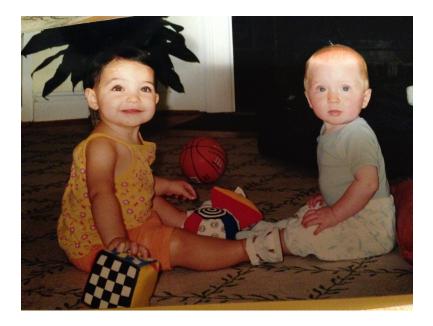
Inference in Randomized Trials with Death and Missingness

Daniel Scharfstein Johns Hopkins University dscharf@jhu.edu

April 4, 2016



- Anamorelin is a drug developed for the treatment of cancer cachexia and anorexia.
- HT-ANAM 302 was a randomized, double-blind, placebo-controlled Phase III study designed to evaluate the efficacy of anamorelin in patients with advanced non-small cell lung cancer.
- ► Lean body mass (LBM) was scheduled to be measured at baseline (Y₀), 6 weeks (Y₁) and 12 weeks (Y₂)
- Primary functional endpoint: $Z = \frac{(Y_2 + Y_1)}{2} Y_0$

	Placebo	Anamorelin
	<i>n</i> = 157	<i>n</i> = 322
Died Prior to Wk 12	24 (15.3%)	54 (16.8%)
Survivors with complete data	93 (59.2%)	185 (57.5%)
Survivors missing only Wk 6	3 (1.9%)	17 (5.3%)
Survivors missing only Wk 12	17 (10.8%)	31 (9.6%)
Survivors missing both Wks 6, 12	20 (12.7%)	35 (10.9%)

How should data from studies like HT-ANAM 302 be analyzed to evaluate the effect of treatment on the functional outcome?

- Distinction between missing data and data truncated by death
 - Missing data: exist but not collected
 - Data truncated by death: does not exist and undefined
- Can't just treat as a missing data problem.

Common Approaches

- 1. Evaluate treatment effect on functional outcome conditional on survival
 - Conditioning on post-baseline factor
- 2. Joint modeling survival and functional outcomes
 - Allows extrapolation of outcomes after death
- 3. Principal stratification
 - Applies to a subset of patients who are not identifiable at baseline
- 4. Composite endpoint combining survival and functional outcomes
 - May be hard to separate effect on function.

NO PERFECT SOLUTIONS

Not a fan of Approaches 1 and 2.

To construct a composite endpoint approach that handles both death and missing data

- T = 0, 1: treatment assignment
- X vector baseline covariates
- Y_0 : baseline functional measure at t_0
- Y_1, \ldots, Y_K : functional outcomes at t_1, \ldots, t_K
- L: survival time
- $A_k = I(L > t_k)$: survival status at t_k
- $Z = g(Y_0, \ldots, Y_K)$: primary functional endpoint
 - e.g. K = 2, $Z = (Y_2 + Y_1)/2 Y_0$
 - only defined when $A_K = 1$

Finite-valued random variable U which assigns a score to each patient such that

- each patient who dies prior to t_K is assigned a score according to their survival time (L), with shorter survival times assigned lower scores
- ► each patient who survives past t_K is assigned a score (higher than those who died prior to t_K) according to their functional status (Z), with lower functional status assigned lower scores.

Only the ordering of U is important, not the actual score assignments.

Treatment effect (θ) is measured by the probability that the outcome for an individual with T = 0 is less than the outcome of an individual with T = 1 minus the probability that the outcome for an individual with T = 0 is greater than the outcome of an individual with T = 1

- $\theta = 0$ under the null
- $\theta > 0$ favors T = 1; $\theta < 0$ favors T = 0
- First part: Mann-Whitney
- Second part: needed to handle ties

Can also compare the treatment-specific quantiles of U.

In the absence of missing data,

$$\widehat{\theta} = \frac{1}{n_0 n_1} \sum_{i: T_i = 0} \sum_{j: T_j = 1} \{ I(U_i < U_j) - I(U_i > U_j) \}$$

where $n_0 = \sum_i (1 - T_i)$ and $n_1 = \sum_i T_i$.

