Strategies for Bayesian
Modeling and Sensitivity Analysis. CRC Press, 2008.

[32] P. Diggle and M.G. Kenward. Informative drop-out in longitudinal data analysis. Applied
Statistics, 43:49–93, 1994.

[33] A Dijk-De Vries, MA Bokhoven, B Winkens, B Terluin, JA Knottnerus, T Weijden, and
JThM van Eijk. Lessons learnt from a cluster-randomised trial evaluating the effectiveness of
Self-Management Support (SMS) delivered by practice nurses in routine diabetes care. BMJ
Open, 5(6), 2015.

[34] JB Dixon, LM Schachter, PE O’Brien, K Jones, M Grima, G Lambert, W Brown, M Bailey,
and MT Naughton. Surgical vs conventional therapy for weight loss treatment of obstructive
sleep apnea: a randomized controlled trial. JAMA, 308(11):1142–9, 2012.

24



[35] SK Dobscha, K Corson, NA Perrin, GC Hanson, RQ Leibowitz, MN Doak, KC Dickinson,
MD Sullivan, and MS Gerrity. Collaborative care for chronic pain in primary care: a cluster
randomized trial. JAMA, 301(12):1242–52, 2009.

[36] JC Dumville, G Worthy, JM Bland, N Cullum, C Dowson, C Iglesias, JL Mitchell, EA Nelson,
MO Soares, and DJ Torgerson. Larval therapy for leg ulcers (VenUS II): randomised controlled
trial. BMJ, 338:b773, 2009.

[37] Bradley Efron and Gail Gong. A leisurely look at the bootstrap, the jackknife, and cross-
validation. The American Statistician, 37(1):36–48, 1983.

[38] Bradley Efron and Charles Stein. The jackknife estimate of variance. The Annals of Statistics,
pages 586–596, 1981.

[39] F El-Khoury, B Cassou, A Latouche, P Aegerter, MA Charles, and P Dargent-Molina. Ef-
fectiveness of two year balance training programme on prevention of fall induced injuries in
at risk women aged 75-85 living in community: Ossebo randomised controlled trial. BMJ,
351:h3830, 2015.

[40] MH Emmelot-Vonk, HJ Verhaar, HR Nakhai Pour, A Aleman, TM Lock, JL Bosch,
DE Grobbee, and YT Schouw. Effect of testosterone supplementation on functional mo-
bility, cognition, and other parameters in older men: a randomized controlled trial. JAMA :
the Journal of the American Medical Association, 299(1):39–52, 2008.

[41] Jean Endicott, J Nee, W Harrison, and R Blumenthal. Quality of life enjoyment and satis-
faction questionnaire. Psychopharmacol Bull, 29(2):321–326, 1993.

[42] Charles C Engel, Lisa H Jaycox, Michael C Freed, Robert M Bray, Donald Brambilla, Dou-
glas Zatzick, Brett Litz, Terri Tanielian, Laura A Novak, Marian E Lane, et al. Centrally
assisted collaborative telecare for posttraumatic stress disorder and depression among mili-
tary personnel attending primary care: A randomized clinical trial. JAMA internal medicine,
176(7):948–956, 2016.

[43] F Fakhry, S Spronk, L van der Laan, JJ Wever, JA Teijink, WH Hoffmann, TM Smits,
JP van Brussel, GN Stultiens, A Derom, PT den Hoed, GH Ho, LC van Dijk, N Verhofstad,
M Orsini, A van Petersen, K Woltman, I Hulst, MR van Sambeek, D Rizopoulos, EV Rouwet,
and MG Hunink. Endovascular revascularization and supervised exercise for peripheral artery
disease and intermittent claudication: A randomized clinical trial. JAMA, 314(18):1936–44,
2015.

[44] B Favrat, K Balck, C Breymann, M Hedenus, T Keller, A Mezzacasa, and C Gasche. Evalu-
ation of a single dose of ferric carboxymaltose in fatigued, iron-deficient women–PREFER a
randomized, placebo-controlled study. PLoS One, 9(4):e94217, 2014.

