Inference in Randomized Trials with Death and Missingness

CHENGUANG WANG DANIEL O. SCHARFSTEIN YING YAN

FDA-Industry Workshop 2014

<u>Outline</u>

Motivating example

- Randomized, double-blind, placebo-controlled phase III study
- Intent-to-treat population: advanced non-small cell lung cancer subjects
- Functional outcomes scheduled to be measured at baseline, 6 weeks and 12 weeks

Death and missingness

	Arm A	Arm B
	<i>n</i> = 157	<i>n</i> = 322
Died Prior to Wk 12	15%	17%
Survivors with complete data	59%	57%
Survivors missing only Wk 6	2%	5%
Survivors missing only Wk 12	11%	10%
Survivors missing both Wk 6 and 12	13%	11%

overall: 16% deaths; 30% survivors with missing data

Common analysis methods:

- Evaluate treatment effects conditional on survival
- Joint modeling survival and functional outcome
- Evaluate causal treatment effects for principal stratum
- Composite endpoint combining survival and functional outcomes

To propose a composite outcome approach that handles missing clinical evaluation data among subjects alive at the assessment times.

Outline

General setting

- Consider a two arm randomized study with T = 0, 1
- Outcomes Y_0, \ldots, Y_K collected at t_0, \ldots, t_K , respectively
- Functional endpoint defined by $Z = f(Y_0, \ldots, Y_K)$
 - example: $Z = Y_K$
 - example: $Z = Y_K Y_0$
 - motivating study: $Z = (Y_2 + Y_1)/2 Y_0$
- Survival time denoted by L
- Baseline covariates denoted by X
- Life status at $t_{\mathcal{K}}$ denoted by $\delta = I(L > t_{\mathcal{K}})$
- Composite endpoint: $C(L, \delta Z)$

Ranking

- Assume that higher values of Z denote better outcomes
- Assume no missing data at this moment
- Consider two subjects *i* and *j* with composite endpoint *C_i* and *C_j*, respectively
- $C_i > C_j$ (*i* better than *j*) only if

•
$$\delta_i = \delta_j = 1$$
 and $Z_i > Z_j$, or

•
$$\delta_i = \delta_j = 0$$
 and $L_i > L_j$, or

- $\delta_i > \delta_j$
- Ranking may incorporate clinical meaningful differences in Z and L

Hypothesis testing

- Consider observing $C_{i,0}$ from subject *i* with T = 0, $C_{j,1}$ from subject *j* with T = 1
- Parameter of interest: $\theta = P(C_{i,0} > C_{i,1}) P(C_{i,0} < C_{i,1})$
- $\theta = 0$ if no treatment effect
- Hypothesis: $H_0: \theta = 0$ vs. $H_0: \theta \neq 0$

Hypothesis testing

• Estimate θ by

$$\widehat{\theta} = \frac{1}{n_0 n_1} \sum_{i: T_i = 0} \sum_{j: T_j = 1} \{ \mathsf{I}(C_i < C_j) - \mathsf{I}(C_i > C_j) \}$$

- Variance of $\widehat{\theta}$ available in closed form
- Consider the Wald test

Treatment effect size

- θ quantifies treatment effect size
- Recommend to compare quantiles (e.g. median) of C(L, δZ) from each arm

- For survivors ($\delta = 1$)
 - Denote *τ_k* to be the missingness indicator of *Y_k*
 - Denote $S = (\tau_1, \ldots, \tau_K)$ to be the missing pattern
- Intermittent missingness

Assumptions

- Denote s_c = (τ₁ = ... = τ_K = 1), missing pattern for "completers"
- Let Y_{obs} and Y_{mis} denote the observed and missing outcomes
- Benchmark assumptions
 - CCMV: Complete case missing-variable restrictions
 - For all s,

 $f(Y_{\text{mis}}|Y_{\text{obs}}, X, T, S = s) = f(Y_{\text{mis}}|Y_{\text{obs}}, X, T, S = s_c)$

Step 1: Model completers

• Denote (Y_1, \ldots, Y_k) by \overline{Y}_k

• Factorize the joint distribution of $\overline{Y}_{\mathcal{K}}$ as

$$f(\overline{Y}_{K}|Y_{0}, X, T, S = s_{c})$$
$$= \prod_{k=1}^{K} f(Y_{k}|\overline{Y}_{k-1}, Y_{0}, X, T, S = s_{c})$$

Specify

$$\begin{aligned} Y_k | \overline{Y}_{k-1}, Y_0, X, T, S &= s_c \\ &= \alpha_{0,k}^T + \alpha_{1,k}^T \overline{Y}_{k-1} + \alpha_{2,k}^T Y_0 + \alpha_{3,k}^T X + \epsilon. \end{aligned}$$

• Allow ϵ to be non-parametrically distributed

Step 2: Impute missing data

- Under normality assumptions, f(Y_{mis}|Y_{obs}, X, T, S = s_c) available in closed form
- Under non-parametric distribution assumptions, $f(Y_{mis}|Y_{obs}, X, T, S = s_c)$ can be numerically evaluated

