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0.1 Introduction

In many randomized, controlled clinical trials, the primary endpoint is often
time from randomization until the occurrence of an event of interest (e.g.,
death, relapse). The primary endpoint is commonly referred to as time to
event, survival time, or failure time. In such trials, the major focus is on draw-
ing inference about the distribution of time to event for competing treatments.

In most clinical trials, the time to event may not be observed as each
subject is only followed over a finite time horizon and the event of the interest
has not occurred before the end of that horizon. The follow-up time can vary
from patient to patient. This variation can be due to staggered entry into the
clinical trial, loss to follow-up or premature discontinuation of participation in
the trial. Those subjects who do not have observed failure times are referred
to as right censored. For such subjects, partial information is available about
the time to event. Specifically, it is known that the failure time occurs after
the follow-up time. Right censoring led to a whole new area of statistics called
Survival Analysis.
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0.2 ACTG 320

ACTG 320 was a randomized trial designed to evaluate whether indinavir
sulfate is effective in treating patients with advanced HIV disease (i.e., CD4
counts less than 200) [24]. Patients were randomized to receive open-label
AZT and 3TC with or without indinavir sulfate for at least 48 weeks. Ran-
domization was stratified according to CD4 count measured at the time of
screening: greater than 50 versus less than or equal to 50. Eleven hundred and
fifty-six patients were randomized between January 29, 1996 and January 27,
1997. Patients who developed intolerance to AZT or had progressive disease
after 24 weeks on study were allowed to substitute d4T for AZT. Patients
were scheduled to be followed at weeks 4, 8, 16, 24, 32, 40, and 48 and every
8 weeks thereafter up to week 96. The primary end point was the time from
randomization to the development of the AIDS or death.

Figure 1(a) presents a schematic representation of data for a random sam-
ple of 45 patients from ACTG 320. Each line represents data for an individual
patient. The line starts at the calendar time of randomization. The line ends
at the calendar time of end of follow-up. The symbol at the end of the line
denotes the patient status on that calendar date. If it is an x, then the pa-
tient either developed AIDS or died at that time point. For these patients,
the length of the line represents the failure time. If the symbol at the end of
the line is a ◦, then follow-up has ended at that calendar time without the
occurrence of AIDS or death. For these patients, the occurrence of the event of
interest is known to occur after the last date of follow-up and the failure time
is larger than the length of the line. Figure 1(b) presents the same data but
on a study time scale (in days), i.e., time zero is the date of randomization.
For the moment, ignore the treatment stop symbol on these figures; we will
discuss the use of these data in Section 0.8.

0.3 Notation

Let T denote the time to event. Let F (t) = P (T ≤ t) and S(t) = P (T > t)
be the cumulative distribution function and survivor functions of the random
variable T . We assume that F (·) can possibly have a countable number of
jumps at finite times 0 ≤ u1 < u2 < . . .; it is right continuous and right
differentiable between the jumps. Define u0 = 0 and τ = supj uj . Let dF (t) =
F ′(t)dt if t is a continuity point of F (·) and dF (t) = F (t) − F (t−) if t is a
jump point of F (·), where F ′(t) is the right derivative of F (·) at t 1 .

1F ′(t) = limdt→0+
F (t+dt)−F (t)

dt
= limdt→0+

P [t≤T≤t+dt]
dt
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FIGURE 1
ACTG 320: Schematic representation of data for a random sample of 45 pa-
tients. (a) Calendar time scale; (b) Study time scale.
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0.3.1 Hazard

The (net) hazard is a useful way of characterizing the distribution of T as it
describes the changing risk of failure over time among those who remain at
risk. Let

dΛ(t) =
dF (t)

S(t−)
,

where Λ(t) is the integrated or cumulative hazard function. When t is a con-
tinuity point of F (·), dΛ(t) = λ(t)dt, where

λ(t) =
F ′(t)

S(t−)
= lim
dt→0+

P [t ≤ T ≤ t+ dt | T ≥ t]
dt

;

and when t is a jump point of F (·), dΛ(t) = P [T = t|T ≥ t]. Notice that when
t is a jump point of F (·), dΛ(t) is the conditional probability of experiencing
an event at time t given it occurs at or after t. If t is a continuity point of
F (·), dΛ(t) is approximately equal, for small dt, to the conditional probability
of experiencing an event in the interval [t, t + dt] given it occurs at or after
t. The function λ(t) is called the hazard rate, which is the instantaneous risk
of an event at time t given it occurs at or after t. The hazard rate is NOT a
probability.

The survival function can be written in terms of the hazard as follows:

S(t) =
∏
uj≤t

{1−dΛ(uj)}×exp

−∑
j≥1

∫ uj

uj−1

I(s ≤ t)dΛ(s)−
∫ ∞
τ

I(s ≤ t)dΛ(s)

 .

