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Missing Data Matters

While unbiased estimates of treatment effects can be
obtained from randomized trials with no missing data, this
is no longer true when data are missing on some patients.

The essential problem is that inference about treatment
effects relies on unverifiable assumptions about the nature
of the mechanism that generates the missing data.

While we usually know the reasons for missing data, we
do not know the distribution of outcomes for patients
with missing data, how it compares to that of patients
with observed data and whether differences in these
distributions can be explained by the observed data.
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Robert Temple and Bob O’Neil (FDA)

”During almost 30 years of review experience, the issue of
missing data in ... clinical trials has been a major concern
because of the potential impact on the inferences that
can be drawn .... when data are missing .... the analysis
and interpretation of the study pose a challenge and the
conclusions become more tenuous as the extent of
’missingness’ increases.”
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NRC Report and Sensitivity Analysis

In 2010, the National Research Council (NRC) issued a
reported entitled ”The Prevention and Treatment of
Missing Data in Clinical Trials.”

This report, commissioned by the FDA, provides 18
recommendations targeted at (1) trial design and conduct,
(2) analysis and (3) directions for future research.

Recommendation 15 states

Sensitivity analyses should be part of the primary
reporting of findings from clinical trials. Examining
sensitivity to the assumptions about the missing data
mechanism should be a mandatory component of
reporting.
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ICH, EMEA and Sensitivity Analysis

1998 International Conference of Harmonization (ICH)
Guidance document (E9) entitled ”Statistical Principles in
Clinical Trials” states: ”it is important to evaluate the
robustness of the results to various limitations of the data,
assumptions, and analytic approaches to data analysis”

European Medicines Agency 2009 draft ”Guideline on
Missing Data in Confirmatory Clinical Trials” states ”[i]n
all submissions with non-negligible amounts of missing
data sensitivity analyses should be presented as support
to the main analysis.”
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PCORI and Sensitivity Analysis

In 2012, Li et al. issued the report ”Minimal Standards in
the Prevention and Handling of Missing Data in
Observational and Experimental Patient Centered
Outcomes Research”

This report, commissioned by PCORI, provides 10
standards targeted at (1) design, (2) conduct, (3) analysis
and (4) reporting.

Standard 8 echoes the NRC report, stating

Examining sensitivity to the assumptions about the
missing data mechanism (i.e., sensitivity analysis) should
be a mandatory component of the study protocol,
analysis, and reporting.
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Sensitivity Analysis

The set of possible assumptions about the missing data
mechanism is very large and cannot be fully explored. There
are different approaches to sensitivity analysis:

Ad-hoc

Local

Global
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Ad-hoc Sensitivity Analysis

Analyzing data using a few different analytic methods,
such as last or baseline observation carried forward,
complete or available-case analysis, mixed models or
multiple imputation, and evaluate whether the resulting
inferences are consistent.

The problem with this approach is that the assumptions
that underlie these methods are very strong and for many
of these methods unreasonable.

More importantly, just because the inferences are
consistent does not mean that there are no other
reasonable assumptions under which the inference about
the treatment effect is different.
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Local Sensitivity Analysis

Specify a reasonable benchmark assumption (e.g., missing
at random) and evaluate the robustness of the results
within a small neighborhood of this assumption.

What if there are assumptions outside the local
neighborhood which are plausible?
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Global Sensitivity Analysis

Evaluate robustness of results across a much broader
range of assumptions that include a reasonable benchmark
assumption and a collection of additional assumptions
that trend toward best and worst case assumptions.

Emphasized in Chapter 5 of the NRC report.

This approach is substantially more informative because it
operates like ”stress testing” in reliability engineering,
where a product is systematically subjected to
increasingly exaggerated forces/conditions in order to
determine its breaking point.
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Global Sensitivity Analysis

In the missing data setting, global sensitivity analysis
allows one to see how far one needs to deviate from the
benchmark assumption in order for inferences to change.

