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1 Executive Summary

Missing outcome data are a widespread problem in randomized trials, including those used as
the basis of regulatory approval of drugs and devices. Inference about treatment effects relies
on unverifiable assumptions about the nature of the mechanism that generates the missing
data, leading to concerns about the validity and robustness of trial results. A 2010 FDA-
sponsored National Research Council Report (NRC) recommends that “examining sensitivity
to the assumptions about the missing data mechanism should be a mandatory component
of reporting.” [2] Chapter 5 of the NRC report outlined a framework for conducting global
sensitivity analysis.

In this three year contract, we (1) developed methods for global sensitivity analysis of
clinical trials with monotone and non-monotone missing data, (2) implemented the methods
in free, open source R and SAS software, (3) demonstrated the methods and software using
real clinical trial data, and (4) disseminated the methods and software through presentations,
short courses, webinars and manuscripts.

2 Project Objectives

The objectives of this project were to:

1. create unified and coherent methods for global sensitivity analysis of clinical trials with
monotone and non-monotone missing data,

2. develop free, open source and reproducible software in SAS and R to implement the
methods,

3. demonstrate the methods and software using real clinical trial data, and

4. disseminate the methods and software through presentations, short courses, webinars
and manuscripts.

3 Background on Global Sensitivity Analysis

Chapter 5 of the NRC report lays out a general framework for global sensitivity analysis.
In this framework, inference about treatment effects requires two types of assumptions: (i)
untestable assumptions about the distribution of outcomes among those with missing data
and (ii) testable assumptions that serve to increase the efficiency of estimation. Type (i)
assumptions are required to “identify” parameters of interest: identification means that
one can mathematically express parameters of interest (e.g., treatment arm-specific means,
treatment effects) in terms of the distribution of the observed data. In other words, if one
were given the distribution of the observed data and given a type (i) assumption, then
one could compute the value of the parameter of interest. In the absence of identification,
one cannot learn the value of the parameter of interest based only on knowledge of the
distribution of the observed data. Identification implies that the parameters of interest can,
in theory, be estimated if the sample size is large enough.
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There are an infinite number of ways of positing type (i) assumptions. It is impossible
to consider all such assumptions. A reasonable way of positing these assumptions is to

(a) stratify individuals with missing outcomes based on some features, and

(b) separately for each stratum, hypothesize a connection (or link) between the distribution
of the missing outcomes with the distribution of these outcomes for patients who share
the same features and for whom the distribution is identified.

The connection that is posited in (b) is a type (i) assumption. The problem with this
approach is that the stratum of people who share the same features will typically be very
small. As a result, it is necessary to draw strength across strata by “smoothing.” Smoothing
is required because, in practice, we are not working with large enough sample sizes. Without
smoothing, the data analysis will not be informative because the uncertainty (i.e., standard
errors) of the parameters of interest will be too large to be of substantive use. Thus, it is
necessary to impose type (ii) smoothing assumptions. Type (ii) assumptions are testable
(i.e., place restrictions on the distribution of the observed data) and should be scrutinized
via model checking.

The global sensitivity framework proceeds by parameterizing (i.e., indexing) the con-
nections (i.e., type (i) assumptions) in (b) above via sensitivity analysis parameters. The
parameterization is configured so that a specific value of the sensitivity analysis parameters
(typically set to zero) corresponds to a benchmark connection that is considered reasonably
plausible and sensitivity analysis parameters further from the benchmark value represent
more extreme departures from the benchmark connection.

4 Deliverables

The deliverables of the project were to create:

1. a project website

2. methods, SAS/R modules, user documentation, case studies, short courses and manuscripts
for monotone missing data

3. methods, SAS/R modules, user documentation, case studies, short courses and manuscripts
for non-monotone missing data

4. methods, SAS/R modules, user documentation, case studies, short courses and manuscripts
based user-feedback.

4.1 Project Website

We created a project website www.missingdatamatters.org. The website serves as a repos-
itory for software and presentation materials. To date, 320 individuals have registered to
download software.
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4.2 Monotone Missing Data

4.2.1 Methods

Notation: Let k = 0, 1, . . . , K refer in chronological order to the scheduled assessment
times, with k = 0 corresponding to baseline. Let Yk denote the outcome scheduled to be
measured at assessment k. Define Rk to be the indicator that an individual is on-study
at assessment k. We assume that all individuals are present at baseline. Furthermore, we
assume that individuals do not contribute any further data once they have missed a visit. Let
C = max{k : Rk = 1} and note that C = K implies that the individual must have completed
the study. For any given vector z = (z1, z2, . . . , zK), we define zk = (z0, z1, . . . , zk) and
zk = (zk+1, zk+2, . . . , zK). For each individual, O = (C, Y C) is drawn from some distribution
P ∗ contained in the non-parametric model M of distributions. The observed data consist of
n independent draws O1, O2, . . . , On from P ∗. The superscript ∗ will be used to denote the
true value of the quantity to which it is appended.

By factorizing the distribution of O in terms of chronologically ordered conditional dis-
tributions, any distribution P ∈M can be represented by

• F0(y0) := P (Y0 ≤ y0);

• Fk+1(yk+1 | yk) := P
(
Yk+1 ≤ yk+1 | Rk+1 = 1, Y k = yk

)
, k = 0, 1, . . . , K − 1;

• Hk+1(ȳk) := P
(
Rk+1 = 0 | Rk = 1, Y k = yk

)
, k = 0, 1, . . . , K − 1.

The main objective is to draw inference about µ∗ := E∗(YK), the true mean outcome at visit
K in a hypothetical world in which all patients are followed to that visit.

Assumptions: Assumptions are required to draw inference about µ∗ based on the available
data. We consider a class of assumptions whereby an individual’s decision to drop out in the
interval between visits k and k + 1 is not only influenced by past observable outcomes but
by the outcome at visit k + 1. Towards this end, we adopt the following two assumptions
introduced in [3]: For k = 0, 1, . . . , K − 2,

P ∗
(
YK ≤ y | Rk+1 = 0, Rk = 1, Y k+1 = yk+1

)
= P ∗

(
YK ≤ y | Rk+1 = 1, Y k+1 = yk+1

)
.
(1)

This says that in the cohort of patients who (1) are on-study at assessment k, (2) share the
same outcome history through that visit and (3) have the same outcome at assessment k+1,
the distribution of YK is the same for those last seen at assessment k and those still on-study
at k + 1.

For k = 0, 1, . . . , K − 1,

dG∗k+1(yk+1 | yk) ∝ exp{ρk+1(yk, yk+1)}dF ∗k+1(yk+1 | yk) , (2)

where G∗k+1(yk+1 | yk) := P ∗
(
Yk+1 ≤ yk+1 | Rk+1 = 0, Rk = 1, Y k = yk

)
and ρk+1(yk, yk+1) is

a known, pre-specified function of yk and yk+1.

Conditional on any given history yk, this assumption relates the distribution of Yk+1 for those
patients who drop out between assessments k and k + 1 to those patients who are on study
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at k+ 1. The special case whereby ρk+1 is constant in yk+1 for all k implies that, conditional
on the history yk, individuals who drop out between assessments k and k+ 1 have the same
distribution of Yk+1 as those on-study at k + 1. If instead ρk+1 is an increasing (decreasing)
function of yk+1 for some k, then individuals who drop-out between assessments k and k+ 1
tend to have higher (lower) values of Yk+1 than those who are on-study at k + 1.