(0.1)

0.3.2 Censoring

Let C denote the follow-up time defined in the hypothetical world in which the
time to event does not pre-empt its observation (e.g., time from randomization
until database lock). We consider the observed outcome data for an individual
as (X,∆), where X = min(T,C) and ∆ = I(T ≤ C). If ∆ = 1, then the time
to event is observed (i.e., T = X). If ∆ = 0, then the time to event is known
to occur after X (i.e., T > X) .

The distribution of the observed data for an individual can be characterized
by the following quantities: SX(t) = P [X > t] and F †(t) = P [X ≤ t,∆ = 1].
The latter quantity is referred to as the sub-distribution for failure. Notice
that P [∆ = 1] = F †(∞) and P [X ≤ t,∆ = 0] = 1 − SX(t) − F †(t). Another
characteristic of the distribution of the observed data is the cause-specific or
observed hazard for failure defined as:

dΛ†(t) =
dF †(t)

SX(t−)
.
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When t is a continuity point of F †(·), dΛ†(t) = λ†(t)dt, where

λ†(t) = lim
dt→0+

P [t ≤ X ≤ t+ dt,∆ = 1 | X ≥ t]
dt

;

and when t is a jump point of F †(·), dΛ†(t) = P [X = t,∆ = 1|X ≥ t]. Notice
that when t is a jump point of F †(·), dΛ†(t) is the conditional probability of
observing a failure event at time t given at risk for observing failure at time t.
If t is a continuity point of F †(·), dΛ†(t) is approximately equal, for small dt,
to the conditional probability of observing a failure in the interval [t, t + dt]
given at risk for observing failure at time t.

0.4 Estimation of Survival Distribution

Assumptions are required in order to draw inference about the marginal dis-
tribution of T based on a random sample of n independent patients (below,
subscript i will denote data for the ith patient). It is typically assumed that
censoring is non-informative. Mathematically, non-informative censoring cor-
responds to assuming, for all t,

dΛ(t) = dΛ†(t), (0.2)

i.e., the net hazard of failure is equal to the cause-specific hazard of failure. If T
and C are independent (i.e., independent censoring), then the non-informative
assumption will hold. Unless there are secular trends in enrollment, censor-
ing arising due to study termination should, in principle, be non-informative.
Censoring due to premature drop-out, competing risks or treatment termina-
tion may be informative. We will discuss how to address this issue in Section
0.8. The utility of non-informative censoring is that it allows identification of
S(·) since dΛ†(·) depends on the distribution of the observed data and S(·)
can be computed from dΛ(·).

We can estimate F †(t) by F̂ †(t) = N(t)/n and SX(t−) by ŜX(t−) =
Y (t)/n, where N(t) =

∑n
i=1 I(Xi ≤ t,∆i = 1) is the called the counting

process for failure and Y (t) =
∑n
i=1 I(Xi ≥ t) is called the “at-risk” process.

Notice that N(t) is a step function with jumps at the observed failure times
(say, t1, . . . , tk); the jump at a failure time tj is dN(tj) = N(tj)−N(tj−). We
estimate dΛ(t), under non-informative censoring by

dΛ̂(t) =
dF̂ †(t)

ŜX(t−)
=
dN(t)

Y (t)
.

This estimator only takes positive values at the observed failure times; it is
zero at all other times. Plugging this estimator for dΛ(t) into the right hand
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side of (0.1), we obtain the Kaplan-Meier estimator [31]:

Ŝ(t) =
∏
tj≤t

{
1− dF̂ †(tj)

ŜX(tj−)

}
=
∏
tj≤t

{
1− dN(tj)

Y (tj)

}
.

In Figures 2(a)- 2(d), we display, for ACTG 320, the treatment-specific esti-
mators of F †(t), SX(t−), Λ(t) and S(t), respectively.

The estimated variance of Ŝ(t) is given by Greenwood’s formula [23]:

V̂ ar[Ŝ(t)] = Ŝ(t)2
∏
tj≤t

{
dN(tj)

Y (tj)(Y (tj)−N(tj))

}
.

This can be used to form a (1−α)% point-wise confidence interval for S(t). To
deal with the fact that S(t) is bounded between 0 and 1, it is recommended
that one develop a confidence interval for log(− log{S(t)}) and then back-
transform to a confidence interval for S(t). Specifically, a confidence interval
for log(− log{S(t)}) is of the form

log(− log{Ŝ(t)})± zα/2

√
V̂ ar[Ŝ(t)]

(Ŝ(t) log{Ŝ(t)})2
,

where zx is the 1− x quantile of the standard normal distribution.

0.5 Hypothesis Testing

Suppose we are interested in comparing the survival curves of two random-
ized treatment groups. We assume non-informative censoring in both treat-
ment groups. Let S(0)(t) (Λ(0)(t)) and S(1)(t) (Λ(1)(t)) denote the survival
(cumulative hazard) functions for treatment groups 0 and 1, respectively. We
wish to test the null hypothesis that S(0)(t) = S(1)(t) for all t (or, equiva-
lently Λ(0)(t) = Λ(1)(t) for all t). Let N (0)(t) (Y (0)(t)) and N (1)(t) (Y (0)(t))
denote the counting process for failure (at-risk process) in groups 0 and 1,
respectively. Let N(t) = N (0)(t) + N (1)(t) and Y (t) = Y (0)(t) + Y (1)(t). Let
t1, . . . , tk be the observed failure times for both groups combined.