R_k: missing data indicator (defined when *A_k* = 1)
 S = (*R*₁,..., *R_K*) (defined when *A_K* = 1)
 Y^(s)_{obs} = {*Y_k* : *R_k* = 1, *k* ≥ 1, *S* = *s*}
 Y^(s)_{mis} = {*Y_k* : *R_k* = 0, *k* ≥ 1, *S* = *s*}
 Z is unobserved when *S* ≠ 1.

To estimate heta, need to impute Z or equivalently $Y_{\scriptscriptstyle mis}^{(s)}$ for $s
eq \mathbf{1}$

$$f(Y_{mis}^{(s)}|A_{K} = 1, Y_{obs}^{(s)}, Y_{0}, X, T, S = s)$$

$$\propto \exp(\beta_{T}Z) \underbrace{f(Y_{mis}^{(s)}|A_{K} = 1, Y_{obs}^{(s)}, Y_{0}, X, T, S = 1)}_{\text{Reference Distribution}}$$

for all $s
eq \mathbf{1}$,

- β_T is a treatment-specific sensitivity parameter.
- β_T = 0 (i.e., benchmark assumption) reduces to the complete case missing value (CCMV) restrictions applied to the missing data patterns for patients alive at t_K.
- CCMV is different than missing at random (MAR) assumption.

•
$$K = 2, Z = (Y_1 + Y_2)/2 - Y_0.$$

• $\beta'_T = 2\beta_T$

$$f(Y_2|A_2 = 1, Y_1, Y_0, X, T, S = (1,0))$$

\$\propto \exp(\beta'_T Y_2) \frac{f(Y_2|A_2 = 1, Y_1, Y_0, X, T, S = 1)}{f(Y_2|A_2 = 1, Y_1, Y_0, X, T, S = 1)}\$

Reference Distribution

For subjects alive at t_2 , who are observed at time t_1 , who share the same functional measure at t_1 and who share the same baseline factors, the distribution of Y_2 for those whose functional measure at t_2 is missing is, when $\beta'_T > 0$ (< 0), more heavily weighted toward higher (lower) values of Y_2 than those whose functional measure at t_2 is observed.

$$f(Y_1|A_2 = 1, Y_2, Y_0, X, T, S = (0, 1))$$

$$\propto \exp(\beta'_T Y_1) \underbrace{f(Y_1|A_2 = 1, Y_2, Y_0, X, T, S = \mathbf{1})}_{\text{Reference Distribution}}$$

For subjects alive at t_2 , who are observed at time t_2 , who share the same functional measure at t_2 and who share the same baseline factors, the distribution of Y_1 for those whose functional measure at t_1 is missing is, when $\beta'_T > 0$ (< 0), more heavily weighted toward higher (lower) values of Y_1 than those whose functional measure at t_1 is observed.

$$f(Y_1, Y_2 | A_2 = 1, Y_0, X, T, S = (0, 0))$$

$$\propto \exp(\beta'_T(Y_1 + Y_2)) \underbrace{f(Y_1, Y_2 | A_2 = 1, Y_0, X, T, S = \mathbf{1})}_{\text{Reference Distribution}}$$

For subjects alive at t_2 and who share the same baseline factors, the joint distribution of Y_1 and Y_2 for those whose functional measures at t_1 and t_2 are missing is, when $\beta'_T > 0$ (< 0), more heavily weighted toward higher (lower) values of Y_1 and Y_2 than those whose measures are fully observed.

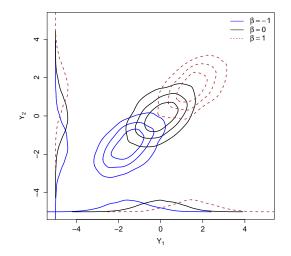
Ignore conditioning on Y₀ and X and suppose f(Y₁, Y₂|A₂ = 1, T, S = 1) is multivariate normal with mean (µ_{T,1}, µ_{T,2}) and variance-covariance matrix

$$\Sigma_{\mathcal{T}} = \begin{bmatrix} \sigma_{\mathcal{T},1}^2 & \rho_{\mathcal{T}}\sigma_{\mathcal{T},1}\sigma_{\mathcal{T},2} \\ \rho_{\mathcal{T}}\sigma_{\mathcal{T},1}\sigma_{\mathcal{T},2} & \sigma_{\mathcal{T},2}^2 \end{bmatrix}$$