For specified ρk+1, Assumptions (1) and (2) are type(i) assumptions; they place no restric-
tion on the distribution of the observed data. As such, ρk+1 is not an empirically verifiable
function.

Identifiability of target parameter: Under Assumptions 1 and 2 with given ρk+1, the
parameter µ∗ is identifiable. To establish identifiability, it suffices to demonstrate that µ∗

can be expressed as a functional of the distribution of the observed data. The functional
µ(P ∗) can be equivalently expressed as

∫

y0

· · ·
∫

yK

yK

K−1∏

k=0

{
dF ∗k+1(yk+1 | yk)

{
1−H∗k+1(yk)

}
+

exp{ρk+1(yk, yk+1)}dF ∗k+1(yk+1 | yk)∫
exp{ρk+1(yk, u)}dF ∗k+1(u | yk)

H∗k+1(yk)

}
dF ∗0 (y0) . (3)

Statistical inference: Given a fixed function ρk+1, [3] proposed to estimate µ∗ via the
plug-in principle. Specifically, they specify type(ii) smoothing assumptions in the form of
parametric models for both F ∗k+1 andH∗k+1, estimate parameters in these models by maximum
likelihood, estimate F ∗0 nonparametrically using the empirical distribution function, and
finally, estimate (3) by Monte Carlo integration using repeated draws from the resulting
estimates of F ∗k+1, H

∗
k+1 and F ∗0 . Since (3) is a smooth functional of F ∗0 and of the finite-

dimensional parameters of the models for F ∗k+1 and H∗k+1, the resulting estimator of µ∗

is n1/2-consistent and, suitably normalized, tends in distribution to a mean-zero Gaussian
random variable.

While simple to describe and easy to implement, this approach has a major drawback:
the inferences it generates will be sensitive to correct specification of the parametric models
imposed on F ∗k+1 and H∗k+1. Since the fit of these models is empirically verifiable, the
plausibility of the models imposed can be scrutinized in any given application. In several
instances, we have found it difficult to find models providing an adequate fit to the observed
data. This is a serious problem since model misspecification will generally lead to inconsistent
inference, which can translate into inappropriate and misleading scientific conclusions. To
provide greater robustness, we instead adopted a more flexible modeling approach.

Instead, we assumed that P ∗ is contained in the submodel M0 ⊂M of distributions that
exhibit a first-order Markovian structure in the sense that Fk+1(yk+1 | yk) = Fk+1(yk+1 | yk)
and Hk+1(ȳk) = Hk+1(yk). We can then estimate F ∗k+1 and H∗k+1 by Nadaraya-Watson kernel
estimators and select the associated tuning parameters by J-fold cross validation.

The tuning parameters are generally chosen to achieve an optimal finite-sample bias-
variance trade-off for the quantity requiring smoothing - here, conditional distribution and
probability mass functions. However, this trade-off may be problematic, since the resulting
plug-in estimator µ(P̂ ) may suffer from excessive and asymptotically nonnegligible bias due
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to inadequate tuning. This may prevent the plug-in estimator from having regular asymp-
totic behavior. In particular, the resulting estimator may have a slow rate of convergence,
and common methods for constructing confidence intervals, such as the Wald and boot-
strap intervals, can have poor coverage properties. Therefore, the plug-in estimator must be
regularized in order to serve as an appropriate basis for drawing statistical inference.

To address this problem, we employ a one-step bias correction procedure. This procedure
involves adding a bias correction term to the plug-in estimator. The bias correction term is
the average of the estimated “influence function”, which measures the impact of “infinites-
imal” contamination of P ∗ on (3). The resulting corrected estimator can be shown to have
second-order asymptotic bias that ensures regular asymptotic behavior.

To characterize the uncertainty of our estimation procedure, we utilize bootstrapping
techniques.

4.2.2 SAS/R Modules and User Documentation

A software package called SAMON was created. R Version 1.0 was posted on 12/12/2014 and
SAS Version 1.0 was posted on 3/6/2015. R and SAS versions 2.0 were posted on 8/18/2015.
R and SAS versions 3.0 were posted on 10/29/2016. R and SAS versions 4.0 are scheduled
to be posted by 5/31/2017. Each software release includes user documentation.

4.2.3 Case Studies

Three case studies were developed that illustrate the methods developed to handle studies
with monotone missing data. These include:

1. A randomized, placebo controlled trial comparing the effectiveness of four fixed doses of
risperidone and one dose of haloperidol in schizophrenic patients. The primary outcome
was patient function as measured by the total Positive and Negative Syndrome Scale
score.

2. A randomized trial designed to evaluate the efficacy and safety of once-monthly, in-
jectable paliperidone palmitate, as monotherapy or as an adjunct to pre-study mood
stabilizers or antidepressants, relative to placebo in delaying the time to relapse in
patients with schizoaffective disorder. The primary outcome was patient function as
measured by the Personal and Social Performance scale.

3. A randomized trial designed to evaluate the efficacy of different doses of Quetiapine on
treating patients with bipolar disorder. A key outcome was quality of life as measured
by the Quality of Life Enjoyment Satisfaction Questionnaire.

4.2.4 Presentations

Over the course of the contract, we gave six short courses:

1. Scharfstein: Global Sensitivity Analysis of Randomized Trials with Missing Data: Re-
cent Advances, Deming Conference, 12/2014.
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2. Scharfstein, McDermott, Wang: Analysis of Randomized Trials with Missing Data,
Johns Hopkins University, 1/2015.

3. Scharfstein: Global Sensitivity Analysis of Randomized Trials with Missing Data, So-
ciety for Clinical Trials, 5/2015.

4. Scharfstein, McDermott, Wang: Analysis of Randomized Trials with Missing Data,
FDA, 11/2015.

5. Scharfstein, McDermott, Wang: Analysis of Randomized Trials with Missing Data,
Johns Hopkins University, 6/2016.

6. Scharfstein: Analysis of Randomized Trials with Missing Data, University of Washing-
ton, 7/2016.

eight oral presentations:

1. McDermott: Global Sensitivity Analysis of Repeated Measures Studies with Informa-
tive Dropout: A Semi- Parametric Approach, Joint Statistical Meetings of American
Statistical Association, 8/2104.

2. Scharfstein: Global Sensitivity Analysis of Repeated Measures Studies with Informa-
tive Dropout: A Semi- Parametric Approach, Joint Statistical Meetings of American
Statistical Association, University of Rochester, 9/2014.

3. Scharfstein: Global Sensitivity Analysis of Randomized Trials with Missing Data: A
Frequentist Perspective. FDA - Center for Tobacco Products, 11/2015.

4. Scharfstein: Missing Data and Sensitivity Analyses in Randomized Trials, Glaxo-
SmithKline, 11/2015.

5. Scharfstein: Global Sensitivity Analysis of Randomized Trials with Missing Data: From
the Software Development Trenches, National Institute of Statistical Sciences. 11/2015.