[45] LE Fernandez-Rhodes, AD Kokkinis, MJ White, CA Watts, S Auh, NO Jeffries, JA Shrader,
TJ Lehky, L Li, JE Ryder, EW Levy, BI Solomon, MO Harris-Love, A La Pean, AB Schindler,
C Chen, NA Di Prospero, and KH Fischbeck. Efficacy and safety of dutasteride in patients
with spinal and bulbar muscular atrophy: a randomised placebo-controlled trial. Lancet
Neurol, 10(2):140–7, 2011 Feb.

[46] Shona Fielding, Graeme Maclennan, Jonathan A Cook, and Craig R Ramsay. A review of
rcts in four medical journals to assess the use of imputation to overcome missing data in
quality of life outcomes. Trials, 9(1):51, 2008.

25



[47] J Fisher, H Rowe, K Wynter, T Tran, P Lorgelly, LH Amir, J Proimos, S Ranasinha, H His-
cock, J Bayer, and W Cann. Gender-informed, psychoeducational programme for couples to
prevent postnatal common mental disorders among primiparous women: cluster randomised
controlled trial. BMJ Open, 6(3):e009396, 2016.

[48] KE Flynn, IL Pina, DJ Whellan, L Lin, JA Blumenthal, SJ Ellis, LJ Fine, JG Howlett,
SJ Keteyian, DW Kitzman, WE Kraus, NH Miller, KA Schulman, JA Spertus, CM O’Connor,
and KP Weinfurt. Effects of exercise training on health status in patients with chronic heart
failure: HF-ACTION randomized controlled trial. JAMA, 301(14):1451–9, 2009.

[49] C Francois, N Rahhali, Y Chalem, P Sorensen, A Luquiens, and HJ Aubin. The effects of as-
needed nalmefene on patient-reported outcomes and quality of life in relation to a reduction
in alcohol consumption in alcohol-dependent patients. PLoS One, 10(6):e0129289, 2015.

[50] Samuel Frank, Claudia M Testa, David Stamler, Elise Kayson, Charles Davis, Mary C Ed-
mondson, Shari Kinel, Blair Leavitt, David Oakes, Christine O’neill, et al. Effect of deutetra-
benazine on chorea among patients with huntington disease: a randomized clinical trial.
Jama, 316(1):40–50, 2016.

[51] RB Frobell, EM Roos, HP Roos, J Ranstam, and LS Lohmander. A randomized trial of
treatment for acute anterior cruciate ligament tears. N Engl J Med, 363(4):331–42, 2010.

[52] RB Frobell, HP Roos, EM Roos, FW Roemer, J Ranstam, and LS Lohmander. Treatment for
acute anterior cruciate ligament tear: five year outcome of randomised trial. BMJ, 346:f232,
2013.

[53] PA Ganz, RS Cecchini, TB Julian, RG Margolese, JP Costantino, LA Vallow, KS Albain,
PW Whitworth, ME Cianfrocca, AM Brufsky, HM Gross, GS Soori, JO Hopkins, L Fehren-
bacher, K Sturtz, TF Wozniak, TE Seay, EP Mamounas, and N Wolmark. Patient-reported
outcomes with anastrozole versus tamoxifen for postmenopausal patients with ductal car-
cinoma in situ treated with lumpectomy plus radiotherapy (NSABP B-35): a randomised,
double-blind, phase 3 clinical trial. Lancet, 2015.

[54] MB Gavi, DV Vassalo, FT Amaral, DC Macedo, PL Gava, EM Dantas, and V Valim.
Strengthening exercises improve symptoms and quality of life but do not change autonomic
modulation in fibromyalgia: a randomized clinical trial. PLoS One, 9(3):e90767, 2014.

[55] Zoher Ghogawala, James Dziura, William E Butler, Feng Dai, Norma Terrin, Subu N Magge,
Jean-Valery CE Coumans, J Fred Harrington, Sepideh Amin-Hanjani, J Sanford Schwartz,
et al. Laminectomy plus fusion versus laminectomy alone for lumbar spondylolisthesis. New
England Journal of Medicine, 374(15):1424–1434, 2016.