”Tipping point” analysis (Yan, Lee and Li, 2009;
Campbell, Pennello and Yue, 2011)

If the assumptions under which the inferences change are
judged to be sufficiently far from the benchmark
assumption, then greater credibility is lent to the
benchmark analysis; if not, the benchmark analysis can be
considered to be fragile.
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Global Sensitivity Analysis

Restrict consideration to follow-up randomized study
designs that prescribe that measurements of an outcome
of interest are to be taken on each study participant at
fixed time-points.

Focus on monotone missing data pattern

Consider the case where interest is focused on a
comparison of treatment arm means at the last scheduled
visit.
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Case Study: Quetiapine Bipolar Trial

Patients with bipolar disorder randomized equally to one
of three treatment arms: placebo, Quetiapine 300 mg/day
or Quetiapine 600 mg/day (Calabrese et al., 2005).

Randomization was stratified by type of bipolar disorder.

Short-form version of the Quality of Life Enjoyment
Satisfaction Questionnaire (QLESSF, Endicott et al.,
1993), was scheduled to be measured at baseline, week 4
and week 8.
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Quetiapine Bipolar Trial

Focus on the subset of 234 patients with bipolar 1
disorder who were randomized to either the placebo
(n=116) or 600 mg/day (n=118) arms.

Only 65 patients (56%) in placebo arm and 68 patients
(58%) in the 600mg/day arm had a complete set of
QLESSF scores.

Patients with complete data tend to have higher average
QLESSF scores, suggesting that a complete-case analysis
could be biased.
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Observed Data

Figure: Treatment-specific (left: placebo; right: 600 mg/day
Quetiapine) trajectories of mean QLESSF scores, stratified by last
available measurement.
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Central Question

What is the difference in the mean QLESSF score at
week 8 between Quetiapine 600 mg/day and placebo
in the counterfactual world in which all patients were
followed to that week?
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Global Sensitivity Analysis

Inference about the treatment arm means requires two
types of assumptions:

(i) unverifiable assumptions about the distribution of
outcomes among those with missing data and

(ii) additional testable assumptions that serve to increase
the efficiency of estimation.
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Global Sensitivity Analysis

Type (i) assumptions are necessary to identify the
treatment-specific means.

By identification, we mean that we can write it as a
function that depends only on the distribution of the
observed data.

When a parameter is identified we can hope to estimate it
as precisely as we desire with a sufficiently large sample
size,

In the absence of identification, statistical inference is
fruitless as we would be unable to learn about the true
parameter value even if the sample size were infinite.
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Global Sensitivity Analysis

To address the identifiability issue, it is essential to
conduct a sensitivity analysis, whereby the data analysis is
repeated under different type (i) assumptions, so as to
investigate the extent to which the conclusions of the trial
are dependent on these subjective, unverifiable
assumptions.

The usefulness of a sensitivity analysis ultimately depends
on the plausibility of the unverifiable assumptions.

It is key that any sensitivity analysis methodology allow
the formulation of these assumptions in a transparent and
easy to communicate manner.
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Global Sensitivity Analysis

There are an infinite number of ways of positing type (i)
assumptions.

Ultimately, however, these assumptions prescribe how
missing outcomes should be ”imputed.”

A reasonable way to posit these assumptions is to

stratify individuals with missing outcomes according to
the data that we were able to collect on them and the
occasions at which the data were collected
separately for each stratum, hypothesize a connection
(or link) between the distribution of the missing outcome
with the distribution of the outcome among those with
the observed outcome and who share the same recorded
data.
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Global Sensitivity Analysis

Type (i) assumptions will not suffice when the repeated
outcomes are continuous or categorical with many levels.
This is because of data sparsity.

For example, the stratum of people who share the same
recorded data will typically be small. As a result, it is
necessary to draw strength across strata by ”smoothing.”

Without smoothing, the data analysis will rarely be
informative because the uncertainty concerning the
treatment arm means will often be too large to be of
substantive use.

As a result, it is necessary to impose type (ii) smoothing
assumptions.

Type (ii) assumptions should be scrutinized with standard
model checking techniques.
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Global Sensitivity Analysis

The global sensitivity framework proceeds by
parameterizing (i.e., indexing) the connections (i.e., type
(i) assumptions) via sensitivity analysis parameters.