6. Scharfstein: Inference in Randomized Trials with Death and Missingness, Brown Uni-
versity, 4/2016.

7. Scharfstein: Analysis of Randomized Trials with Missing Data, Novartis, 12/2016.

8. Scharfstein: Global Sensitivity Analysis of Randomized Trials with Missing Data, Ev-
idera, 3/2017.

two webinars:

1. Scharfstein: Analysis of Randomized Trials with Missing Data, American Statistical
Association, 5/2016.

2. Scharfstein: Analysis of Randomized Trials with Missing Data, American Statistical
Association, 9/2016.

one poster:
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1. Scharfstein: Global Sensitivity Analysis of Randomized Trials with Missing Data, FDA
ORSI Symposium, 4/2015.

one on-line lecture:

1. Scharfstein, Li: Analysis of Prospective Studies with Missing Data, Johns Hopkins
University, 7/2016.

4.2.5 Manuscripts

A technical manuscript (see Appendix A) describing the statistical methods described in
Section 4.2.1 has been accepted for publication in Biometrics. The citation for the manuscript
is:

• Scharfstein DO, McDermott A, Diaz I, Carone M, Lunardon N and Turkoz I (2017):
“Global Sensitivity Analysis of Repeated Measures Studies with Informative Drop-out:
A Semi-Parametric Perspective”. Biometrics. To Appear. [5]

A second manuscript (see Appendix B) that provides a more accessible explication of
the statistical methods described in Section 4.2.1 is under review at Statistical Methods in
Medical Research. The citation for the manuscript is:

• Scharfstein DO and McDermott A (2017): “Global Sensitivity Analysis of Clinical Tri-
als with Missing Patient Reported Outcomes”. Statistical Methods in Medical Research.
Under Review.

4.2.6 Discussion

In the original application, we proposed to specify type (ii) smoothing assumptions in the
form of parametric models for both F ∗k+1 and H∗k+1 (see Section 4.2.1). After the contract was
awarded, we discovered, in a couple of case studies, that we were unable to posit parametric
models that provided adequate fits to the observed data. This led us to develop methods
that rely on more flexible models involving Markovian assumptions and non-parametric
smoothing. This required major methodological development since the standard plug-in
estimator was no longer guaranteed to have adequate large sample properties.

Using our new methods, we found, in realistic simulation studies, that standard Wald-
type confidence intervals did not provide adequate coverage. This led us to explore resampling-
based techniques for constructing confidence intervals. Ultimately, we discovered that con-
fidence intervals constructed using a combination of jackknife standard errors coupled with
symmetric parametric bootstrap provided reasonable coverage.

We have found that our new procedure can be sensitive to outliers. That is, there can be
observations in a given dataset that can have excessive influence on the results. To date, we
have not yet found a data-adaptive solution to this problem. We plan to explore this issue
in the future.
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4.3 Non-monotone Missing Data

In the original application, we planned to develop separate sensitivity analysis procedures for
studies with non-monotone missing data. These procedures were to be based on parametric
models for the distribution of the observed data. Given the problem discussed above and the
fact that, in many studies, missingness prior to last visit on study is a second order issue,
we decided to adopt the following imputation strategy.

4.3.1 Methods

Notation: Let Mk denote the indicator that Yk is unobserved at time k. We assume that
M0 = 0 and MC = 0. By construction, Mk = 1 if Rk = 0. Let Ok = (Mk, Yk : Mk = 0).
The observed data for an individual are OK . With this notation, O0 = Y0 and C can be
computed from OK as max{k : Mk = 0}.

Identifiability Asssumption: To handle missing data prior to last visit on study, we
adapt an untestable identifiability assumption from Robins (1997). Specifically, we assume
that, for 0 < k < C, Mk is independent of Yk given Y k−1 and Ok. In words, this assumption
says that, while on-study, the probability of providing outcome data at time k can depend
on previous outcomes (observed or not) and observed data after time k. Alternatively,
imagine a stratum of individuals who share the same history of outcomes prior to time k and
same observed data after time k. Now, imagine splitting the stratum into two sets: those
who provide outcome data at time k (stratum B) and those who do not (stratum A). This
assumption says that the distribution of the outcome at time k is the same for these two
strata. Mathematically, we write this assumption as follows:

dF ∗(Yk|Mk = 1, Y k−1, Ok︸ ︷︷ ︸
Stratum A

) = dF ∗(Yk|Mk = 0, Y k−1, Ok︸ ︷︷ ︸
Stratum B

) : 0 < k < C. (4)

Using Bayes’ rule, (4) can be written as follows:

P ∗(Mk = 1 | Y k, Ok) = P ∗(Mk = 1 | Y k−1, Ok) : 0 < k < C. (5)

Letting ρ∗k(Y k−1, Ok) = P ∗(Mk = 1 | Y k−1, Ok), it can be shown that

Mk ⊥ Yk | ρ∗k(Y k−1, Ok) : 0 < k < C (6)

Under assumption (4), the joint distribution of (C, Y C) (i.e., the monotonized) is identi-
fied by a recursive algorithm.

Smoothing Assumptions: We assume fully parametric restrictions on ρ∗k(Y k−1, Ok). Specif-
ically, we assume

logit{ρ∗k(Y k−1, Ok)} = wk(Y k−1, Ok; ν
∗
k); k = 1, . . . , K − 1 (7)

where wk(Y k−1, Ok; νk) is a specified function of its arguments and νk is a finite-dimensional
parameter with true value ν∗k .
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Simultaneous Estimation/Imputation: The parameters ν∗k (k = 1, . . . , K − 1) can be
estimated and the intermittent missingness can be imputed using the following sequential
procedure:

1. Set k = 1.

2. Estimate ν∗k by ν̂k as the solution to:

n∑

i=1

Rk,idk(Y k−1,i, Ok,i; νk)
(
Mk,i − expit{wk(Y k−1,i, Ok,i; νk)}

)
= 0,

where dk(Y k−1, Ok; ν
∗
k) is the derivative of wk(Y k−1, Ok; νk) with respect to νk evaluated

at ν∗k .

3. For each individual i with Rk,i = 1, compute

ρ̂k(Y k−1,i, Ok,i) = expit{wk(Y k−1,i, Ok,i; ν̂k)}.

Let Jk = {i : Rk,i = 1,Mk,i = 0} and J ′k = {i : Rk,i = 1,Mk,i = 1}. For each individual
i ∈ J ′k, impute Yk,i by randomly selecting an element from the set

{
Yk,l : l ∈ Jk, ρ̂k(Y k−1,l, Ok,l) is ”near” ρ̂k(Y k−1,i, Ok,i)

}
(8)

4. Set k = k + 1. If k = K then stop. Otherwise, return to Step 2.

The imputation part of this algorithm is similar in spirit to the sequential missing data
imputation strategy of [1].

We use this algorithm to create to M monotone missing datasets. The monotone missing
data methods discussed above can then be applied to each of these datasets. Overall point es-
timates can be obtained by averaging across imputed datasets. That is, µ̃α = 1

M

∑M
m=1 µ̃α,m,

where µ̃α,m is the one-step estimator of µ∗ based on the mth imputed dataset.
To characterize the uncertainty of our estimation procedure, we utilize bootstrapping

techniques.

4.3.2 SAS/R Modules and User Documentation

R and SAS versions 3.0 of SAMON, posted on 10/29/2016, includes the above imputation
method for handling missing data prior to last visit on-study. R and SAS versions 4.0 are
scheduled to be posted by 5/31/2017. Each software release includes user documentation.