[56] S Gilbody, E Littlewood, C Hewitt, G Brierley, P Tharmanathan, R Araya, M Barkham,
P Bower, C Cooper, L Gask, D Kessler, H Lester, K Lovell, G Parry, DA Richards, P An-
dersen, S Brabyn, S Knowles, C Shepherd, D Tallon, and D White. Computerised cognitive
behaviour therapy (cCBT) as treatment for depression in primary care (REEACT trial):
large scale pragmatic randomised controlled trial. BMJ, 351:h5627, 2015.

[57] M Gine-Garriga, C Martin-Borras, A Puig-Ribera, C Martin-Cantera, M Sola, and A Cuesta-
Vargas. The effect of a physical activity program on the total number of primary care visits
in inactive patients: A 15-month randomized controlled trial. PLoS One, 8(6):e66392, 2013.

26



[58] N Glozier, H Christensen, S Naismith, N Cockayne, L Donkin, B Neal, A Mackinnon, and
I Hickie. Internet-delivered cognitive behavioural therapy for adults with mild to moderate
depression and high cardiovascular disease risks: a randomised attention-controlled trial.
PLoS One, 8(3):e59139, 2013.

[59] H Goldberg, W Firtch, M Tyburski, A Pressman, L Ackerson, L Hamilton, W Smith,
R Carver, A Maratukulam, LA Won, E Carragee, and AL Avins. Oral steroids for
acute radiculopathy due to a herniated lumbar disk: a randomized clinical trial. JAMA,
313(19):1915–23, 2015.

[60] BJ Goudie, AR andLipworth, PJ Hopkinson, L Wei, and AD Struthers. Tadalafil in patients
with chronic obstructive pulmonary disease: a randomised, double-blind, parallel-group,
placebo-controlled trial. Lancet Respir Med, 2(4):293–300, 2014.

[61] GE Grande, L Austin, G Ewing, N O’Leary, and C Roberts. Assessing the impact of a Carer
Support Needs Assessment Tool (CSNAT) intervention in palliative home care: a stepped
wedge cluster trial. BMJ Support Palliat Care, 2015 Dec 30.

[62] Peter Hall, Jeff Racine, and Qi Li. Cross-validation and the estimation of conditional proba-
bility densities. Journal of the American Statistical Association, 99:1015–1026, 2004.

[63] F Halperin, SA Ding, DC Simonson, J Panosian, A Goebel-Fabbri, M Wewalka, O Hamdy,
M Abrahamson, K Clancy, K Foster, D Lautz, A Vernon, and AB Goldfine. Roux-en-Y
gastric bypass surgery or lifestyle with intensive medical management in patients with type 2
diabetes: feasibility and 1-year results of a randomized clinical trial. JAMA Surg, 149(7):716–
26, 2014.

[64] J. M. Hare, J. E. Fishman, G. Gerstenblith, D. L. DiFede Velazquez, J. P. Zambrano, V. Y.
Suncion, M. Tracy, E. Ghersin, P. V. Johnston, J. A. Brinker, E. Breton, J. Davis-Sproul,
I. H. Schulman, J. Byrnes, A. M. Mendizabal, M. H. Lowery, D. Rouy, P. Altman, C. Wong
Po Foo, P. Ruiz, A. Amador, J. Da Silva, I. K. McNiece, and A. W. Heldman. Comparison of
allogeneic vs autologous bone marrow-derived mesenchymal stem cells delivered by transendo-
cardial injection in patients with ischemic cardiomyopathy: the POSEIDON randomized trial.
JAMA, 308(22):2369–2379, Dec 2012.

[65] K Hegarty, L O’Doherty, A Taft, P Chondros, S Brown, J Valpied, J Astbury, A Taket,
L Gold, G Feder, and J Gunn. Screening and counselling in the primary care setting for
women who have experienced intimate partner violence (WEAVE): a cluster randomised
controlled trial. Lancet, 382(9888):249–58, 2013.