Consider the integrated weighted difference between the hazard functions,
defined as

β(w) =

∫
w(t){dΛ(1)(t)− dΛ(0)(t)},

where w(t) is a non-negative weight function. Under the null hypothesis, β(w)
will be zero. If dΛ(1)(t) > dΛ(0)(t) for all t, β(w) > 0 and if dΛ(1)(t) < dΛ(0)(t)
for all t, β(w) < 0. We can estimate β(w) by

β̂(w) =

∫
w(t){dΛ̂(1)(t)− dΛ̂(0)(t)} =

∫
w(t)

{
dN (1)(t)

Y (1)(t)
− dN (0)(t)

Y (0)(t)

}
.
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FIGURE 2
ACTG 320: Treatment-specific estimators of (a) F †(t), (b) SX(t−), (c) Λ(t)
and (d) S(t).
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Interestingly, β̂(w) can we re-written as:∫
k(t)

{
dN (1)(t)− Y (1)(t)

Y (t)
dN(t)

}
=
∑
tj

k(tj)

{
dN (1)(tj)−

Y (1)(tj)

Y (tj)
dN(tj)

}
,

where k(t) = w(t) Y (t)
Y (1)(t)Y (0)(t)

. Notice that the term in brackets is the typical

“observed minus expected” quantity computed from a two-by-two table con-
structed based on the set of subjects who are at-risk for being observed to fail
at or after time tj (i.e., {i : Xi ≥ tj}), where the columns denote treatment
assignment and the rows denote failure at time tj . The two-by-two table has
the following form:

Fail\Treatment 1 0 total

Yes dN (1)(tj) dN (0)(tj) dN(tj)
No Y (1)(tj)− dN (1)(tj) Y (0)(tj)− dN (0)(tj) Y (tj)− dN(tj)

Total Y (1)(tj) Y (0)(tj) Y (tj)

In this table, the observed number of failures at time tj for treatment 1 is
dN (1)(tj). Under the null hypothesis, the expected number of failures at time

tj for treatment 1 is
Y (1)(tj)
Y (tj)

dN(tj), resulting in the term in brackets above.

Thus, β̂(w) is a weighted average of ”observed-expected” terms from two-by-
two tables constructed at each observed failure time.

The estimated variance of β̂(w), under the null, is

V̂ ar[β̂(w)] =
∑
tj

w(tj)
2

{
Y (tj)

Y (1)(tj)Y (0)(tj)

}
dN(tj)

Y (tj)

Y (tj)− dN(tj)

Y (tj)− 1
.

Under the null,

T (w) =
β̂(w)√

V̂ ar[β̂(w)]

≈ N(0, 1).

The null is rejected at the 0.05 level if |T (w)| > 1.96.
With specific choices of w(t), we can generate various test statistics

that have been proposed for testing for treatment differences. For example,

w(t) = wLR(t) = Y (1)(t)Y (0)(t)
Y (t) (or k(t) = 1) yields the log-rank statistic,

w(t) = wGB(t) = Y (1)(t)Y (0)(t) (or k(t) = Y (t)) yields the Gehan-Breslow

statistic and w(t) = wGW (t) = Y (1)(t)Y (0)(t)
Y (t) Ŝ(t−) (or k(t) = Ŝ(t−)) yields

the generalized Wilcoxon statistic, where Ŝ is the Kaplan-Meier estimator of
failure based on both treatment groups [18, 25, 43] .

In ACTG 320, the log-rank, Gehan-Breslow and generalized Wilcoxon
statistics are -3.23, -3.09 and -3.20, respectively. The associated p-values are
all less than 0.005, indicating a statistically significant treatment effect in favor
of indinavir sulfate.
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0.6 Cox Regression Model

Let Z = (Z1, . . . , Zk) be a k-dimensional vector of baseline covariates recorded
on an individual. We assume non-informative censoring within levels of Z, i.e.,

dΛ(t|z) = dΛ†(t|z) for all z,

where dΛ(t|z) and dΛ†(t|z) are the net and cause-specific hazards of failure
for individuals with covariates Z = z.

In 1972, Cox [8] proposed the following regression model

dΛ(t|z)
1− dΛ(t|z)

=
dΛ0(t)

1− dΛ0(t)
exp{γT z}, (0.3)

where γ is a k-dimensional vector of unknown parameters and dΛ0(t) is the
so-called baseline hazard function as it represents the hazard for individuals
with covariates Z = 0. In this model, the baseline function is left completely
unspecified. At continuity points t, (0.3) reduces to

λ(t|z) = λ0(t) exp{γT z}; (0.4)

at jump points t, (0.3) reduces to

P [T = t|T ≥ t, Z = z]

P [T > t|T ≥ t, Z = z]
=
P [T = t|T ≥ t, Z = 0]

P [T > t|T ≥ t, Z = 0]
exp{γT z}.