Example: K = 2

Models for completers

 $f(Y_1|Y_0, X, T, S = s_4)$ $f(Y_2|Y_1, Y_0, X, T, S = s_4)$

Imputation

 $f(Y_2, Y_1 | Y_0, X, T, S = s_1) = f(Y_2, Y_1 | Y_0, X, T, S = s_4)$ $f(Y_1 | Y_2, Y_0, X, T, S = s_2) = f(Y_1 | Y_2, Y_0, X, T, S = s_4)$ $f(Y_2 | Y_1, Y_0, X, T, S = s_3) = f(Y_2 | Y_1, Y_0, X, T, S = s_4)$

- Consider a subject with Y₀, X, T, and S = s₂ (only Y₂ observed)
- Need to impute Y_1 from $f(Y_1|Y_2, Y_0, X, T, S = s_2)$
- By CCMV, $f(Y_1|Y_2, Y_0, X, T, S = s_2) = f(Y_1|Y_2, Y_0, X, T, S = s_4)$
- f(Y₁|Y₂, Y₀, X, T, S = s₄) not available under non-parametric error distribution assumption

To sample from $f(Y_1|Y_2)$ (omit the condition on $Y_0, X, T, S = s_4$ for compactness), note

$f(Y_1|Y_2) \propto f(Y_2|Y_1)f(Y_1)$

- *f*(*Y*₂|*Y*₁) bounded by *M* obtained by kernel density estimation
- rejection sampling using f(Y₁) as an instrumental distribution

- Introduce sensitivity parameters Δ in a parsimonious way
- Alternative assumptions: for all s,

 $f(Y_{\text{mis}}|Y_{\text{obs}}, X, T, S = s)$ $\propto \exp\{\Delta Z\}f(Y_{\text{mis}}|Y_{\text{obs}}, X, T, S = s_c)$

Example

• *K* = 2

•
$$Z = (Y_2 + Y_1)/2 - Y_0$$

Given Δ, imputation assumption:

 $\begin{aligned} &f(Y_2, Y_1 | Y_0, X, T, S = s_1) \propto e^{\Delta \frac{Y_2}{2}} e^{\Delta \frac{Y_1}{2}} f(Y_2, Y_1 | Y_0, X, T, S = s_4) \\ &f(Y_1 | Y_2, Y_0, X, T, S = s_2) \propto e^{\Delta \frac{Y_1}{2}} f(Y_1 | Y_2, Y_0, X, T, S = s_4) \\ &f(Y_2 | Y_1, Y_0, X, T, S = s_3) \propto e^{\Delta \frac{Y_2}{2}} f(Y_2 | Y_1, Y_0, X, T, S = s_4) \end{aligned}$

Exponential tilting model

Consider an exponential tilting model

 $f_{Y'}(y) \propto e^{\Delta y} f_Y(y)$

Under normality

• $Y \sim N(\mu, \sigma^2)$ • $Y' \sim N(\mu + \Delta \sigma^2, \sigma^2)$

Under non-parametric assumption

•
$$\hat{f}_{Y}(y) = \sum_{i=1}^{n} \frac{1}{n} K_{h}(y - Y_{i})$$

• $\hat{f}_{Y'}(y) = \sum_{i=1}^{n} \frac{e^{\Delta Y_{i}}}{\sum_{j=1}^{n} e^{\Delta Y_{j}}} K_{h}(y - Y_{i})$

Outline

5 Summary

Web application

Currently available at

http://ebayes.synology.me/shiny/composite/

- Major components
 - upload and review data
 - specify endpoints and imputation model
 - basic graphics
 - specify ranking rule
 - generate imputed dataset
 - bootstrap analysis

<u>Outline</u>

5 Summary

Analysis

Covariates

Covariates	Levels
ECOG	0:{0,1}, 1:{2}
AGE	0:≤ 65, 1:> 65
SEX	0:M, 1:F
BMI	0:≤ 18.5, 1:> 18.5
WEIGHT LOSS	0:≤ 10%, 1:> 10%
Y0	Continuous

- 500 bootstrap samples, 15 imputed datasets for each bootstrap sample
- Sensitivity parameters $\Delta = \{-0.5, -0.4, \dots, 0.5\}$

Imputed data

Analysis results

Hypothesis testing

Normality	$\widehat{ heta}(95\% CI)$	p-value
Without Normality	0.28(0.17, 0.38)	< 0.0001
With Normality	0.24(0.13, 0.35)	< 0.0001

Median

Normality	Arm 0 (95% <i>CI</i>)	Arm 1 (95% <i>CI</i>)
Without Normality	-0.44(-0.88, 0.20)	1.10(0.76, 1.42)
With Normality	-0.49(-1.09, 0.22)	1.03(0.62, 1.36)

Sensitivity analysis

Without normality

With normality

Outline

Summary

- Propose a composite endpoint approach for evaluating treatment effects in randomized clinical trials with death and missingness
- Apply complete case missing-variable restrictions (CCMV) for handling missing data in survivors
- Exponential tilting model for sensitivity analysis
- Online web application developed

THE END