The parameterization is configured so that a specific
value of the sensitivity analysis parameters (typically set
to zero) corresponds to a benchmark connection that is
considered reasonably plausible and sensitivity analysis
parameters further from the benchmark value represent
more extreme departures from the benchmark connection.
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Global Sensitivity Analysis

The global sensitivity analysis strategy that we propose is
focused on separate inferences for each treatment arm,
which are then combined to evaluate treatment effects.

Until later, our focus will be on estimation of the mean
outcome at week 8 (in a world without missing outcomes)
for one of the treatment groups and we will suppress
reference to treatment assignment.
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Notation: Quetiapine Bipolar Trial

Y0, Y1, Y2: QLESSF scores scheduled to be collected at
baseline, week 4 and week 8.

Let Rk be the indicator that Yk is observed.

We assume R0 = 1 and that Rk = 0 implies Rk+1 = 0
(i.e., missingness is monotone).

Patient is on-study at visit k if Rk = 1

Patient discontinued prior to visit k if Rk = 0

Patient last seen at visit k − 1 if Rk−1 = 1 and Rk = 0.

Y obs
k equals to Yk if Rk = 1 and equals to nil if Rk = 0.
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Notation: Quetiapine Bipolar Trial

The observed data for an individual are

O = (Y0,R1,Y
obs
1 ,R2,Y

obs
2 ),

which has some distribution P∗ contained within a set of
distributions M (type (ii) assumptions discussed later).

The superscript ∗ will be used to denote the true value of
the quantity to which it is appended.

Any distribution P ∈M can be represented in terms of
the following distributions:

f (Y0)
P[R1 = 1|Y0]
f (Y1|R1 = 1,Y0)
P[R2 = 1|R1 = 1,Y1,Y0]
f (Y2|R2 = 1,Y1,Y0).
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Notation: Quetiapine Bipolar Trial

We assume that n independent and identically distributed
copies of O are observed.

The goal is to use these data to draw inference about
µ∗ = E ∗[Y2].

When necessary, we will use the subscript i to denote
data for individual i .
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Benchmark Assumption (Missing at Random)

A(y0): patients with Y0 = y0.

B(y0, y1): patients on-study at visit 1 with Y0 = y0 and
Y1 = y1.

Missing at random posits the following type (i) “linking”
assumptions:

In each stratum A(y0), the distribution of Y1 and Y2 is
the same for those last seen at visit 0 as those on-study
at visit 1.

In each stratum B(y0, y1), the distribution of Y2 is the
same for those last seen at visit 1 as those on-study at
visit 2.
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Benchmark Assumption (Missing at Random)

Mathematically, we can express these assumptions as follows:

f ∗(Y1,Y2|R1 = 0,A(y0)) = f ∗(Y1,Y2|R1 = 1,A(y0)) for all y0

and

f ∗(Y2|R2 = 0,B(y0, y1)) = f ∗(Y2|R2 = 1,B(y0, y1)) for all y1, y0

29 / 67



Benchmark Assumption (Missing at Random)

Using Bayes’ rule, we can re-write these expressions as:

P∗[R1 = 0|Y2 = y2,Y1 = y1,A(y0)] = P∗[R1|A(y0)]

and

P∗[R2 = 0|Y2 = y2,B(y1, y0)] = P∗[R2 = 0|R1 = 1,B(y1, y0)]

Missing at random implies:

The decision to discontinue the study before visit 1 is like
the flip of a coin with probability depending on the value
of the outcome at visit 0.

For those on-study at visit 1, the decision to discontinue
the study before visit 2 is like the flip of a coin with
probability depending on the value of the outcomes at
visits 1 and 0.
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Benchmark Assumption (Missing at Random)

MAR is a type (i) assumption. It is ”unverifiable.”

For patients last seen at visit k , we cannot learn from the
observed data about the conditional (on observed history)
distribution of outcomes after visit k .

For patients last seen at visit k , any assumption that we
would make about the conditional (on observed history)
distribution of the outcomes after visit k will be
unverifiable from the data available to us.