4.3.3 Case Studies

Two case studies were developed that illustrate the methods developed to handle studies
with non-monotone missing data. These include:

1. Randomized trials designed to evaluate the efficacy of different doses of topiramate
in reducing pain in patients with diabetic peripheral polyneuropathy. The primary
outcome was patient reported pain, measured measured on a 100-mm Visual Analog
Scale.
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2. A randomized designed to evaluate the effectiveness of a jobs training program. The
intervention was designed to teach unemployed workers skills related to searching for
employment such as the preparation of job applications and resumes and how to suc-
cessfully interview. The primary outcome was employment.

4.3.4 Presentations

No presentations have yet been given that describe the proposed method for imputing missing
data prior to last visit on-study. The FDA short course planned for 5/8/2017 will describe
this methodology.

4.3.5 Manuscripts

Since we changed our strategy for intermittent missing data, we do not view the associated
method as a stand alone technical manuscript. Rather, we plan to discuss our strategy as
a separate chapter in the book we plan to publish. We originally planned to publish this
book in a traditional format via Cambridge University Press. After further consideration,
we plan to publish the book via Leanpub, as this will allow us to dynamically update it as
our methods and software change. The book is currently two-thirds complete and will be
submitted for publication by August 31, 2107.

4.3.6 Discussion

The need to develop and test new methods than those proposed in the original application
delayed our ability to complete more presentations and manuscripts by the end of the contract
period.

4.4 User Feedback

We only received feedback from a summer intern hired by the FDA. The intern make rel-
atively minor suggestions to improve the software. These suggestions will be incorporated
into R and SAS versions 4.0 of SAMON to be released by 5/31/2017. None of the suggestions
necessitated new methodological developments.

5 Auxiliary Projects

During the course of project, we published additional manuscripts about the analysis of
randomized trials with missing data.

The first manuscript relates to the trials in which each enrolled subject is expected to
undergo a fixed sequence of “pass/fail” tests, one or more test results may be missing, and in-
terest is focused on estimating the distribution of the earliest test at which a subject “passes”
(“fails”) that and all subsequent tests. This manuscript was motivated by tuberculosis trials.
It was published in the Annals of Applied Statistics. The citation for the manuscript is:
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• Scharfstein DO, Rotnitzky A, Abraham M, McDermott A, Chaisson R and Geiter L
(2016): “On the Analysis of Tuberculosis Studies with Intermittent Missing Sputum
Data”. Annals of Applied Statistics. [4]

The second manuscript discusses how to analyze trials in which (1) patients are at high
risk of death, (2) functional outcomes are scheduled to be measured on patients who survive
to fixed points in time after randomization and (3) there are missing functional outcome
data among survivors. This manuscript was motivated by a trial of treatment for late-stage
cancer. It was published in Biometrics. The citation for the manuscript is:

• Wang CG, Scharfstein DO, Colantuoni E, Girard T and Yan Y(2015): “Inference in
Randomized Trials with Death and Missingness”. Biometrics. [6]

An R package called idem has been developed, a translational manuscript is under revision
for the British Medicial Journal and manuscript that describes the methods and software is
in preparation for the Journal of Statistical Software.

Finally, we wrote a letter to the editor of Journal of General Internal Medicine about
the challenge of missing data in randomized trials in which outcomes are scheduled to be
collected from electronic health records. The citation for the letter is:

• Kharrazi A, Wang CG and Scharfstein DO (2015): “Prospective HER-Based Clinical
Trials: The Challenge of Missing Data”. Journal of General Internal Medicine. [?]
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1. Introduction

We consider a prospective cohort study design in which outcomes are scheduled to be

collected at fixed time-points after enrollment and the parameter of interest is the mean

outcome at the last scheduled study visit. We are concerned with drawing inference about this

target parameter in the setting where some study participants prematurely stop providing

outcome data.

Identifiability of the target parameter requires untestable assumptions about the nature

of the process that leads to premature withdrawal. A common benchmark assumption,

introduced by Rubin (1976), is that a patient’s decision to withdraw between visits k and

k + 1 depends on outcomes through visit k (i.e., past), but not outcomes after visit k (i.e.,

future). This assumption has been referred to as missing at random (MAR). A weaker version

of this assumption, termed sequential ignorability (SI), posits that the withdrawal decision

depends on outcomes through visit k, but not the outcome at the last scheduled study

visit (Birmingham et al., 2003). MAR yields identification of the entire joint distribution

of the outcomes, while SI only admits identification of the distribution of the outcome at

the last scheduled visit. Both parametric (e.g., Schafer, 1997; Little and Rubin, 2014) and

semi-parametric (e.g., van der Laan and Robins, 2003; Tsiatis, 2006) approaches have been

proposed for drawing inference about the target parameter under these assumptions.

For such untestable assumptions, it is important to conduct a sensitivity analysis to

evaluate the robustness of the resulting inferences (e.g., Little et al., 2010; ICH, 1998; CHMP,

2009). As reviewed by Scharfstein et al. (2014), sensitivity analyses can generally be classified

as ad-hoc, local and global. Ad-hoc sensitivity analysis involves analyzing the data using a

variety of methods and evaluating whether the inferences they yield are consistent with one

another. Local sensitivity analysis evaluates how inferences vary in a small neighborhood of
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the benchmark assumption. In contrast, global sensitivity analysis considers how inferences

vary over a much larger neighborhood of the benchmark assumption.

In addition to untestable assumptions, testable restrictions are needed to combat the so-

called “curse of dimensionality” (Robins et al., 1997). Scharfstein et al. (2014) developed a

global sensitivity analysis approach whereby the untestable and testable assumptions were

guaranteed to be compatible. Their testable assumptions were based on a fully parametric

model for the distribution of the observable data. In practice, we have found it particularly

challenging to posit parametric models that correspond well with the observed data, as we

illustrate in Section 4 below. This has motivated the current paper, in which we relax distribu-

tional assumptions and develop a more flexible, semi-parametric extension of the Scharfstein

et al. (2014) approach. The techniques of Daniels and Hogan (2008) and Linero and Daniels

(2015) provide Bayesian solutions to the same problem and also ensure the compatibility

of the untestable and testable assumptions. However, the scalability of their approach to

settings with a large number of post-baseline assessments has yet to be demonstrated.

In Section 2, we introduce the data structure and define the target parameter of interest.

We also review the identification assumptions of Scharfstein et al. (2014). In Section 3, we

present our inferential approach. In Section 4, we present results from the reanalysis of a

clinical trial in which there was substantial premature withdrawal. In Section 5, we describe

the results of a simulation study. We provide concluding remarks in Section 6.

2. Data structure, target parameter, assumptions and identifiability

2.1 Data structure and target parameter

Let k = 0, 1, . . . , K refer in chronological order to the scheduled assessment times, with k = 0

corresponding to baseline. Let Yk denote the outcome scheduled to be measured at assessment

k. Define Rk to be the indicator that an individual is on-study at assessment k. We assume
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that all individuals are present at baseline. Furthermore, we assume that individuals do not

contribute any further data once they have missed a visit. This pattern is often referred

to as monotone drop-out. Let C = max{k : Rk = 1} and note that C = K implies that

the individual must have completed the study. For any given vector z = (z1, z2, . . . , zK), we

define zk = (z0, z1, . . . , zk) and zk = (zk+1, zk+2, . . . , zK). For each individual, O = (C, Y C) is

drawn from some distribution P ∗ contained in the non-parametric model M of distributions.