- $f(Y_2|A_2 = 1, Y_1, T, S = (1, 0))$ is normal with mean $\mu_{T,2} + \beta'_T (1 - \rho_T^2) \sigma_{T,2}^2 + \rho_T \frac{\sigma_{T,2}}{\sigma_{T,1}} (Y_1 - \mu_{T,1})$ and variance $(1 - \rho_T^2) \sigma_{T,2}^2$
- $f(Y_1|A_2 = 1, Y_2, T, S = (0, 1))$ is normal with mean $\mu_{T,1} + \beta'_T (1 - \rho_T^2) \sigma_{T,1}^2 + \rho_T \frac{\sigma_{T,1}}{\sigma_{T,2}} (Y_2 - \mu_{T,2})$ and variance $(1 - \rho_T^2) \sigma_{T,1}^2$

- $f(Y_1, Y_2|A_2 = 1, T, S = (0, 0))$ is multivariate normal with mean $(\mu_{T,1} + \beta'_T \sigma^2_{T,1} + \beta'_T \rho_T \sigma_{T,1} \sigma_{T,2}, \mu_{T,2} + \beta'_T \sigma^2_{T,2} + \beta'_T \rho_T \sigma_{T,1} \sigma_{T,2})$ and variance-covariance matrix Σ_T .
- If $\rho_T > 0$, then the means increase linearly in β'_T
- β'_T has no impact on the variances and covariances.
- β'_T > 0 (β'_T < 0) implies that the non-identified distributions have more (less) mass at higher values than their reference distributions.

Example: Exponential tilting



Modeling

Need to specify of a model for

$$f(\overline{Y}_{\mathcal{K}}|\mathcal{A}_{\mathcal{K}}=1,\,Y_0,X,\,T,\,S=\mathbf{1})$$

To respect bounds, define

$$\phi(y_k) = \log\left\{\frac{y_k - B_L}{B_U - y_k}\right\},\,$$

•
$$Y_k^{\dagger} = \phi(Y_k)$$
 and $\overline{Y}_k^{\dagger} = (Y_1^{\dagger}, \dots, Y_k^{\dagger}).$

One-to-one mapping between

$$h(\overline{Y}_{K}^{\dagger}|A_{K}=1, Y_{0}, X, T, S=1)$$

and

.

$$f(\overline{Y}_{K}|A_{K}=1,Y_{0},X,T,S=\mathbf{1})$$

$$h(\overline{Y}_{K}^{\dagger}|A_{K}=1, Y_{0}, X, T, S=\mathbf{1}) = \prod_{k=1}^{K} h(Y_{k}^{\dagger}|A_{K}=1, \overline{Y}_{k-1}^{\dagger}, Y_{0}, X, T, S=\mathbf{1})$$

Posit a model for each component of the product.

$$\begin{split} h(Y_k^{\dagger}|A_{\mathcal{K}} = 1, \overline{Y}_{k-1}^{\dagger}, Y_0, X, T = t, S = \mathbf{1}) \\ = h_{k,t}(Y_k^{\dagger} - \mu_{k,t}(\overline{Y}_{k-1}^{\dagger}, Y_0, X; \boldsymbol{\alpha}_{k,t})) \end{split}$$

•
$$\mu_{k,t}(\overline{Y}_{k-1}^{\dagger}, Y_0, X; \alpha_{k,t})$$
 is a specified function

- $\alpha_{k,t}$ is an unknown parameter vector
- *h_{k,t}* is an unspecified time/treatment-specific density function.