For patients last seen at visit k , the assumption that the
conditional (on observed history) distribution of outcomes
after visit k is the same as those who remain on-study
after visit k and have the same observed history is
unverifiable.
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Benchmark Assumption (Missing at Random)

Under MAR, µ∗ is identified. That is, it can be expressed as a
function of the distribution of the observed data. Specifically,

µ∗ = µ(P∗) =

∫
y0

∫
y1

∫
y2

y2dF
∗
2 (y2|y1, y0)dF ∗1 (y1|y0)dF ∗0 (y0)

where

F ∗2 (y2|y1, y0) = P∗[Y2 ≤ y2|R2 = 1,B(y1, y0)]

F ∗1 (y1|y0) = P∗[Y1 ≤ y1|R1 = 1,A(y0)]

F ∗0 (y0) = P∗[Y0 ≤ y0].
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Missing Not at Random (MNAR)

The MAR assumption is not the only one that is (1)
unverifiable and (2) allows identification of µ∗.
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Missing Not at Random (MNAR)

The first part of the MAR assumption is equivalent to

f ∗(Y2|R1 = 0,Y1 = y1,A(y0))

= f ∗(Y2|R1 = 1,Y1 = y1,A(y0)) for all y1, y0 (1)

and

f ∗(Y1|R1 = 0,A(y0)) = f ∗(Y1|R1 = 1,A(y0)) for all y0

In building a class of MNAR models, we will retain (1):

Among patients in A(y0) with Y1 = y1, the distribution of
Y2 is the same for those last seen at visit 0 as those
on-study at visit 1.
The decision to discontinue the study before visit 1 is
independent of Y2 (i.e., the future outcome) after
conditioning on the Y0 (i.e., the past outcome) and Y1

(i.e., the most recent outcome).
Non-future dependence
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Missing Not at Random (MNAR)

Exponential Tilting

f ∗(Y1|R1 = 0,A0(y0))

∝ f ∗(Y1|R1 = 1,A(y0)) exp{αr(Y1)} for all y0

f ∗(Y2|R2 = 0,B(y1, y0))

∝ f ∗(Y2|R2 = 1,B(y1, y0)) exp{αr(Y2)} for all y0, y1

r(y) is a specified increasing function; α is a sensitivity
analysis parameter.

α = 0 is MAR.
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Missing Not at Random (MNAR)

When α > 0 (< 0)

In the stratum A(y0), the distribution of Y1 for patients
last seen at visit 0 is weighted more heavily to higher
(lower) values than the distribution of Y1 for patients on
study at visit 1.

In the stratum B(y1, y0), the distribution of Y2 for
patients last seen at visit 1 is weighted more heavily to
higher (lower) values than the distribution of Y2 for
patients on study at visit 2.

The amount of ”tilting” increases with the magnitude of α.
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Missing Not at Random (MNAR)

Using Bayes’ rule, we can re-write these expressions as:

logit P∗[R1 = 0|Y2 = y2,Y1 = y1,A(y0)] = l∗1 (y0) + αr(y1)

and

logit P∗[R2 = 0|Y2 = y2,B(y1, y0)] = l∗2 (y1, y0) + αr(y2)

where

l∗1 (y0;α) = logit P∗[R1 = 0|A(y0)]−
log E ∗[exp{αr(Y1)}|R1 = 1,A(y0)]

and

l∗2 (y1, y0;α) = logit P∗[R2 = 0|B(y1, y0)]−
log E ∗[exp{αr(Y2)}|R2 = 1,B(y1, y0)]
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Missing Not at Random (MNAR)

Written in this way:

The decision to discontinue the study before visit 1 is like
the flip of a coin with probability depending on the value
of the outcome at visit 0 and the value of the outcome at
visit 1.