The observed data consist of n independent draws O1, O2, . . . , On from P ∗. Throughout, the

superscript ∗ will be used to denote the true value of the quantity to which it is appended.

By factorizing the distribution of O in terms of chronologically ordered conditional distri-

butions, any distribution P ∈M can be represented by

• F0(y0) := P (Y0 6 y0);

• Fk+1(yk+1 | yk) := P
(
Yk+1 6 yk+1 | Rk+1 = 1, Y k = yk

)
, k = 0, 1, . . . , K − 1;

• Hk+1(ȳk) := P
(
Rk+1 = 0 | Rk = 1, Y k = yk

)
, k = 0, 1, . . . , K − 1.

Our main objective is to draw inference about µ∗ := E∗(YK), the true mean outcome at visit

K in a hypothetical world in which all patients are followed to that visit.

2.2 Assumptions

Assumptions are required to draw inference about µ∗ based on the available data. We consider

a class of assumptions whereby an individual’s decision to drop out in the interval between

visits k and k + 1 is not only influenced by past observable outcomes but by the outcome

at visit k + 1. Towards this end, we adopt the following two assumptions introduced in

Scharfstein et al. (2014):

Assumption 1: For k = 0, 1, . . . , K − 2,

P ∗
(
YK 6 y | Rk+1 = 0, Rk = 1, Y k+1 = yk+1

)
= P ∗

(
YK 6 y | Rk+1 = 1, Y k+1 = yk+1

)
.

This says that in the cohort of patients who (1) are on-study at assessment k, (2) share the
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same outcome history through that visit and (3) have the same outcome at assessment k+1,

the distribution of YK is the same for those last seen at assessment k and those still on-study

at k + 1.

Assumption 2: For k = 0, 1, . . . , K − 1,

dG∗k+1(yk+1 | yk) ∝ exp{ρk+1(yk, yk+1)}dF ∗k+1(yk+1 | yk) ,

where G∗k+1(yk+1 | yk) := P ∗
(
Yk+1 6 yk+1 | Rk+1 = 0, Rk = 1, Y k = yk

)
and ρk+1(yk, yk+1) is

a known, pre-specified function of yk and yk+1.

Conditional on any given history yk, this assumption relates the distribution of Yk+1 for those

patients who drop out between assessments k and k + 1 to those patients who are on study

at k+ 1. The special case whereby ρk+1 is constant in yk+1 for all k implies that, conditional

on the history yk, individuals who drop out between assessments k and k+ 1 have the same

distribution of Yk+1 as those on-study at k + 1. If instead ρk+1 is an increasing (decreasing)

function of yk+1 for some k, then individuals who drop-out between assessments k and k+ 1

tend to have higher (lower) values of Yk+1 than those who are on-study at k + 1.

Setting `∗k+1(yk) := logit
{
H∗k+1(yk)

}
− log

{∫
exp{ρk+1(yk, u)}dF ∗k+1(u | yk)

}
, it can be

shown that Assumptions 1 and 2 jointly imply that

logit
{
P ∗
(
Rk+1 = 0 Rk = 1, Y k+1 = yk+1, YK = yK

)}
= `∗k+1(yk) + ρk+1(yk, yk+1) .

We note that since H∗k+1 and F ∗k+1 are identified from the distribution of the observed data,

so is `∗k+1(yk). Furthermore, we observe that ρk+1 quantifies the influence of Yk+1 on the

risk of dropping out between assessments k and k + 1, after controlling for the past history

yk. In particular, YK is seen to not additionally influence this risk. When ρk+1 does not

depend on yk+1, we obtain an assumption weaker than MAR but stronger than SI – we refer

to it as SI-1. Under SI-1, the decision to withdraw between visits k and k + 1 depends on

outcomes through visit k but not on the outcomes at visits k+ 1 and K. For specified ρk+1,
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Assumptions 1 and 2 place no restriction on the distribution of the observed data. As such,

ρk+1 is not an empirically verifiable function.

Assumptions 1 and 2 allow the existence of unmeasured common causes of Y0, Y1, . . . , YK ,

but does not allow these causes to directly impact, for patients on study at visit k, the

decision to drop out before visit k + 1. This is no different than under MAR or SI. To allow

for a direct impact, one could utilize the sensitivity analysis model of Rotnitzky et al. (1998)

which specifies

logit
{
P ∗
(
Rk+1 = 0 Rk = 1, Y k = yk, YK = yK

)}
= h∗k+1(yk) + qk+1(yk, yK) ,

where h∗k+1(yk) := logit
{
H∗k+1(yk)

}
− log

{∫
exp{ρk+1(yk, u)}dF ∗K,k(u | Rk = 1, yk)

}
and

F ∗K,k(u | Rk = 1, yk) := P ∗(YK 6 u|Rk = 1, Y k = yk). Here, qk+1(yk, yK) quantifies the

influence of the outcome scheduled to be measured at the end of the study on the conditional

hazard of last being seen at visit k given the observable past yk. The key disadvantage of

this model is that we have found that it is challenging for scientific experts to articulate how

a distal endpoint affects a more proximal event (i.e., drop-out).

2.3 Identifiability of target parameter

Under Assumptions 1 and 2 with given ρk+1, the parameter µ∗ is identifiable. To establish

identifiability, it suffices to demonstrate that µ∗ can be expressed as a functional of the

distribution of the observed data. In the current setting, this follows immediately by noting,

through repeated applications of the law of iterated expectations, that

µ∗ = µ(P ∗) = E∗
(

RKYK∏K−1
k=0 [1 + exp{`∗k+1(Y k) + ρk+1(Y k, Yk+1)}]−1

)

The functional µ(P ∗) can be equivalently expressed as

∫

y0

· · ·
∫

yK

yK

K−1∏

k=0

{
dF ∗k+1(yk+1 | yk)

{
1−H∗k+1(yk)

}
+

exp{ρk+1(yk, yk+1)}dF ∗k+1(yk+1 | yk)∫
exp{ρk+1(yk, u)}dF ∗k+1(u | yk)

H∗k+1(yk)

}
dF ∗0 (y0) . (1)
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3. Statistical inference

3.1 Plug-in estimator

Given a fixed function ρk+1, Scharfstein et al. (2014) proposed to estimate µ∗ via the plug-

in principle. Specifically, they specify parametric models for both F ∗k+1 and H∗k+1, estimate

parameters in these models by maximum likelihood, estimate F ∗0 nonparametrically using the

empirical distribution function, and finally, estimate (1) by Monte Carlo integration using

repeated draws from the resulting estimates of F ∗k+1, H
∗
k+1 and F ∗0 . Since (1) is a smooth

functional of F ∗0 and of the finite-dimensional parameters of the models for F ∗k+1 and H∗k+1,

the resulting estimator of µ∗ is n1/2-consistent and, suitably normalized, tends in distribution

to a mean-zero Gaussian random variable.

