Inference in Randomized Trials with Death and Missingness

Chenguang Wang
Daniel O. Scharfstein
Ying Yan

FDA-Industry Workshop 2014

Outline

(9) Motivation
(2) Method
(3) Software
4. Analysis results
(5) Summary

Motivating example

- Randomized, double-blind, placebo-controlled phase III study
- Intent-to-treat population: advanced non-small cell lung cancer subjects
- Functional outcomes scheduled to be measured at baseline, 6 weeks and 12 weeks

Death and missingness

	Arm A	Arm B
	$n=157$	$n=322$
Died Prior to Wk 12	15%	17%
Survivors with complete data	59%	57%
Survivors missing only Wk 6	2%	5%
Survivors missing only Wk 12	11%	10%
Survivors missing both Wk 6 and 12	13%	11%

overall: 16% deaths; 30% survivors with missing data

Data truncated by death

Common analysis methods:

- Evaluate treatment effects conditional on survival
- Joint modeling survival and functional outcome
- Evaluate causal treatment effects for principal stratum
- Composite endpoint combining survival and functional outcomes

To propose a composite outcome approach that handles missing clinical evaluation data among subjects alive at the assessment times.

Motivation

(2) Method
(4) Analysis results
(5) Summary

General setting

- Consider a two arm randomized study with $T=0,1$
- Outcomes Y_{0}, \ldots, Y_{K} collected at t_{0}, \ldots, t_{K}, respectively
- Functional endpoint defined by $Z=f\left(Y_{0}, \ldots, Y_{K}\right)$
- example: $Z=Y_{K}$
- example: $Z=Y_{K}-Y_{0}$
- motivating study: $Z=\left(Y_{2}+Y_{1}\right) / 2-Y_{0}$
- Survival time denoted by L
- Baseline covariates denoted by X
- Life status at t_{K} denoted by $\delta=I\left(L>t_{K}\right)$
- Composite endpoint: $C(L, \delta Z)$

Ranking

- Assume that higher values of Z denote better outcomes
- Assume no missing data at this moment
- Consider two subjects i and j with composite endpoint C_{i} and C_{j}, respectively
- $C_{i}>C_{j}$ (i better than j) only if
- $\delta_{i}=\delta_{j}=1$ and $Z_{i}>Z_{j}$, or
- $\delta_{i}=\delta_{j}=0$ and $L_{i}>L_{j}$, or
- $\delta_{i}>\delta_{j}$
- Ranking may incorporate clinical meaningful differences in Z and L

Hypothesis testing

- Consider observing $C_{i, 0}$ from subject i with $T=0, C_{j, 1}$ from subject j with $T=1$
- Parameter of interest: $\theta=P\left(C_{i, 0}>C_{j, 1}\right)-P\left(C_{i, 0}<C_{j, 1}\right)$
- $\theta=0$ if no treatment effect
- Hypothesis: $H_{0}: \theta=0$ vs. $H_{0}: \theta \neq 0$

Hypothesis testing

- Estimate θ by

$$
\widehat{\theta}=\frac{1}{n_{0} n_{1}} \sum_{i: T_{i}=0} \sum_{j: T_{j}=1}\left\{\mathrm{I}\left(C_{i}<C_{j}\right)-\mathrm{I}\left(C_{i}>C_{j}\right)\right\}
$$

- Variance of $\widehat{\theta}$ available in closed form
- Consider the Wald test

Treatment effect size

- θ quantifies treatment effect size
- Recommend to compare quantiles (e.g. median) of $C(L, \delta Z)$ from each arm

Missingness

- For survivors $(\delta=1)$
- Denote τ_{k} to be the missingness indicator of Y_{k}
- Denote $S=\left(\tau_{1}, \ldots, \tau_{K}\right)$ to be the missing pattern
- Intermittent missingness

Assumptions

- Denote $s_{c}=\left(\tau_{1}=\ldots=\tau_{K}=1\right)$, missing pattern for "completers"
- Let $Y_{\text {obs }}$ and $Y_{\text {mis }}$ denote the observed and missing outcomes
- Benchmark assumptions
- CCMV: Complete case missing-variable restrictions
- For all s,

$$
f\left(Y_{\text {mis }} \mid Y_{\text {obs }}, X, T, S=s\right)=f\left(Y_{\text {mis }} \mid Y_{\text {obs }}, X, T, S=s_{c}\right)
$$