[66] C Hellum, LG Johnsen, K Storheim, OP Nygaard, JI Brox, I Rossvoll, M Ro, L Sandvik,
and O Grundnes. Surgery with disc prosthesis versus rehabilitation in patients with low back
pain and degenerative disc: two year follow-up of randomised study. BMJ, 342:d2786, 2011.

[67] Lars P Hölzel, Zivile Ries, Levente Kriston, Jörg Dirmaier, Jördis M Zill, Christine Rummel-
Kluge, Wilhelm Niebling, Isaac Bermejo, and Martin Härter. Effects of culture-sensitive
adaptation of patient information material on usefulness in migrants: a multicentre, blinded
randomised controlled trial. BMJ open, 6(11):e012008, 2016.

[68] WC Hsu, TL Wang, YJ Lin, LF Hsieh, CM Tsai, and KH Huang. Addition of lidocaine
injection immediately before physiotherapy for frozen shoulder: a randomized controlled trial.
PLoS One, 10(2):e0118217, 2015.

27



[69] Peter J Huber and EM Ronchetti. Robust Statistics. Wiley, 2009.

[70] JC Huffman, CA Mastromauro, SR Beach, CM Celano, CM DuBois, BC Healy, L Suarez,
BL Rollman, and JL Januzzi. Collaborative care for depression and anxiety disorders in
patients with recent cardiac events: the Management of Sadness and Anxiety in Cardiology
(MOSAIC) randomized clinical trial. JAMA Intern Med, 174(6):927–35, 2014 Jun.

[71] CM Jenkinson, M Doherty, AJ Avery, A Read, MA Taylor, TH Sach, P Silcocks, and
KR Muir. Effects of dietary intervention and quadriceps strengthening exercises on pain and
function in overweight people with knee pain: randomised controlled trial. BMJ, 339:b3170,
2009.

[72] AA Khalafallah, AE Dennis, K Ogden, I Robertson, RH Charlton, JM Bellette, JL Shady,
N Blesingk, and M Ball. Three-year follow-up of a randomised clinical trial of intravenous
versus oral iron for anaemia in pregnancy. BMJ Open, 2(5), 2012.

[73] MN Khan, P Jais, J Cummings, L Di Biase, P Sanders, DO Martin, J Kautzner, S Hao,
S Themistoclakis, R Fanelli, D Potenza, R Massaro, O Wazni, R Schweikert, W Saliba,
P Wang, A Al-Ahmad, S Beheiry, P Santarelli, RC Starling, A Dello Russo, G Pelargonio,
J Brachmann, V Schibgilla, A Bonso, M Casella, A Raviele, M Haissaguerre, and A Natale.
Pulmonary-vein isolation for atrial fibrillation in patients with heart failure. N Engl J Med,
359(17):1778–85, 2008.

[74] TH Kim, KH Kim, JW Kang, M Lee, KW Kang, JE Kim, JH Kim, S Lee, MS Shin, SY Jung,
AR Kim, HJ Park, HJ Jung, HS Song, HJ Kim, JB Choi, KE Hong, and SM Choi. Moxi-
bustion treatment for knee osteoarthritis: a multi-centre, non-blinded, randomised controlled
trial on the effectiveness and safety of the moxibustion treatment versus usual care in knee
osteoarthritis patients. PLoS One, 9(7):e101973, 2014.

[75] A Kirkley, TB Birmingham, RB Litchfield, JR Giffin, KR Willits, CJ Wong, BG Feagan,
A Donner, SH Griffin, LM D’Ascanio, JE Pope, and PJ Fowler. A randomized trial of
arthroscopic surgery for osteoarthritis of the knee. N Engl J Med, 359(11):1097–107, 2008.

[76] DW Kitzman, P Brubaker, T Morgan, M Haykowsky, G Hundley, WE Kraus, J Eggebeen,
and BJ Nicklas. Effect of caloric restriction or aerobic exercise training on peak oxygen
consumption and quality of life in obese older patients with heart failure with preserved
ejection fraction: A randomized clinical trial. JAMA, 315(1):36–46, 2016 Jan 5.