While simple to describe and easy to implement, this approach has a major drawback: the

inferences it generates will be sensitive to correct specification of the parametric models

imposed on F ∗k+1 and H∗k+1. Since the fit of these models is empirically verifiable, the

plausibility of the models imposed can be scrutinized in any given application. In several

instances, we have found it difficult to find models providing an adequate fit to the observed

data. This is a serious problem since model misspecification will generally lead to inconsistent

inference, which can translate into inappropriate and misleading scientific conclusions. To

provide greater robustness, we instead adopt a more flexible modeling approach.

As noted above, the distribution P ∗ can be represented in terms of {(F ∗k+1, H
∗
k+1) : k =

0, 1, . . . , K−1}. Suppose that P ∗ is contained in the submodel M0 ⊂M of distributions that

exhibit a first-order Markovian structure in the sense that Fk+1(yk+1 | yk) = Fk+1(yk+1 | yk)

and Hk+1(ȳk) = Hk+1(yk). We can then estimate F ∗k+1 and H∗k+1 by Nadaraya-Watson kernel

estimators of the form:

F̂k+1,λF (yk+1 | yk) :=

∑n
i=1Rk+1,iI(Yk+1,i 6 yk+1)φλF (Yk,i − yk)∑n

i=1Rk+1,iφλF (Yk,i − yk)
and (2)

Ĥk+1,λH (yk) :=

∑n
i=1Rk,i(1−Rk+1,i)φλF (Yk,i − yk)∑n

i=1Rk,iφλF (Yk,i − yk)
, (3)
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where φ is a symmetric probability density function, φλ refers to the rescaled density y 7→

φ(y/λ)/λ, and (λF , λH) is a vector of tuning parameters. In practice, the values of these

tuning parameters need to be carefully chosen to ensure the resulting estimators of F ∗k+1

and H∗k+1 perform well. As discussed next, we select the tuning parameters via J-fold cross

validation.

Writing F := (F1, F2, . . . , FK) and H := (H1, H2, . . . , HK), and denoting a typical realiza-

tion of the prototypical data unit as o = (c, yc), we may define the loss functions

LF (F ;F ◦)(o) :=
K−1∑

k=0

rk+1

∫
{I(yk+1 6 u)− Fk+1(u | yk)}2 dF ◦k+1(u) ,

LH(H;H◦)(o) :=
K−1∑

k=0

rk [rk+1 − {1−Hk+1(yk)}]2H◦k+1

with F ◦ := (F ◦1 , F
◦
2 , . . . , F

◦
K) and H◦ := (H◦1 , H

◦
2 , . . . , H

◦
K) defined by F ◦k+1(u) := P (Yk+1 6

u | Rk+1 = 1) and H◦k+1 := P (Rk+1 = 0 | Rk = 1). Here, F ◦ and H◦ represent collections

of distributions and probabilities that can be estimated nonparametrically without the need

for smoothing. It can be shown that the true risk mappings F 7→ E∗{LF (F ;F ◦∗)(O)} and

H 7→ E∗{LH(H;H◦∗)(O)} are minimized at F = F ∗ and H = H∗, where F ◦∗ and H◦∗ denote

the true value of F ◦ and H◦, respectively. Given a random partition of the dataset into J

validation samples {V1, V2, . . . , VJ} with sample sizes n1, n2 . . . , nJ , taken to be approximately

equal, the oracle selectors for λF and λH are (van der Vaart et al., 2006)

λ̃F := argmin
λF

1

J

J∑

j=1

E∗{LF (F̂
(j)
λF

; F̂ ◦)(O)} and λ̃H := argmin
λH

1

J

J∑

j=1

E∗{LH(Ĥ
(j)
λH

; Ĥ◦)(O)}.

Here, F̂
(j)
k+1,λF

and Ĥ
(j)
k+1,λH

are obtained by computing (2) and (3), respectively, on the dataset

excluding individuals in Vj. The estimates of nuisance parameter estimators F̂ ◦k+1 and Ĥ◦k+1

are given by the empirical distribution of the observed values of Yk+1 within the subset of

individuals with Rk+1 = 1 and by the empirical proportion of individuals with Rk+1 = 0

among those with Rk = 1, respectively. The quantities λ̃F and λ̃H cannot be computed in
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practice since P ∗ is unknown. Empirical tuning parameter selectors are given by

λ̂F := argmin
λF

R̂F (λF ) and λ̂H := argmin
λH

R̂H(λH),

where

R̂F (λF ) :=
1

J

J∑

j=1

1

nj

∑

i∈Vj
LF (F̂

(j)
λF

; F̂ ◦)(Oi)

=
1

J

J∑

j=1

1

nj

∑

i∈Vj

K−1∑

k=0

Rk+1,i

(∑
`Rk+1,`{I(Yk+1,i 6 Yk+1,l)− F̂ (j)

k+1,λF
(Yk+1,l | Yk,i)}2∑

`Rk+1,`

)

and

R̂H(λH) :=
1

J

J∑

j=1

1

nj

∑

i∈Vj
LH(Ĥ

(j)
λH

; Ĥ◦)(Oi)

=
1

J

J∑

j=1

1

nj

∑

i∈Vj

K−1∑

k=0

Rk,i[Rk+1,i − {1− Ĥ(j)
k+1,λH

(Yk,i)}]2
∑

`Rk,`(1−Rk+1,`)∑
`Rk,`

.

The naive substitution estimator of µ∗ is µ(P̂ ), where P̂ is determined by (2) and (3)

computed with tuning parameters (λ̂F , λ̂H).

3.2 Generalized Newton-Raphson estimator

3.2.1 Preliminaries. In order to estimate F ∗k+1 and H∗k+1, smoothing techniques, as used

in (2) and (3), must be utilized in order to borrow strength across subgroups of individuals

with differing observed outcome histories. These techniques require the selection of tuning

parameters governing the extent of smoothing. As in the above procedure, tuning parameters

are generally chosen to achieve an optimal finite-sample bias-variance trade-off for the

quantity requiring smoothing - here, conditional distribution and probability mass functions.

However, this trade-off may be problematic, since the resulting plug-in estimator µ(P̂ ) may

suffer from excessive and asymptotically nonnegligible bias due to inadequate tuning. This

may prevent the plug-in estimator from having regular asymptotic behavior. In particular,

the resulting estimator may have a slow rate of convergence, and common methods for

constructing confidence intervals, such as the Wald and bootstrap intervals, can have poor
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coverage properties. Therefore, the plug-in estimator must be regularized in order to serve

as an appropriate basis for drawing statistical inference.

If the parameter of interest is a sufficiently smooth functional on the space of possible

data-generating distributions, it is sensible to expect a first-order expansion of the form

µ(P )− µ(P ∗) =

∫
D(P )(o)d(P − P ∗)(o) +Rem(P, P ∗) (4)

to hold, where D(P )(o) is the evaluation at an observation value o of a so-called gradient of

µ at P , and Rem(P, P ∗) is a second-order remainder term tending to zero as P tends to P ∗.

In the context of our problem, this is established formally in Lemma 1. Here, the gradient

D is an analytic object used to compute, at any given data-generating distribution P , the

change in µ(P ) following a slight perturbation of P . Although the gradient is, in general,

not uniquely defined, it must have mean zero and finite variance under sampling from P .