Step 1: Model completers

- Denote $\left(Y_{1}, \ldots, Y_{k}\right)$ by \bar{Y}_{k}
- Factorize the joint distribution of \bar{Y}_{K} as

$$
f\left(\bar{Y}_{K} \mid Y_{0}, X, T, S=s_{c}\right)
$$

$$
=\prod_{k=1}^{K} f\left(Y_{k} \mid \bar{Y}_{k-1}, Y_{0}, X, T, S=s_{c}\right)
$$

- Specify

$$
\begin{aligned}
& Y_{k} \mid \bar{Y}_{k-1}, Y_{0}, X, T, S=s_{C} \\
& \quad=\alpha_{0, k}^{T}+\alpha_{1, k}^{T} \bar{Y}_{k-1}+\alpha_{2, k}^{T} Y_{0}+\alpha_{3, k}^{T} X+\epsilon
\end{aligned}
$$

- Allow ϵ to be non-parametrically distributed

Step 2: Impute missing data

- Under normality assumptions, $f\left(Y_{\text {mis }} \mid Y_{\text {obs }}, X, T, S=s_{c}\right)$ available in closed form
- Under non-parametric distribution assumptions, $f\left(Y_{\text {mis }} \mid Y_{\text {obs }}, X, T, S=s_{c}\right)$ can be numerically evaluated

Example: $K=2$

S	τ_{1}	τ_{2}
s_{1}	0	0
s_{2}	0	1
s_{3}	1	0
s_{4}	1	1

Models for completers

$$
\begin{aligned}
& f\left(Y_{1} \mid Y_{0}, X, T, S=s_{4}\right) \\
& f\left(Y_{2} \mid Y_{1}, Y_{0}, X, T, S=s_{4}\right)
\end{aligned}
$$

Imputation

$$
\begin{aligned}
& f\left(Y_{2}, Y_{1} \mid Y_{0}, X, T, S=s_{1}\right)=f\left(Y_{2}, Y_{1} \mid Y_{0}, X, T, S=s_{4}\right) \\
& f\left(Y_{1} \mid Y_{2}, Y_{0}, X, T, S=s_{2}\right)=f\left(Y_{1} \mid Y_{2}, Y_{0}, X, T, S=s_{4}\right) \\
& f\left(Y_{2} \mid Y_{1}, Y_{0}, X, T, S=s_{3}\right)=f\left(Y_{2} \mid Y_{1}, Y_{0}, X, T, S=s_{4}\right)
\end{aligned}
$$

Example: $K=2$

- Consider a subject with Y_{0}, X, T, and $S=s_{2}$ (only Y_{2} observed)
- Need to impute Y_{1} from $f\left(Y_{1} \mid Y_{2}, Y_{0}, X, T, S=s_{2}\right)$
- By CCMV, $f\left(Y_{1} \mid Y_{2}, Y_{0}, X, T, S=s_{2}\right)=f\left(Y_{1} \mid Y_{2}, Y_{0}, X, T, S=s_{4}\right)$
- $f\left(Y_{1} \mid Y_{2}, Y_{0}, X, T, S=s_{4}\right)$ not available under
non-parametric error distribution assumption

Example: $K=2$

To sample from $f\left(Y_{1} \mid Y_{2}\right)$ (omit the condition on $Y_{0}, X, T, S=s_{4}$ for compactness), note

$$
f\left(Y_{1} \mid Y_{2}\right) \propto f\left(Y_{2} \mid Y_{1}\right) f\left(Y_{1}\right)
$$

- $f\left(Y_{2} \mid Y_{1}\right)$ bounded by M obtained by kernel density estimation
- rejection sampling using $f\left(Y_{1}\right)$ as an instrumental distribution