Here, exp{γj} quantifies the relative change in the risk associated with an
increase of one unit in the covariate Zj . For this model, the relative change
is assumed to be the same throughout time. The parameter value γj = 0
corresponds to the case where the jth covariate has no effect on survival. When
γj > 0 (< 0), the risk of failure at any point in time increases (decreases) as
Zj increases.2

To estimate γ, Cox [8, 9] proposed the partial likelihood technique. The
partial likelihood is constructed as the product of conditional likelihoods
at each observed failure time tj . Specifically, the contribution to the par-
tial likelihood at tj is the conditional likelihood of observing the individuals
who actually failed at tj given information just prior to tj and that there
are dj =

∑n
i=1 dNi(tj) individuals who fail at tj (without specification of

which individuals). Let Qj be all subsets of dj individuals from the set of

2It is important to note that the regression model that is usually specified (i.e., (0.4) holds
for all t) is for an underlying failure time that is assumed to have a continuous distribution.
Because of inexact measurement (e.g., failure time measured to the level of days), the
distribution of the underlying measurable failure time (even in the absence of censoring)
is discrete. In this chapter, we specify a regression model (i.e., (0.3)) for the underlying
measurable failure time. The impact of this distinction is on (1) the interpretation of γ and
(2) how ties are handled when drawing inference about γ.
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nj =
∑n
i=1 Yi(tj) individuals at risk at time tj ; there are

(
nj
dj

)
subsets in

Qj . Let Sj be the sum of the covariate vectors for patients who are observed
to fail at tj . Let Sj,k be the sum of the covariate vectors for patients in the
kth subset in Qj . Then the conditional likelihood at tj can be written as

Ltj (γ) =
exp(γTSj)∑

k∈Qj exp(γTSj,k)
. (0.5)

The overall partial likelihood is PL(γ) =
∏
tj
Ltj (γ).3 Since using this like-

lihood can be computationally intensive, various likelihood approximations
have been proposed by [4, 12]. [4] and [12] replace the denominator in

(0.5) by

(
nj
dj

)
{ 1
nj

∑
l∈Rj exp(γTZl)}dj and by

∏dj−1
k=0 {

∑
l∈Rj exp(γTZl)−

k
dj

∑
l∈Dj exp(γTZl)}, respectively, where Rj is set of individuals at risk at tj

and Dj is the set of individuals who fail at tj .
4 These approximated partial

likelihoods are implemented in all the major software packages (i.e., R, Stata,
SAS). These approximations have been shown to perform well when the ratio
of dj to nj is small for most tj [13].

The score function associated with PL(γ) (or one of its approximations)
is

S(γ) =
∑
tj

{
Sj −

A′j(γ)

Aj(γ)

}
,

where Aj(γ) equals
∑
k∈Qj exp(γTSj,k) (or one of its approximations) and

A′j(γ) is the derivative of Aj(γ) with respect to γ. In the special case of
Breslow’s approximation, it can be shown that

S(γ) =

n∑
i=1

∫ {
Zi −

∑n
j=1 Yj(t)Zj exp(γTZj)∑n
j=1 Yj(t) exp(γTZj)

}
dNi(t). (0.6)

The parameter γ is estimated as the maximizer, γ̂, of PL(γ) (or one of its
approximations). The maximizer is found by solving S(γ) = 0. The estimator
γ̂ will be approximately normal with mean γ and the inverse of the Hessian
(matrix of second dervivatives) of log of PL(γ) (or one its approximations)
evaluated at γ̂. The variance of γ̂j is estimated by the jth diagonal component
of the inverse of the aforementioned Hessian matrix. A 95% confidence interval

for γj can be computed as γ̂j±1.96

√
V̂ ar[γ̂j ]. The null hypothesis that γj = 0

3Under the model for assuming the underlying failure time has a continuous distribution
(i.e., (0.4) holds for all t), Ltj (γ) would be computed differently. Specifically, in the presence
of ties at tj , the conditional likelihood at that time needs to incorporate all the possible
ways of ”untying” the tied failure times.

4The resulting approximated partial likelihoods are identical to the approximated partial
likelihoods that are used when it is assumed that the underlying failure time has a continuous
distribution.
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versus the alternative that γj 6= 0 can be tested at 0.05 type I error level by
rejecting the null if the 95% confidence interval does not contain zero.

In the special case where Z is the indicator of treatment of assignment, γ
quantifies the log relative risk of failure between the two treatments. In this
setting, it is interesting to note that

• S(0) in (0.6) reduces to β̂(wLR)

• Testing whether γ = 0 using the approach above is equivalent, in large
samples, to testing for a treatment difference using the logrank test statis-
tic.