For those on-study at visit 1, the decision to discontinue
the study before visit 2 is like the flip of a coin with
probability depending on the value of the outcomes at
visits 1 and 0 and the value of the outcome at visit 2.
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Exponential Tilting Explained

f (Y |R = 0) ∝ f (Y |R = 1) exp{αr(Y )}

If [Y |R = 1] ∼ N(µ, σ2) and r(Y ) = Y ,
[Y |R = 0] ∼ N(µ + ασ2, σ2)

If [Y |R = 1] ∼ Beta(a, b) and r(Y ) = log(Y ),
[Y |R = 0] ∼ Beta(a + α, b), α > −a.

If [Y |R = 1] ∼ Gamma(a, b) and r(Y ) = log(Y ),
[Y |R = 0] ∼ Gamma(a + α, b), α > −a.

If [Y |R = 1] ∼ Gamma(a, b) and r(Y ) = Y ,
[Y |R = 0] ∼ Gamma(a, b − α), α < b.

If [Y |R = 1] ∼ Bernoulli(p) and r(Y ) = Y ,

[Y |R = 0] ∼ Bernoulli
(

p exp(α)
p exp(α)+1−p

)
.
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Beta
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Missing Not at Random (MNAR)

For given α, µ∗ is identified. Specifically, µ∗ = µ(P∗;α) equals

∫
y0

∫
y1

∫
y2

y2

dF∗2 (y2|y1, y0){1− H∗2 (y1, y0)} +
dF∗2 (y2|y1, y0) exp{αr(y2)}∫
y′
2
dF∗2 (y′2 |y1, y0) exp{αr(y

′
2)}

H∗2 (y1, y0)

×dF∗1 (y1|y0){1− H∗1 (y0)} +
dF∗1 (y1|y0) exp{αr(y1)}∫
y′
1
dF∗1 (y′1 |y0) exp{αr(y

′
1)}

H∗1 (y0)

 dF∗0 (y0)

where H∗2 (y1, y0) = P∗[R2 = 0|B(y1, y0)] and
H∗1 (y0) = P∗[R1 = 0|A(y0)]

µ∗ is written as a function of the distribution of the
observed data (depending on α).
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Inference

For given α, the above formula shows that µ∗ depends on

F ∗2 (y2|y1, y0) = P∗[Y2 ≤ y2|R2 = 1,B(y1, y0)]

F ∗1 (y1|y0) = P∗[Y1 ≤ y1|R1 = 1,A(y0)]

H∗2 (y1, y0) = P∗[R2 = 0|B(y1, y0)]

H∗1 (y0) = P∗[R1 = 0|A(y0)].

It is natural to consider estimating µ∗ by ”plugging in”
estimators of these quantities.

How can we estimate these latter quantities? With the
exception of F ∗0 (y0), it is tempting to think that we can use
non-parametric procedures to estimate these quantities.
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Inference

A non-parametric estimate of F ∗2 (y2|y1, y0) would take the
form:

F̂2(y2|y1, y0) =

∑n
i=1 R2,i I (Y2,i ≤ y2)I (Y1,i = y1,Y0,i = y0)∑n

i=1 R2,i I (Y1,i = y1,Y0,i = y0)

This estimator will perform very poorly (i.e., have high
levels of uncertainty in moderate sample sizes) because
the number of subjects who complete the study (i.e.,
R2 = 1) and are observed to have outcomes at visits 1
and 0 exactly equal to y1 and y0 will be very small and
can only be expected to grow very slowly as the sample
size increases.

As a result, a a plug-in estimator of µ∗ that uses such
non-parametric estimators will perform poorly.
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Inference - Type (ii) Assumptions

We make the estimation task slightly easier by assuming that

F ∗2 (y2|y1, y0) = F ∗2 (y2|y1)

and
H∗2 (y1, y0) = H∗2 (y1)
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Inference - Kernel Smoothing

Estimate F ∗2 (y2|y1), F ∗1 (y1|y0), H∗2 (y1) and H∗1 (y0) using kernel
smoothing techniques.

To motivate this idea, consider the following non-parametric
estimate of F ∗2 (y2|y1)

F̂2(y2|y1) =

∑n
i=1 R2,i I (Y2,i ≤ y2)I (Y1,i = y1)∑n

i=1 R2,i I (Y1,i = y1)

This estimator will still perform poorly, although better
than F̂2(y2|y1, y0).