Estimation

The parameter vectors \(\alpha_{k,t}\) can be estimated by minimizing the least squares objective function

$$\sum_{i=1}^{n} I(T_i = t) A_{K,i} \left(\prod_{k=1}^{K} R_{k,i} \right) \{ Y_{k,i}^{\dagger} - \mu_{k,t} (\overline{Y}_{k-1}^{\dagger}, Y_0, X; \boldsymbol{\alpha}_{k,t}) \}^2$$

The density function h_{k,t} can be estimated by kernel density estimation based on the residuals
{Y[†]_{k,i} − µ_{k,t}(\$\vec{Y}^{†}_{k-1,i}, Y_{0,i}, X_i; \$\hat{\alpha}_{k,t}\$) : \$T_i = t, A_{K,i} = 1, R_{1,i} = ..., R_{K,i} = 1, i = 1, ..., n\$}

f(\$\vec{Y}_K | A_K = 1, Y_0, X, T, S = 1\$) is estimated by

$$\prod_{k=1}^{K} \widehat{h}_{k,t}(Y_{k}^{\dagger} - \mu_{k,t}(\overline{Y}_{k-1}^{\dagger}, Y_{0}, X; \widehat{\alpha}_{k,t})) \left| \frac{d\phi(Y_{k})}{dY_{k}} \right|.$$

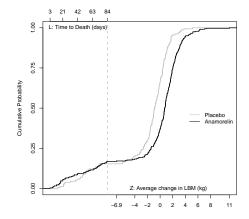
Imputation/Estimation

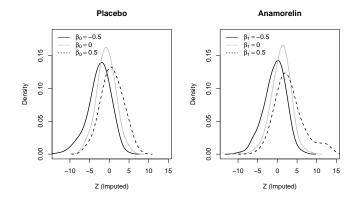
For each individual *i* alive at t_K and who is in a stratum s ≠ 1, impute the missing functional outcomes by drawing (using Metropolis-Hastings algorithm) from the density that is proportional to

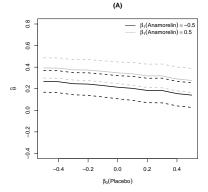
$$\exp(\beta_T Z) \widehat{f(Y_{mis}^{(s)}|A_K = 1, Y_{obs}^{(s)} = Y_{obs,i}, Y_0 = Y_{0,i}, X = X_i, T = T_i, S = 1)$$

- Draw *M* copies of the missing functional outcomes to create *M* complete datasets.
- For each complete dataset m, estimate θ by $\widehat{\theta}_m$.
- Overall estimator of θ is $\tilde{\theta} = \frac{1}{M} \sum_{m=1}^{M} \widehat{\theta}_{m}$.
- Confidence intervals can be constructed by non-parametric bootstrap

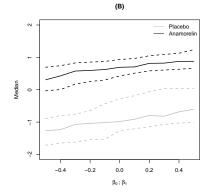
- Baseline covariates: ECOG performance status, age, gender, BMI, weight loss in prior 6 months
- LBM is bounded between 24 and 140
- 10 imputed datasets
- Under benchmark assumptions,
 - $\widehat{\theta} = 0.30 \; (95\% \; \text{CI:} \; 0.16 \; \text{to} \; 0.37, \; p < 0.0001)$
 - Placebo: Median -0.98 kg (95% Cl: -1.27 kg to -0.28 kg).
 - Anamorelin: Median 0.69 kg (95% CI: 0.43 kg to 0.93 kg).

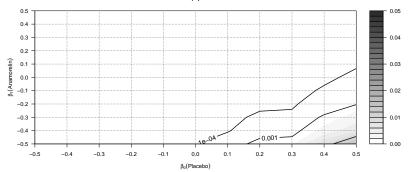






Scharfstein Death and Missingness





(C)

Discussion

- Method presumes that death and the functional outcome can be ordered in a scientifically meaningful way.
- Use mixed methods to confirm that ordering is consistent with the health preferences of patient population.
- Ranking scheme is similar to 'untied worst-rank score analysis" for missing data of Lachin (1999).
- ► The "worst-rank score analysis" ranks all the patients who died (A_K = 0) the same and is also commonly used.
- CCMV is a strong benchmark assumption.
- Assumed survival time is always known, need to extend methods to handle censoring.
- Software is available at http://sow.familyds.com/shiny/composite/.