Let h0(t) = dΛ0(t)
1−dΛ0(t) . A profile likelihood estimator of h0(t) puts mass only

at failure times tj . Let hj = h0(tj). The profile estimate for hj is the unique

non-negative solution, ĥj , to the following equation:∑
i∈Rj

hj exp(γ̂Zi)

1 + hj exp(γ̂Zi)
= dj . (0.7)

Further, an estimator of the conditional survivor function of T given Z = z,
S(t|z), is

Ŝ(t|z) =
∏
tj≤t

{
1

1 + ĥj exp(γ̂z)

}
. (0.8)

Above, we have focused on modeling the risk of failure as a function of
covariates that do not depend on time. In many studies with time-to-event
endpoints, the covariates of interest may also change with time. Such covari-
ates are referred to as time-dependent covariates. In ACTG 320, for example,
patients were clinically evaluated at multiple occasions after enrollment; at
these evaluations, CD4 counts were measured. In evaluating whether CD4 is
a potential surrogate marker for the development of AIDS or death (i.e., fail-
ure), it is natural to ask how the risk of failure at a given time t relates to the
history of CD4 counts prior to time t.

Let Z(t) = (Z1(t), . . . , Zl(t)) be a l-dimensional vector of covariates that
is known at time t. Let Z(t) be the history of these covariates through time
t, i.e., Z(t) = {Z(u) : 0 ≤ u ≤ t}. A covariate that does not vary with time
can be considered as a special case of a time-varying covariate. We assume
non-informative censoring within covariate histories, i.e.,

dΛ(t|z(t)) = dΛ†(t|z(t)) for all z(t),

where dΛ(t|z(t)) and dΛ†(t|z(t)) are the net and cause-specific hazards of
failure for individuals with covariate history Z(t) = z(t).

The Cox regression model posits that

dΛ(t|z(t))
1− dΛ(t|z(t))

=
dΛ0(t)

1− dΛ0(t)
exp{γT g(t, z(t))}, (0.9)
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where g(t, z(t)) is a k-dimensional known function of t and z(t), γ is a k-
dimensional vector of unknown parameters and dΛ0(t) is the baseline hazard
function. In the ACTG 320 example, suppose l = 1, Z1(t) is the most recently
recorded CD4 at or prior to time t. We might consider g(t, Z(t)) = Z1(t) in
which γ represents the common (over time) change in the risk of failure at
time t per unit increase in the CD4 count known at that time. Or, we might
consider g(t, Z(t)) = (Z1(t)I(t ≤ 56), Z1(t)I(56 < t ≤ 112), . . . , Z1(t)I(168 <
t ≤ 224), Z1(t)I(t > 224)), in which case, the effect of CD4 count is allowed
to vary over time according to how the time-axis is partitioned.

Estimation of γ and h0(t) proceeds as above. It is important to emphasize
that, in the case of time-independent covariates, it makes sense to estimate
S(t|z) as above. In the case of time-dependent covariates, it may not make
sense to estimate S(t|z(t)) = P [T > t|Z(t) = z(t)]. This is because the very
fact that Z(t) is measured can imply that the patients are alive or event-
free. To distinguish settings where it makes sense to estimate S(t|z(t)), it is
important to distinguish between internal and external covariates. An external
covariate is one that can affect an individual, but can be measured even if the
individual is not on study, e.g., air pollution levels. In contrast, an internal
covariate is one in which the change in the covariate depends on the individual,
e.g., CD4 count.

In ACTG 320, investigators were interested in evaluating whether the effect
of treatment varied by baseline CD4 status. Specifically, they wanted to know
whether the treatment effect was different for patients with baseline CD4 less
than or equal to 50 as compared to patients with baseline CD4 between 51
and 200. For each of these CD4 strata, we can fit a Cox regression model
with a single treatment-indicator covariate (1 for indinavir, 0 otherwise) and
then compare the strata-specific treatment effect estimators using a Wald-
type test statistic. The estimated log relative risk in patients with low and
high baseline CD4 are -0.67 (standard error = 0.24) and -0.70 (standard error
= 0.27), respectively. The Wald test statistic for the difference in these log
relative risks is 0.099, with an associated p-value of 0.92. Thus, there is no
statistically significant evidence of effect modification by baseline CD4.

0.7 Sample Size Calculations

In designing a two-arm randomized trial with a survival endpoint, it is impor-
tant to define clinically meaningful alternative hypotheses. A useful way to
define alternative hypotheses is through the proportional hazards assumption.
Specifically, it is assumed that the underlying distribution of survival in the
two treatment arms is continuous (i.e., no ties) and

dΛ(1)(t)

dΛ(0)(t)
= exp{γ}.
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Hazard Ratio Number of Failures
2.00 88
1.50 256
1.25 844
1.10 4623

TABLE 0.1
Number of failures required for various hazard ratios: 90% power, 5% two-
sided type I error.