Replace I (Y1,i = y1) by φ
(

Y1,i−y1
σF2

)
, where φ(·) is

standard normal density and σF2 is a tuning parameter.

F̂2(y2|y1;σF2) =

∑n
i=1 R2,i I (Y2,i ≤ y2)φ

(
Y1,i−y1
σF2

)
∑n

i=1 R2,iφ
(

Y1,i−y1
σF2

)
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Inference - Kernel Smoothing

This estimator allows all completers to contribute, not
just those with Y1 values equal to y1

It assigns weight to completers according to how far their
Y1 values are from y1, with closer values assigned more
weight.

The larger σF2 , the larger the influence of values of Y1

further from y1 on the estimator.

As σF2 →∞, the contribution of each completer to the
estimator becomes equal, yielding bias but low variance.

As σF2 → 0, only completers with Y1 values equal to y1
contribute, yielding low bias but high variance.
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Inference - Cross-Validation

To address the bias-variance trade-off, cross validation is
typically used to select σF2 .

Randomly divided dataset into J (typically, 10)
approximately equal sized validation sets.
Let Vj be the indices of the patients in jth validation set.
Let nj be the associated number of subjects.

Let F̂
(j)
2 (y2|y1;σF2) be the estimator of F ∗2 (y2|y1) based

on the dataset that excludes the jth validation set.
If σF2 is a good choice then one would expect

CVF∗
2
(·|·)(σF2 ) =

1

J

J∑
j=1


1

nj

∑
i∈Vj

R2,i

∫ {
I (Y2,i ≤ y2)− F̂

(j)
2 (y2|Y1,i ;σF2 )

}2
dF̂◦2 (y2)︸ ︷︷ ︸

Distance for i ∈ Vj



will be small, where F̂ ◦2 (y2) is the empirical distribution of
Y2 among subjects on-study at visit 2.
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Inference - Cross-Validation

For each individual i in the jth validation set with an
observed outcome at visit 2, we measure, by the quantity
above the horizontal brace, the distance (or loss) between
the collection of indicator variables
{I (Y2,i ≤ y2) : dF̂ ◦2 (y2) > 0} and the corresponding
collection of predicted values
{F̂ (j)

2 (y2|Y1,i ;σF2) : dF̂ ◦2 (y2) > 0}.
The distances for each of these individuals are then
summed and divided by the number of subjects in the jth
validation set.

An average across the J validation/training sets is
computed.

We can then estimate F ∗2 (y2|y1) by F̂2(y2|y1; σ̂F2), where
σ̂F2 = argmin CVF∗2 (·|·)(σF2).
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Inference - Cross-Validation

We use similar ideas to estimate

F ∗1 (y1|y0)

H∗2 (y1)

H∗1 (y0)

In our software, we set σF2 = σF1 = σF and minimize a single
CV function. The software refers to this smoothing parameter
as σQ .

In our software, we set σH2 = σH1 = σH and minimize a single
CV function. The software refers to this smoothing parameter
as σP .
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Inference - Potential Problem

The cross-validation procedure for selecting tuning
parameters achieves optimal finite-sample bias-variance
trade-off for the quantities requiring smoothing.

This optimal trade-off is usually not optimal for
estimating µ∗.

The plug-in estimator of µ∗ could possibly suffer from
excessive and asymptotically non-negligible bias due to
inadequate tuning.

This may prevent the plug-in estimator from enjoying
regular asymptotic behavior, upon which statistical
inference is generally based.

The resulting estimator may have a slow rate of
convergence, and common methods for constructing
confidence intervals, such as the Wald and bootstrap
intervals, can have poor coverage properties.
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Inference - Correct Procedure

To deal with this, we will ”correct” the plug-in estimator.

We will construct an estimator that is ”asymptotically
linear” (i.e., can be expressed as the average of i.i.d.
random variables plus a remainder term that is
asymptotically negligible).