[77] J Klevens, R Kee, W Trick, D Garcia, FR Angulo, R Jones, and LS Sadowski. Effect
of screening for partner violence on women’s quality of life: a randomized controlled trial.
JAMA, 308(7):681–9, 2012 Aug 15.

[78] MB Koek, E Buskens, H van Weelden, PH Steegmans, CA Bruijnzeel-Koomen, and V Sig-
urdsson. Home versus outpatient ultraviolet B phototherapy for mild to severe psoriasis:
pragmatic multicentre randomised controlled non-inferiority trial (PLUTO study). BMJ,
338:b1542, 2009.

[79] A Kogure, K Kotani, S Katada, H Takagi, M Kamikozuru, T Isaji, and S Hakata. A
randomized, single-blind, placebo-controlled study on the efficacy of the arthrokinematic
approach-hakata method in patients with chronic nonspecific low back pain. PLoS One,
10(12):e0144325, 2015.

28



[80] RL Kravitz, P Franks, MD Feldman, DJ Tancredi, CA Slee, RM Epstein, PR Duberstein,
RA Bell, M Jackson-Triche, DA Paterniti, C Cipri, AM Iosif, S Olson, S Kelly-Reif, A Hudnut,
S Dvorak, C Turner, and A Jerant. Patient engagement programs for recognition and initial
treatment of depression in primary care: a randomized trial. JAMA, 310(17):1818–28, 2013.

[81] K Kroenke, MJ Bair, TM Damush, J Wu, S Hoke, J Sutherland, and W Tu. Optimized
antidepressant therapy and pain self-management in primary care patients with depression
and musculoskeletal pain: a randomized controlled trial. JAMA, 301(20):2099–110, 2009.

[82] K. Kroenke, D. Theobald, J. Wu, K. Norton, G. Morrison, J. Carpenter, and W. Tu. Effect
of telecare management on pain and depression in patients with cancer: a randomized trial.
JAMA, 304(2):163–71, 2010.

[83] Saba M Lambert, Digafe T Alembo, Shimelis D Nigusse, Lawrence K Yamuah, Stephen L
Walker, and Diana NJ Lockwood. A randomized controlled double blind trial of ciclosporin
versus prednisolone in the management of leprosy patients with new type 1 reaction, in
ethiopia. PLoS Negl Trop Dis, 10(4):e0004502, 2016.

[84] C Lau, R Yu, and J Woo. Effects of a 12-week Hatha yoga intervention on metabolic risk
and quality of life in Hong Kong Chinese adults with and without metabolic syndrome. PLoS
One, 10(6):e0130731, 2015.

[85] NT Lautenschlager, KL Cox, L Flicker, JK Foster, FM van Bockxmeer, J Xiao, KR Greenop,
and OP Almeida. Effect of physical activity on cognitive function in older adults at risk for
Alzheimer disease: a randomized trial. JAMA, 300(9):1027–37, 2008.

[86] BA Lawton, SB Rose, CR Elley, AC Dowell, A Fenton, and SA Moyes. Exercise on prescrip-
tion for women aged 40-74 recruited through primary care: two year randomised controlled
trial. BMJ, 337:a2509, 2008.

[87] A LeBlanc, J Herrin, MD Williams, JW Inselman, ME Branda, ND Shah, EM Heim, SR Dick,
M Linzer, DH Boehm, KM Dall-Winther, MR Matthews, KJ Yost, KK Shepel, and VM Mon-
tori. Shared decision making for antidepressants in primary care: A cluster randomized trial.
JAMA Intern Med, 175(11):1761–70, 2015.

[88] Hong Lei, Nima Toosizadeh, Michael Schwenk, Scott Sherman, Stephan Karp, Esther Stern-
berg, and Bijan Najafi. A pilot clinical trial to objectively assess the efficacy of elec-
troacupuncture on gait in patients with parkinson’s disease using body worn sensors. PloS
one, 11(5):e0155613, 2016.