Here, γ > 0 (< 0) implies that subjects assigned to treatment 1 have worse
(better) survival and γ = 0 implies the null hypothesis.

The reason statisticians focus on proportional hazards alternatives is that,
in addition to having a “nice” interpretation, theory has been developed that
shows that the logrank test is the most powerful nonparametric test to detect
these alternatives. It can be shown, under simplifying assumptions, that

T (wLR) ≈ N(γ
√
d · p(1− p), 1),

where p is the randomization proportion and d =
∑
j dj is the total number

of failures. If p = 0.5, then a level α two-sided test of the null hypothesis will
have power 1− δ to detect the porportional hazards alternative γA when the

number of failures equals 4
{

(zα/2+zδ)

γA

}2

.

Some examples of the number of failures necessary to detect an alternative
where the hazard ratio equals exp(γA) with 90% power using the logrank test
at the 0.05 (two-sided) level of significance is given in the Table 0.1.

During the design stage it must be ensured that a sufficient number of pa-
tients are entered into the trial and followed long enough so that the requisite
number of events are attained. Arbitrarily picking a number of patients and
waiting for the requisite number of events to occur will not be adequate for
the proper planning of the trial. The design of a clinical trial with a time to
event endpoint requires the following elements:

• number of patients (n)

• accrual period (A): calendar period that patients are entering the study

• follow-up time (F ): calendar period after accrual has ended and the final
analysis is conducted

Consider the situation where the treatment-specific hazard functions are
constant. Specifically, assume (1) dΛ0(t) = λ0dt and (2) dΛ1(t) = λ1dt with
λ1 = λ0 exp(γA). Further, assume (3) censoring results only from staggered
entry into the trial, (4) a constant enrollment rate a per year and (5) 1:1
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randomization ratio. Under these assumptions, it can be shown that the ex-
pected number of patients enrolled is Aa and the expected number of observed
failures in treatment group j is

a

2

[
A− exp(−λjL)

λj
{exp(λjA)− 1}

]
,

where L = A+ F .
Suppose that the probability of survival in treatment 0 at 18 months is

67%; then λ0 = 0.022. Further, suppose it is desired to detect an increase
in survival in treatment 1 at 18 months to 75% with 90% power using a
two-sided logrank test at the 0.05 type I error level. Then, λ1 = 0.016 and
γA = log(0.72). Using the above results, the total number of required failures
is 384. To achieve this number of failures, a, A and F must be chosen so that

aA− a

2

exp(−λ0L)

λ0
{exp(λ0A)− 1} − a

2

exp(−λ1L)

λ1
{exp(λ1A)− 1} = 384.

Suppose that the trial is scheduled to have an accrual period of 36 weeks and
that the last enrolled patient will be followed for 48 weeks, i.e., A = 36 weeks
and F = 48 weeks. Using the above formula, the accrual rate must be 40
patients per week, yielding a total enrollment of 1440 patients.

Other factors that may affect power include premature loss to follow-up,
competing risks and non-compliance. An excellent account on how to deal
with these issues during the design stage is given by [33].

0.8 Informative Censoring

The methods described above for estimation of S(t) and testing for differ-
ences in survival between treatment groups rely on the assumption of non-
informative censoring, i.e., Equation (0.2) holds for each treatment group. It
can be shown that Assumption (0.2) is equivalent to assuming, for t and t′ > t,

dΛ†C(t|T = t′) = dΛ†C(t|T > t), (0.10)

where dΛ†C(t|T = t′) is the cause-specific hazard of censoring at t given infor-

mation that failure occurs at time t′ and dΛ†C(t|T > t) is the cause-specific
hazard of censoring at t given that failure occurs after t (not when it occurs).

Robins and Finkelstein [38] developed a method that relaxes this assump-
tion. Specifically, they assume that

dΛ†C(t|z(t), T = t′) = dΛ†C(t|z(t), T > t), (0.11)

where dΛ†C(t|z(t), T = t′) is the cause-specific hazard of censoring at t
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given information on Z(t) = z(t) and that failure occurs at time t′ and

dΛ†C(t|z(t), T > t) is the cause-specific hazard of censoring at t given informa-
tion on Z(t) = z(t) and that failure occurs after t (not when it occurs). They

further assume a dimension-reduction model for dΛ†C(t|z(t), T > t). Here, we
consider a model of the form:

dΛ†C(t|z(t), T > t)

1− dΛ†C(t|z(t), T > t)
=

dΛ†C,0(t)

1− dΛ†C,0(t)
exp{ηT g(t, z(t))}, (0.12)

where g(t, z(t)) is a k-dimensional known function of t and z(t), η is a k-

dimensional vector of unknown parameters and dΛ†C,0(t) is the baseline hazard

function. To estimate η and h†C,0(t) =
dΛ†C,0(t)

1−dΛ†C,0(t)
, use the techniques described

in Section 0.6 above with the following modifications: (1) reverse the roles of
T and C and (2) break ties between failure and censoring times by assuming
that failure preceeds censoring. Let