A discussion on gradients of statistical parameters can be found in Pfanzagl (1982) and in

Appendix A.4 of van der Laan and Rose (2011).

Provided (4) holds and for a given estimator P̂ of P ∗, algebraic manipulations leads to

µ(P̂ )− µ(P ∗) =

∫
D(P̂ )(o)d(P̂ − P ∗)(o) +Rem(P̂ , P ∗)

=
1

n

n∑

i=1

D(P ∗)(Oi) +

∫
{D(P̂ )(o)−D(P ∗)(o)}d(Pn − P ∗)(o)

− 1

n

n∑

i=1

D(P̂ )(Oi) +Rem(P̂ , P ∗) ,

where Pn denotes the empirical distribution based onO1, O2, . . . , On. If P̂ is a sufficiently well-

behaved estimator of P ∗, it is often the case that the terms
∫
{D(P̂ )(o)−D(P ∗)(o)}d(Pn −

P ∗)(o) and Rem(P̂ , P ∗) are asymptotically negligible. However, when P̂ involves smoothing,

as in this paper, the term n−1
∑n

i=1D(P̂ )(Oi) generally tends to zero too slowly to allow

µ(P̂ ) to be an asymptotically linear estimator of µ∗. Nonetheless, the corrected estimator

µ̂ = µ(P̂ ) +
1

n

n∑

i=1

D(P̂ )(Oi)

is regular and asymptotically linear with influence function D(P ∗), provided that the afore-
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mentioned terms are asymptotically negligible. Consequently, µ̂ converges to µ∗ in probability

and n1/2(µ̂−µ∗) tends in distribution to a zero-mean Gaussian random variable with variance

σ2 :=
∫
D(P ∗)(o)2dP ∗(o). This estimator is, in fact, a direct generalization of the one-

step Newton-Raphson procedure used in parametric settings to produce an asymptotically

efficient estimator. This correction approach was discussed early on by Ibragimov and Khas-

minskii (1981), Pfanzagl (1982) and Bickel (1982), among others.

An alternative estimation strategy would consist of employing targeted minimum loss-

based estimation (TMLE) to reduce bias due to inadequate tuning (van der Laan and

Rubin, 2006). TMLE proceeds by modifying the initial estimator P̂ into an estimator P̃

that preserves the consistency but also satisfies the equation n−1
∑n

i=1D(P̃ )(Oi) = 0. As

such, the TMLE-based estimator µ̃ := µ(P̃ ) of µ∗ does not require additional correction and

is asymptotically efficient. In preliminary simulation studies (not shown here), we found no

substantial difference between the TMLE and our proposed one-step estimator µ̂. In this

case, we favor the latter because of its greater ease of implementation.

3.2.2 Estimator based on canonical gradient: definition and properties. In our problem,

the one-step estimator can be constructed using any gradient D of the parameter µ defined

on the model M0. Efficiency theory motivates the use of the canonical gradient, often called

the efficient influence function, in the construction of the above estimator. The resulting

estimator is then not only asymptotically linear but also asymptotically efficient relative to

model M0. The canonical gradient can be obtained by projecting any other gradient onto the

tangent space, defined at each P ∈M0 as the closure of the linear span of all score functions

of regular one-dimensional parametric models through P . A comprehensive treatment of

efficiency theory can be found in Pfanzagl (1982) and Bickel et al. (1993).

In our analysis, we restrict our attention to the class of selection bias functions of the

form ρk+1(yk, yk+1) = αρ(yk+1), where ρ is a specified function of yk+1 and α is a sensitivity
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analysis parameter. With this choice, α = 0 corresponds SI-1. For the parameter chosen, the

canonical gradient D†(P ) relative to M0, suppressing notational dependence on α, is given

by

D†(P )(o) := a0(y0) +
K−1∑

k=0

rk+1bk+1(yk+1, yk) +
K−1∑

k=0

rk{1− rk+1 −Hk+1(yk)}ck+1(yk) ,

where expressions for a0(y0), bk+1 and ck+1 are given the Appendix. In this paper we suggest

the use of the following one-step estimator

µ̂ := µ(P̂ ) +
1

n

n∑

i=1

D†(P̂ )(Oi)

which stems from linearization (4), as formalized in the following lemma.

Lemma 1: For any P ∈M0, the linearization

µ(P )− µ(P ∗) =

∫
D†(P )(o)d(P − P ∗)(o) +Rem(P, P ∗)

holds for a second-order remainder term Rem(P, P ∗) defined in Web Appendix B.

In the above lemma, the expression second-order refers to the fact that Rem(P, P ∗) can be

written as a sum of the integral of the product of two error terms each tending to zero as P

tends to P ∗, that is,

Rem(P, P ∗) =
K−1∑

k=0

∫
u∗k(o) {Ψk(P )(o)−Ψk(P

∗)(o)} {Θk(P )(o)−Θk(P
∗)(o)} dP ∗(o) (5)

for certain smooth operators Ψ0, . . . ,ΨK−1,Θ0, . . . ,ΘK−1 and weight functions u∗0, . . . , u
∗
K−1

that possibly depend on P ∗. The proof of Lemma 1 follows from the derivations in Web

Appendices A and B.

The proposed estimator is asymptotically efficient relative to model M0 under certain

regularity conditions, as outlined below.

Theorem 1: If (a)
∫
{D†(P̂ )(o)−D†(P ∗)(o)}d(Pn−P ∗)(o) = oP (n−1/2) and (b) Rem(P̂ , P ∗) =

oP (n−1/2), then µ̂ = µ∗+ 1
n

∑n
i=1D

†(P ∗)(Oi) +oP (n−1/2) and µ̂ is an asymptotically efficient

estimator of µ∗ relative to model M0.
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The proof of this theorem is provided in Web Appendix C. This result not only justifies the

use of µ̂ in practice but also suggests that a Wald-type asymptotic 100× (1−γ)% confidence

interval for µ∗ can be constructed as
(
µ̂− zγ/2σ̂√

n
, µ̂+

zγ/2σ̂√
n

)
, (6)

where σ̂2 := 1
n

∑n
i=1D

†(P̂ )(Oi)
2 is, under mild conditions, a consistent estimator of the

asymptotic variance of n1/2(µ̂−µ∗) and zγ/2 is the (1−γ/2)-quantile of the standard normal

distribution.

Alternative sufficient conditions can be established to guarantee that conditions (a) and

(b) of the theorem above hold. For example, a simple application of Lemma 19.24 of van der

Vaart (2000) implies that condition (a) holds provided it can be established that

(i) D†(P̂ ) is a consistent estimator of D†(P ∗) in the L2(P
∗)-norm in the sense that

∫ {
D†(P̂ )(o)−D†(P ∗)(o)

}2

dP ∗(o)
P−→ 0, and

(ii) for some P ∗-Donsker class F , D†(P̂ ) falls in F with probability tending to one.