Our one-step estimator is

plug-in + average of estimated influence functions

The influence function for a patient by ψ(O;F ,H). The

estimated influence function is ψ(O; F̂ , Ĥ).
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Inference - Uncertainty

An influence function-based 95% confidence interval takes
the form µ̂± 1.96ŝe(µ̂), where

ŝe(µ̂) =

√
En[ψ(O; F̂ , Ĥ)2]/n

In equal-tailed studentized bootstrap, the confidence
interval takes the form [µ̂− t0.975ŝe(µ̂), µ̂− t0.025ŝe(µ̂)],

where tq is the qth quantile of
{
µ̂(b)−µ̂
ŝe(µ̂(b))

: b = 1, . . . ,B
}

In symmetric studentized bootstrap, the confidence
interval takes the form [µ̂− t∗0.95ŝe(µ̂), µ̂ + t∗0.95ŝe(µ̂)],
where t∗0.95 is selected so that 95% of the distribution of{
µ̂(b)−µ̂
ŝe(µ̂(b))

: b = 1, . . . ,B
}

falls between −t∗0.95 and t∗0.95.

Useful to replace influence-function based standard error
estimator with jackknife standard error estimator.
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Quetiapine Bipolar Trial - Fit

Estimated smoothing parameters for the drop-out model
are 11.54 and 9.82 for the placebo and 600 mg arms.

Estimated smoothing parameters for the outcome model
are 6.34 and 8.05 for the placebo and 600 mg arms.

In the placebo arm, the observed percentages of last
being seen at visits 0 and 1 among those at risk at these
visits are 8.62% and 38.68%. Model-based estimates are
7.99% and 38.19%.

For the 600 mg arm, the observed percentages are
11.02% and 35.24% and the model-based estimates are
11.70% and 35.08%.
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Quetiapine Bipolar Trial - Fit

In the placebo arm, the Kolmogorov-Smirnov distances
between the empirical distribution of the observed
outcomes and the model-based estimates of the
distribution of outcomes among those on-study at visits 1
and 2 are 0.013 and 0.033.

In the 600 mg arm, these distances are 0.013 and 0.022.

These results suggest that our model for the observed
data fits the observed data well.
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Quetiapine Bipolar Trial - MAR

Under MAR, the estimated values of µ∗ are 46.45 (95%
CI: 42.35,50.54) and 62.87 (95% CI: 58.60,67.14) for the
placebo and 600 mg arms.

The estimated difference between 600 mg and placebo is
16.42 (95% 10.34, 22.51)

Statistically and clinically significant improvement in
quality of life in favor of Quetiapine.
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Quetiapine Bipolar Trial - Sensitivity Analysis

We set r(y) = y and ranged the sensitivity analysis
parameter from -10 and 10 in each treatment arm.

According to experts, there is no evidence to suggest that
there is a differential effect of a unit change in QLESSF
on the hazard of drop-out based on its location on the
scale.
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Quetiapine Bipolar Trial - Sensitivity Analysis

Figure: Treatment-specific (left: placebo; right: 600 mg/day
Quetiapine) estimates (along with 95% pointwise confidence
intervals) of µ∗ as a function of α.
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Quetiapine Bipolar Trial - Sensitivity Analysis

Figure: Treatment-specific differences between the estimated mean
QLESSF at Visit 2 among non-completers and the estimated mean
among completers, as a function of α.
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Quetiapine Bipolar Trial - Sensitivity Analysis

Figure: Contour plot of the estimated differences between mean
QLESSF at Visit 2 for Quetiapine vs. placebo for various
treatment-specific combinations of the sensitivity analysis
parameters.
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Quetiapine Bipolar Trial - Sensitivity Analysis

Only when the sensitivity analysis are highly differential
(e.g., α(placebo) = 8 and α(Quetiapine) = −8) are the
differences no longer statistically significant.

Conclusions under MAR are highly robust.
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Simulation Study

Generated 2500 placebo and Quetiapine datasets using
the estimated distributions of the observed data from the
Quentiapine study as the true data generating
mechanisms.

For given treatment-specific α, these true data generating
mechanisms can be mapped to a true value of µ∗.