K̃i(t; η̃) =
∏
ck≤t

{
1

1 + h̃†C,0(ck; η̃) exp{η̃T g(tk, Zi(ck))}

}
,

where ck are the unique ordered censoring times, η̃ is an estimator of η in
Model (0.12), h̃†C,0(t; η̃) is the corresponding profile estimator of h†C,0(t), and

Zi(t) is the time varying covariate vector associated with subject i. Here,
K̃i(t; η̃) is an estimator of the probability that subject i is uncensored at time
t. The adjusted survival curve of [38] is of the form:

S̃(t) =
∏
tj≤t

1−

∑n
i=1

(
dNi(tj)/K̃i(tj ; η̃)

)
∑n
i=1

(
Yi(tj)/K̃i(tj ; η̃)

)
 ,

where tj are the unique ordered failure times.
The intuition of the adjusted estimator is as follows. The numerator and

denominator of the ratio inside the curly brackets estimates, in the absence
of censoring, the number of subjects who are expected to fail at tj and the
number of subjects expected to be at risk for failure at tj , respectively. Why?
In the numerator (denominator), each subject who fails (is at risk) at tj is
inverse weighted by the probability of being uncensored at that time. Inverse
weighting (a technique derived from the survey sampling literature) serves to
upweight the contribution of subjects with observed data to account for them-
selves and others like them who were unobserved. For example, if the proba-
bility of being uncensored at time tj for a subject is 0.25, then he/she accounts
for him/her-self plus three other similar subjects who were unobserved at that
time. In the absence of censoring, the ratio in the curly brackets estimates the
hazard of failure at tj and one minus the ratio estimates the probability of
being event free at tj given at risk at tj . Therefore, the product of the terms
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in curly brackets through time t estimates the probability of being event free
at time t. It is important to note that if γ̃ = 0 (i.e., Z(t) is not prognostic for
censoring), the survival curve estimator of [38] reduces to the Kaplan-Meier
estimator.

Robins and Finkelstein [38] also showed how to construct an adjusted
estimator of γ in model (0.3) with treatment assignment indicator as the sole
covariate by modifying S(γ) in (0.6) to ensure that it has mean zero (in large
samples) when (0.11) and (0.12) are assumed for each treatment group and
reducs to (0.6) when the covariates in model (0.12) are not prognostic for
censoring. Towards this end, [38] defined the modified score function:

S̃(γ) =
n∑
i=1

∫ {
Zi −

∑n
j=1 W̃j(t)Yj(t)Zj exp(γTZj)∑n
j=1 W̃j(t)Yj(t) exp(γTZj)

}
W̃i(t)dNi(t),

where

W̃i(t) =
ZiK̃

(1)
i (t; 0) + (1− Zi)K̃(0)

i (t; 0)

ZiK̃
(1)
i (t; η̃(1)) + (1− Zi)K̃(0)

i (t; η̃(0))
,

the superscripts are used to reference treatment groups, and K̃
(z)
i (t; 0) are the

treatment-specific Kaplan-Meier estimators of the survival curve for censoring
(with ties broken as above). The adjusted estimator γ̃ of γ is the solution to
S̃(γ) = 0. [38] showed that γ̃ will be normally distributed in large samples.
While it is possible to compute an analytic expression for the standard error
of γ̃, it is easier to use bootstrapping procedures to estimate standard errors
for γ̂ and construct confidence intervals for γ.

To illustrate this method, we use data from ACTG 320 where we further
censor patients at discontinuation of their assigned treatment if it occurs prior
to failure. That is, we use the earlier of the open and solid circles in Figure
1. In the analyses discussed above, there were 96 failures and 1054 censored
observations. Incorporating censoring at treatment stop reduces the number
of failures to 66 (43 without indinavir, 23 with indinavir) and increases the
number of censored observations to 1084. Specifically, 30 of the 96 failures
occurred after treatment stop - 20 from the without indinavir arm and 10 from
the indinavor arm. In addition, 207 of the original 1054 censored observations
are moved to an earlier censoring time - 147 from the without indinavir arm
and 60 from the indinavor arm.

It is plausible that such censoring may be informative as patients who
are sicker or experiencing side effects may be more likely to discontinue their
assigned therapy. In this analysis, we seek to estimate the effect of treatment
in a world without non-compliance. This contrasts with the aforementioned
analyses which was focused on estimating what is often referred to as the
intention-to-treat effect.