Sensitivity analysis

- Introduce sensitivity parameters Δ in a parsimonious way
- Alternative assumptions: for all s,

$$
\begin{aligned}
f\left(Y_{\text {mis }} \mid Y_{\text {obs }}\right. & , X, \\
& \propto, S=s) \\
& \propto \exp \{\Delta Z\} f\left(Y_{\text {mis }} \mid Y_{\text {obs }}, X, T, S=s_{c}\right)
\end{aligned}
$$

Example

- $K=2$
- $Z=\left(Y_{2}+Y_{1}\right) / 2-Y_{0}$
- Given Δ, imputation assumption:

$$
\begin{aligned}
& f\left(Y_{2}, Y_{1} \mid Y_{0}, X, T, S=s_{1}\right) \propto e^{\Delta \frac{Y_{2}}{2}} e^{\Delta \frac{Y_{1}}{2}} f\left(Y_{2}, Y_{1} \mid Y_{0}, X, T, S=s_{4}\right) \\
& f\left(Y_{1} \mid Y_{2}, Y_{0}, X, T, S=s_{2}\right) \propto e^{\Delta \frac{Y_{1}}{2}} f\left(Y_{1} \mid Y_{2}, Y_{0}, X, T, S=s_{4}\right) \\
& f\left(Y_{2} \mid Y_{1}, Y_{0}, X, T, S=s_{3}\right) \propto e^{\Delta \frac{Y_{2}}{2}} f\left(Y_{2} \mid Y_{1}, Y_{0}, X, T, S=s_{4}\right)
\end{aligned}
$$

Exponential tilting model

Consider an exponential tilting model

$$
f_{Y^{\prime}}(y) \propto e^{\Delta y} f_{Y}(y)
$$

- Under normality
- $Y \sim N\left(\mu, \sigma^{2}\right)$
- $Y^{\prime} \sim N\left(\mu+\Delta \sigma^{2}, \sigma^{2}\right)$
- Under non-parametric assumption
- $\widehat{f}_{Y}(y)=\sum_{i=1}^{n} \frac{1}{n} K_{n}\left(y-Y_{i}\right)$
- $\widehat{f}_{Y^{\prime}}(y)=\sum_{i=1}^{n} \frac{e^{\Delta Y_{i}}}{\sum_{j=1}^{n} e^{\Delta Y_{j}}} K_{h}\left(y-Y_{i}\right)$
(1) Motivation
(2) Method
(3) Software

4 Analysis results

(5) Summary

Web application

- Currently available at
http://ebayes.synology.me/shiny/composite/
- Major components
- upload and review data
- specify endpoints and imputation model
- basic graphics
- specify ranking rule
- generate imputed dataset
- bootstrap analysis

Motivation

(2) Method
(3) Software
4. Analysis results
(5) Summary

Analysis

- Covariates

Covariates	Levels
ECOG	$0:\{0,1\}, 1:\{2\}$
AGE	$0: \leq 65,1:>65$
SEX	$0: M, 1: F$
BMI	$0: \leq 18.5,1:>18.5$
WEIGHT LOSS	$0: \leq 10 \%, 1:>10 \%$
YO	Continuous

- 500 bootstrap samples, 15 imputed datasets for each bootstrap sample
- Sensitivity parameters $\Delta=\{-0.5,-0.4, \ldots, 0.5\}$

Imputed data

Arm 0

Arm 1

Hypothesis testing

Normality	$\widehat{\theta}(95 \% \mathrm{CI})$	p -value
Without Normality	$0.28(0.17,0.38)$	<0.0001
With Normality	$0.24(0.13,0.35)$	<0.0001

Median

Normality	Arm 0 (95\%CI)	Arm 1 (95\%CI)
Without Normality	$-0.44(-0.88,0.20)$	$1.10(0.76,1.42)$
With Normality	$-0.49(-1.09,0.22)$	$1.03(0.62,1.36)$

Sensitivity analysis

Without normality

With normality

Motivation

(2) Method
(3) Software
(4) Analysis results
(5) Summary

Summary

- Propose a composite endpoint approach for evaluating treatment effects in randomized clinical trials with death and missingness
- Apply complete case missing-variable restrictions (CCMV) for handling missing data in survivors
- Exponential tilting model for sensitivity analysis
- Online web application developed

THE END