For each dataset, the sample size was to set to 116 and
118 in the placebo and Quetiapine arms, respectively.
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Simulation Study - Bias/MSE

Placebo Quetiapine
α Estimator µ∗ Bias MSE µ∗ Bias MSE

-10 Plug-in 40.85 0.02 4.43 56.07 0.40 4.69
Corrected 0.43 4.56 0.42 4.72

-5 Plug-in 43.45 0.05 4.29 59.29 0.34 4.55
Corrected 0.27 4.26 0.24 4.35

-1 Plug-in 46.02 0.28 4.34 62.58 0.50 4.39
Corrected 0.18 4.22 0.14 4.00

0 Plug-in 46.73 0.36 4.44 63.42 0.55 4.36
Corrected 0.17 4.27 0.14 3.95

1 Plug-in 47.45 0.43 4.57 64.25 0.59 4.32
Corrected 0.16 4.36 0.15 3.92

5 Plug-in 50.48 0.66 5.33 67.34 0.59 4.20
Corrected 0.14 5.11 0.19 4.15

10 Plug-in 54.07 0.51 5.78 70.51 0.07 4.02
Corrected 0.04 6.30 -0.05 4.66
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Simulation Study - Coverage

Placebo Quetiapine
α Procedure Coverage Coverage
-10 Wald-IF 91.5% 90.5%

Wald-JK 95.0% 94.6%
Bootstrap-IF-ET 94.3% 93.8%
Bootstap-JK-ET 94.4% 93.4%
Bootstap-IF-S 95.2% 94.6%
Bootstap-JK-S 95.0% 94.6%

-5 Wald-IF 93.5% 92.9%
Wald-JK 95.0% 94.8%
Bootstrap-IF-ET 95.2% 94.6%
Bootstap-JK-ET 94.8% 94.6%
Bootstap-IF-S 95.4% 95.2%
Bootstap-JK-S 95.1% 95.2%

-1 Wald-IF 93.9% 94.2%
Wald-JK 94.9% 95.4%
Bootstrap-IF-ET 95.1% 94.8%
Bootstap-JK-ET 95.1% 94.6%
Bootstap-IF-S 95.3% 96.4%
Bootstap-JK-S 95.1% 96.3%

0 Wald-IF 93.8% 94.0%
Wald-JK 95.0% 95.4%
Bootstrap-IF-ET 94.6% 94.5%
Bootstap-JK-ET 94.6% 94.6%
Bootstap-IF-S 95.5% 96.6%
Bootstap-JK-S 95.2% 96.7%
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Simulation Study - Coverage

Placebo Quetiapine
α Procedure Coverage Coverage
1 Wald-IF 93.3% 93.7%

Wald-JK 95.1% 95.5%
Bootstrap-IF-ET 94.6% 94.6%
Bootstap-JK-ET 94.6% 94.6%
Bootstap-IF-S 95.5% 96.5%
Bootstap-JK-S 95.2% 96.5%

5 Wald-IF 90.8% 91.3%
Wald-JK 95.3% 95.7%
Bootstrap-IF-ET 93.2% 91.6%
Bootstap-JK-ET 93.8% 93.0%
Bootstap-IF-S 95.5% 95.4%
Bootstap-JK-S 95.8% 96.4%

10 Wald-IF 85.4% 87.8%
Wald-JK 94.9% 94.5%
Bootstrap-IF-ET 88.2% 87.0%
Bootstap-JK-ET 92.2% 89.7%
Bootstap-IF-S 94.6% 93.9%
Bootstap-JK-S 95.5% 95.1%
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Missing Data Matters

No substitute for better trial design and procedures to
minimize missing data.

Global sensitivity analysis should be a mandatory
component of trial reporting.

Visit us at www.missingdatamatters.org or email me at
dscharf@jhu.edu

We are happy to collaborate with you on executing global
sensitivity analyses using our software.
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Upcoming Short Courses

June 22, 2016 - Johns Hopkins University

July 26, 2016 - University of Washington

October 26-28, 2016 - BASS XXIII, Rockville, MD
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