[89] Tianjing Li, Susan Hutfless, Daniel O Scharfstein, Michael J Daniels, Joseph W Hogan,
Roderick JA Little, Jason A Roy, Andrew H Law, and Kay Dickersin. Standards should be
applied in the prevention and handling of missing data for patient-centered outcomes research:
a systematic review and expert consensus. Journal of clinical epidemiology, 67(1):15–32, 2014.

[90] R Little, M Cohen, K Dickersin, S Emerson, J Farrar, C Frangakis, JW Hogan, G. Molen-
berghs, S. Murphy, J. Neaton, A Rotnitzky, DO Scharfstein, W Shih, J Siegel, and H Stern.
The Prevention and Treatment of Missing Data in Clinical Trials. The National Academies
Press, 2010.

29



[91] R. J. Little, R. D’Agostino, M. L. Cohen, K. Dickersin, S. S. Emerson, J. T. Farrar, C. Fran-
gakis, J. W. Hogan, G. Molenberghs, S. A. Murphy, J. D. Neaton, A. Rotnitzky, D. Scharf-
stein, W. J. Shih, J. P. Siegel, and H. Stern. The prevention and treatment of missing data
in clinical trials. N. Engl. J. Med., 367(14):1355–1360, Oct 2012.

[92] Roderick JA Little and Donald B Rubin. Statistical Analysis with Missing Data. John Wiley
& Sons, 2014.

[93] KH Ly, A Truschel, L Jarl, S Magnusson, T Windahl, R Johansson, P Carlbring, and
G Andersson. Behavioural activation versus mindfulness-based guided self-help treatment
administered through a smartphone application: a randomised controlled trial. BMJ Open,
4(1):e003440, 2014.

[94] G. Ma, A.B. Toxel, and D.F. Heitjan. An index of local sensitivity to nonignorable drop-out
in longitudinal modelling. Statistics in Medicine, 24:2129–2150, 2005.

[95] S MacPherson, H abd Richmond, M Bland, S Brealey, R Gabe, A Hopton, A Keding,
H Lansdown, S Perren, M Sculpher, E Spackman, D Torgerson, and I Watt. Acupunc-
ture and counselling for depression in primary care: a randomised controlled trial. PLoS
Med, 10(9):e1001518, 2013.

[96] K Mansikkamaki, J Raitanen, CH Nygard, E Tomas, R Rutanen, and R Luoto. Long-term
effect of physical activity on health-related quality of life among menopausal women: a 4-year
follow-up study to a randomised controlled trial. BMJ Open, 5(9):e008232, 2015.

[97] DB Mark, W Pan, NE Clapp-Channing, KJ Anstrom, JR Ross, RS Fox, GP Devlin, CE Mar-
tin, C Adlbrecht, PA Cowper, LD Ray, EA Cohen, GA Lamas, and JS Hochman. Quality of
life after late invasive therapy for occluded arteries. N Engl J Med, 360(8):774–83, 2009.

[98] M Marklund, B Carlberg, L Forsgren, T Olsson, H Stenlund, and KA Franklin. Oral appliance
therapy in patients with daytime sleepiness and snoring or mild to moderate sleep apnea: A
randomized clinical trial. JAMA Intern Med, 175(8):1278–85, 2015.

[99] Corby K Martin, Manju Bhapkar, Anastassios G Pittas, Carl F Pieper, Sai Krupa Das,
Donald A Williamson, Tammy Scott, Leanne M Redman, Richard Stein, Cheryl H Gilhooly,
et al. Effect of calorie restriction on mood, quality of life, sleep, and sexual function in
healthy nonobese adults: The calerie 2 randomized clinical trial. JAMA internal medicine,
176(6):743–752, 2016.

[100] CM McClellan, F Cramp, J Powell, and JR Benger. A randomised trial comparing the clinical
effectiveness of different emergency department healthcare professionals in soft tissue injury
management. BMJ Open, 2(6), 2012.