For each treatment group, we fit Model (0.12) with Karnofsky score and
hemoglobin at baseline as time-independent covariates and CD4 as a time-
varying covariate. We used Breslow’s approximation to the partial likelihood;
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Without Indinavir With Indinavir
Covariate Effect 95% CI Effect 95% CI
CD4 0.9997 [0.9987, 1.001] 0.9984 [0.9976, 0.9992]
Karnofsky Score 0.9926 [0.9820, 1.003] 1.0075 [0.9961, 1.0190]
Hemoglobin 1.0290 [0.7388, 1.433] 1.4818 [0.9706, 2.2622]

TABLE 0.2
Treatment-specific censoring model fits: exponentiated regression coefficients
and associated 95% confidence intervals.

the results based on Efron’s approximation were similar. Table 0.2 displays the
exponentiated regression coefficients and associated 95% confidence intervals
from fitting these models. The table shows that patients with higher CD4 (i.e.,
healthier) are less likely to be censored, although the effect is only statistically
significant (at the 5% level) for patients assigned to the indinavir arm. The
effects of baseline Karnofsky score and hemoglobin are not statistically signif-
icant. This result suggests that a non-informative censoring analysis may be
optimistic. Figure 0.8 shows the unadjusted (i.e., Kaplan-Meier) and adjusted
estimated survival curves. As expected, the figure shows that the adjusted
curves tend to be lower than the unadjusted curves, although the shifts are
negligible. The unadjusted and adjusted estimates of the relative risk are 0.49
(95% CI: 0.30-0.82) and 0.46 (95% CI: 0.25-0.77), respectively. In contrast,
the estimate the relative risk in the previous analysis (i.e., not censoring at
treatment stop) was 0.51 (95% CI: 0.33-0.77). The estimate of the effect of
indinavir under full compliance is slightly larger, although it does not appear
to be clinically significant.

Scharfstein and Robins [40] developed methods for evaluating the sen-
sitivity of survival curve estimation to deviations from Assumption (0.11).
Rotnitzky et al.[39] extended the ideas of [40] to address competing causes of
censoring (e.g., end-of-study censoring vs. censoring due to treatment stop).
Zhang et al.[48] used the ideas of [38] to draw inference, in the presence of non-
compliance, about the distribution of a time-to-event for treatment regimes
with specified treatment stops.

0.9 Conclusion

In this chapter, we discussed the most commonly used survival analysis meth-
ods (survival curve estimation, treatment group comparsions, Cox regression,
sample size calculation) in clinical trials. We also reviewed a method for ad-
justing for informative censoring that we think should be more widely utilized.
We emphasized the discrete Cox regression model because it has been our ex-
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FIGURE 3
Treatment-specific unadjusted (Kaplan-Meier) and adjusted (Robins and
Finkestein) estimated survival curves.
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perience that event times are usually measured inexactly (e.g., at the level of
days rather than hours or seconds). Such inexactness renders the events times
to have discrete support. Importantly, the partial likelihood approximations
under a discrete Cox model are identical to the approximations for handling
ties in the continuous time Cox model. Thus, the estimators resulting from
maximizing these approximated partial likelihoods can be considered as esti-
mating the regression parameter in either the discrete or continuous time Cox
model.

There is a wide body of survival analysis methods that we have not dis-
cussed. While we focused on time to event data that may be right censored,
there are methods that handle event times that may also be interval censored
(i.e., only known to fall into a finite time interval) [45, 16, 17, 21, 34, 20,
15, 14, 42, 46]. There is also a great deal of work on alternative regression
models, including the accelerated failure time model [47, 37, 3, 29] and the
semi-parametric transformation model [6, 5].

The issue of competing risks, whereby subjects are at-risk for multiple
pre-emptive causes of failure, is particularly challenging. If an individual is
observed to fail from one cause then he/she is no longer at risk for failure
from another cause. Thus, when analyzing failure due to a given cause, it
is not appropriate to simply consider individuals who failed due to another
cause as censored observations. This is why many analysts often work with a
composite endpoint which is the time of the first failure regardless of cause.
Alternatively, some analysts report cause-specific hazards [36] or cause-specific
sub-distribution functions [22].

Another important area is multivariate survival analysis, where multiple
failure events are to be recorded on each subject (either in series or in parallel)
or a single failure event on subjects who are themselves clustered into groups.
Methods are available that are similar in spirit to the marginal, copula and
random effects models using in longitudinal data analysis, with the exception
that in survival analysis random effects models are often referred to as frailty
models. [26] provides a detailed review of methods for analyzing multivariate
survival data.

Methods are also available for the design and analysis of clinical trials in
which time-to-event data are to be analyzed at interim time points at which
a decision can be made to prematurely stop the trial for efficacy or futility.
Scharfstein, Tsiatis and Robins [41] and Jennison and Turnbull[27] developed
a general framework, based on the concept of statistical information, for de-
signing and monitoring such trials in which a type I error spending function
(developed by [11]) along with a stopping boundary is utilized to preserve
the overall operating characteristics of the trial. Jennison and Turnbull [28]
is a great resource to learn more about what is often called group sequential
clinical trials.

Survival analysis is a very well researched field. There are great reference
books available, including but not limited to [32, 19, 44, 30, 2, 10]. There
are also great software routines available in SAS [1], R [35] and STATA [7] for
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analyzing survival data. There is a great deal of online material demonstrating
how to use these routines.
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