[101] CJ McDermott, PJ Shaw, CL Cooper, S Dixon, WO Baird, MJ Bradburn, P Fitzgerald,
C Maguire, SK Baxter, T Williams, SV Baudouin, D Karat, K Talbot, J Stradling, N May-
nard, M Turner, A Sarela, S Bianchi, R Ackroyd, SC Bourke, J Ealing, H Hamdalla, C Young,
A Bentley, S Galloway, RW Orrell, W Wedzicha, M Elliot, P Hughes, R Berrisford, CO Hane-
mann, I Imam, AK Simonds, L Taylor, R Leek, N Leigh, M Dewey, and A Radunovic. Safety
and efficacy of diaphragm pacing in patients with respiratory insufficiency due to amyotrophic
lateral sclerosis (DiPALS): A multicentre, open-label, randomised controlled trial. The Lancet
Neurology, 14(9):883–92, 2015.

30



[102] M. M. McDermott, P. Ades, J. M. Guralnik, A. Dyer, L. Ferrucci, K. Liu, M. Nelson, D. Lloyd-
Jones, L. Van Horn, D. Garside, M. Kibbe, K. Domanchuk, J. H. Stein, Y. Liao, H. Tao,
D. Green, W. H. Pearce, J. R. Schneider, D. McPherson, S. T. Laing, W. J. McCarthy,
A. Shroff, and M. H. Criqui. Treadmill exercise and resistance training in patients with pe-
ripheral arterial disease with and without intermittent claudication: a randomized controlled
trial. JAMA, 301(2):165–74, 2009.

[103] MM McDermott, K Liu, JM Guralnik, MH Criqui, B Spring, L Tian, K Domanchuk, L Fer-
rucci, D Lloyd-Jones, M Kibbe, H Tao, L Zhao, Y Liao, and WJ Rejeski. Home-based
walking exercise intervention in peripheral artery disease: a randomized clinical trial. JAMA,
310(1):57–65, 2013.

[104] M McFall, AJ Saxon, CA Malte, B Chow, S Bailey, DG Baker, JC Beckham, KD Board-
man, TP Carmody, AM Joseph, MW Smith, MC Shih, Y Lu, M Holodniy, and PW Lavori.
Integrating tobacco cessation into mental health care for posttraumatic stress disorder: a
randomized controlled trial. JAMA, 304(22):2485–93, 2010.

[105] A McMillan, DJ Bratton, R Faria, M Laskawiec-Szkonter, S Griffin, RJ Davies, AJ Nunn,
JR Stradling, RL Riha, and MJ Morrell. Continuous positive airway pressure in older people
with obstructive sleep apnoea syndrome (PREDICT): A 12-month, multicentre, randomised
trial. The Lancet Respiratory Medicine, 2(10):804–12, 2014.

[106] GE Mead, C Graham, P Dorman, SK Bruins, SC Lewis, MS Dennis, and PA Sandercock.
Fatigue after stroke: baseline predictors and influence on survival. analysis of data from uk
patients recruited in the international stroke trial. PLoS One, 6(3):e16988, 2011.

[107] Dafna Merom, Erin Mathieu, Ester Cerin, Rachael L Morton, Judy M Simpson, Chris Rissel,
Kaarin J Anstey, Catherine Sherrington, Stephen R Lord, and Robert G Cumming. Social
dancing and incidence of falls in older adults: a cluster randomised controlled trial. PLoS
Med, 13(8):e1002112, 2016.

[108] S Middleton, P McElduff, J Ward, JM Grimshaw, S Dale, C D’Este, P Drury, R Griffiths,
NW Cheung, C Quinn, M Evans, D Cadilhac, and C Levi. Implementation of evidence-based
treatment protocols to manage fever, hyperglycaemia, and swallowing dysfunction in acute
stroke (QASC): a cluster randomised controlled trial. Lancet, 378(9804):1699–706, 2011.

[109] T Miyagawa, H Kawamura, M Obuchi, A Ikesaki, A Ozaki, K Tokunaga, Y Inoue, and
M Honda. Effects of oral l-carnitine administration in narcolepsy patients: a randomized,
double-blind, cross-over and placebo-controlled trial. PLoS One, 8(1):e53707, 2013.

[110] D. C. Mohr, J. Ho, J. Duffecy, D. Reifler, L. Sokol, M. N. Burns, L. Jin, and J Siddique.
Effect of telephone-administered vs face-to-face cognitive behavioral therapy on adherence to
therapy and depression outcomes among primary care patients: a randomized trial. JAMA,
307(21):2278–85, 2012.

[111] DC Mohr, J Duffecy, J Ho, M Kwasny, X Cai, MN Burns, and M Begale. A randomized
controlled trial evaluating a manualized telecoaching protocol for improving adherence to a
web-based intervention for the treatment of depression. PLoS One, 8(8):e70086, 2013.

[112] Xavier Montalban, Stephen L Hauser, Ludwig Kappos, Douglas L Arnold, Amit Bar-Or,
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Appendix A: Influence Function

Let
π∗(y0, y1, y2;α) = [(1 + exp{l∗1(y0;α) + αr(y1)})(1 + exp{l∗2(y1;α) + αr(y2)})]−1

w∗1(y0;α) = E∗ [exp{αr(Y1)} | R1 = 1, Y0 = y0] ,

w∗2(y1;α) = E∗ [exp{αr(Y2)} | R2 = 1, Y1 = y1] ,

g∗1(y0, y1;α) = {1−H∗1 (y0)}w∗1(y0;α) + exp{αr(y1)}H∗1 (y0).

g∗2(y1, y2;α) = {1−H∗2 (y1)}w∗2(y1;α) + exp{αr(y2)}H∗2 (y1).

Using semiparametric theory (Tsiatis, 2006), the efficient influence function in model M can
be computed as:

ψP ∗(O;α) := a∗0(Y0;α) +R1b
∗
1(Y0, Y1;α) +R2b

∗
2(Y1, Y2;α) +

{1−R1 −H∗1 (Y0)}c∗1(Y0;α) +R1{1−R2 −H∗2 (Y1)}c∗2(Y1;α)

where

a∗0(Y0) = E∗
[

R2Y2
π∗(Y0, Y1, Y2;α)

Y0

]
− µ(P ∗;α)

b∗1(Y0, Y1;α) = E∗
[

R2Y2
π∗(Y0, Y1, Y2;α)

R1 = 1, Y1, Y0

]
− E∗

[
R2Y2

π∗(Y0, Y1, Y2;α)
R1 = 1, Y0

]
+ E∗

[
R2Y2

π∗(Y0, Y1, Y2;α)

[
exp{αr(Y1)}
g∗1(Y0, Y1;α)

]
R1 = 1, Y0

]
H∗1 (Y0)

{
1− exp{αr(Y1)}

w∗1(Y0;α)

}
b∗2(Y1, Y2;α) = E∗

[
R2Y2

π∗(Y0, Y1, Y2;α)
R2 = 1, Y2, Y1

]
− E∗

[
R2Y2

π∗(Y0, Y1, Y2;α)
R2 = 1, Y1

]
+ E∗

[
R2Y2

π∗(Y0, Y1, Y2;α)

[
exp{αr(Y2)}
g∗2(Y1, Y2;α)

]
R2 = 1, Y1

]
H∗2 (Y1)

{
1− exp{αr(Y2)}

w∗2(Y1;α)

}
c∗1(Y0) = E∗

[
R2Y2

π∗(Y0, Y1, Y2;α)

[
exp{αr(Y1)}
g∗1(Y0, Y1;α)

]
Y0

]
− E∗

[
R2Y2

π∗(Y0, Y1, Y2;α)

[
1

g∗1(Y0, Y1;α)

]
Y0

]
w∗1(Y0;α)

c∗2(Y1) = E∗
[

R2Y2
π∗(Y0, Y1, Y2;α)

[
exp{αr(Y2)}
g∗2(Y1, Y2;α)

]
R1 = 1, Y1

]
− E∗

[
R2Y2

π∗(Y0, Y1, Y2;α)

[
1

g∗2(Y1, Y2;α)

]
R1 = 1, Y1

]
w∗2(Y1;α)
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