Since our estimator P̂ is based on kernel regression, and is therefore consistent, condition (i)

holds by a simple application of the continuous mapping theorem. Condition (ii) is standard

in the analysis of estimators based on data-adaptive estimation of nuisance parameters – Giné

and Nickl (2008) presents conditions under which it is expected to hold. Condition (b) is

satisfied based on the following argument. The use of cross-validation allows the optimal rate

n−2/5 to be achieved for the estimator P̂ since the latter is constructed using univariate kernel

smoothers. By a repeated use of the Cauchy-Schwartz inequality on the various summands of

Rem(P̂ , P ∗) in (5), the continuous mapping theorem allows us to show that, since each term

in Rem(P̂ , P ∗) is a second-order difference involving smooth transformations of components

of P̂ and P , Rem(P̂ , P ∗) tends to zero in probability at a rate faster than n−1/2 under very

mild conditions, including that the probabilities π̂(Yj−1, Yj) are bounded away from zero

with probability tending to one.
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3.3 Practical considerations in confidence interval construction

As indicated above, an influence function-based asymptotic confidence interval is given by

(6). In Section 5, we present the results of a simulation study in which this confidence interval

construction results in poor coverage. The poor coverage can be explained in part by the

fact that σ̂2 can be severely downward biased in finite samples (Efron and Gong, 1983).

To address this issue, one can consider the jackknife estimator for σ2,

σ̂2
JK := (n− 1)

n∑

i=1

(
µ̂(−i) − µ̂(·))2

where µ̂(−i) is the estimator of µ∗ with the ith individual deleted from the dataset and

µ̂(·) := 1
n

∑n
i=1 µ̂

(−i). This estimator is known to be conservative (Efron and Stein, 1981).

Using the jackknife, confidence intervals take the form of (6) with σ̂ replaced by σ̂JK . Our

simulation study in Section 5 demonstrates that these intervals perform better than interval

(6) although some undercoverage is still present.

Another possible approach would be to utilize the Studentized bootstrap, wherein confi-

dence intervals are formed by choosing cutpoints based on the distribution of

{
µ̂(b) − µ̂
ŝe(µ̂(b))

: b = 1, 2, . . . , B

}
(7)

where µ̂(b) is the estimator of µ∗ based on the bth bootstrap dataset and ŝe(µ̂(b)) is an

estimator of the standard error of µ̂(b). One can consider standard error estimators based on

the influence function or jackknife. An equal-tailed (1−γ) confidence interval takes the form

{
µ̂− t1−γ/2ŝe(µ̂), µ̂− tγ/2ŝe(µ̂)

}
, where tq is the qth quantile of (7). A symmetric (1 − γ)

confidence interval takes the form
{
µ̂− t∗1−γ ŝe(µ̂), µ̂+ t∗1−γ ŝe(µ̂)

}
, where t∗1−γ is selected so

that the sampling distribution of (7) assigns probability mass 1−γ between −t∗1−γ and t∗1−γ.

Since our analysis depends on estimation of a correctly specified semiparametric model, it

appears sensible to use this model to bootstrap the observed data. In our data analysis and

simulation study, we use the estimated distribution of the observed data to generate boot-
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strapped observed datasets. Our simulation study in Section 5 suggests that the symmetric

Studentized bootstrap with jackknifed standard errors performs best.

4. SCA-3004 Study

SCA-3004 was a randomized trial designed to evaluate the efficacy and safety of once-

monthly, injectable paliperidone palmitate (PP1M), as monotherapy or as an adjunct to

pre-study mood stabilizers or antidepressants, relative to placebo (PBO) in delaying the

time to relapse in patients with schizoaffective disorder (SCA) (Fu et al., 2014). The study

included multiple phases. After initial screening, an open-label phase consisted of a 13-week,

flexible-dose, lead-in period and a 12-week, fixed-dose, stabilization period. Stable patients

entered a 15-month, double-blind, relapse-prevention phase and were randomized (1:1) to

receive either PP1M or placebo injections at baseline (Visit 0) and every 28 days (Visits

1–15). An additional clinic visit (Visit 16) was scheduled 28 days after the last scheduled

injection. In the study, 170 and 164 patients were randomized to the PBO and PP1M arms,

respectively. One placebo patient was removed because of excessive influence on the analysis.

The main research question was whether or not outcomes in patients with schizoaffective

disorder are better maintained if they continued on treatment rather than being withdrawn

from treatment and given placebo. Given the explanatory nature of the research question, an

ideal study would follow all randomized patients through Visit 16 while maintaining them on

their randomized treatment and examine symptomatic and functional outcomes at that time

point. Due to ethical considerations, patients who had signs of clinical relapse (determined

by symptoms and clinical response to symptoms) were required to be withdrawn from the

study. Thus, clinical data were unavailable post-relapse. In addition to this source of missing

data, some patients discontinued due to adverse events, withdrew consent or were lost to

follow-up. In the trial, 38% and 60% of patients in the PBO and PP1M arms, respectively,

were followed through Visit 16 (p<0.001).
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We focus our analysis on patient function as measured by the Personal and Social Per-

formance (PSP) scale. The PSP, a validated clinician-reported instrument, is scored from 1

to 100, with higher scores indicating better functioning. It has been argued that a clinically

meaningful difference in PSP scores is between 7 and 12 points (Patrick et al., 2009).

We seek to estimate, for each treatment group, the mean PSP at Visit 16 in the coun-

terfactual world in which all patients are followed and treated through Visit 16. Since

symptoms and function are correlated, the observed PSP data are likely to be a highly biased

representation of the counterfactual world of interest. The mean PSP score among completers

was 76.53 and 76.96 in the PBO and PP1M arms, respectively; the estimated difference is

-0.43 (95% CI: -3.34 to 2.48), indicating a non-significant treatment effect (p=0.77).

In Figure 1, we display the treatment-specific trajectories of mean PSP score, stratified by

last visit time. For patients who prematurely terminate the study, it is interesting to notice

that there tends to be a worsening of mean PSP scores at the last visit on study.

[Figure 1 about here.]

Before implementing our proposed sensitivity analysis procedure, we implemented the

approach of Scharfstein et al. (2014). For each treatment group, we modeled H∗k+1 using

logistic regression with visit-specific intercepts and a common effect of Yk. Additionally,

we modeled F ∗k+1 both using beta and truncated normal regression, each with visit-specific

intercepts and a common effect of Yk. Using estimates of the parameters from these models,

we simulated 500,000 datasets for each treatment group. We compared the proportion

dropping out before visit k + 1 among those on study at visit k based on the actual and

simulated datasets. We also compared the empirical distribution of PSP scores among those

on study at visit k+1 based on these datasets using the Kolmogorov-Smirnov statistics. The

results for the simulations involving the truncated normal regression and beta regression

models are shown in the first and second rows of Figure 2, respectively. The figure suggests
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that these models do not fit the observed data well. For both the truncated normal and beta

regression models, inspection of the actual and simulated distribution of PSP scores at each

study visit reveals large discrepancies. For the beta regression model, the contrast between

the simulated and actual drop-out probabilities for the PP1M arm is particularly poor.

[Figure 2 about here.]

We contrast the fit of these models to the non-parametric smoothing approach proposed in

this paper. For estimation of F ∗k+1 and H∗k+1 based on data from the PBO arm, the optimal

choices of λF and λH are 1.81 and 5.18, respectively. The corresponding optimal choices for

the PP1M arm were 1.16 and 8.53. Using the estimated F ∗k+1 and H∗k+1 and optimal choices

of λF and λH , we simulated, as before, 500,000 observed datasets for each treatment group.

The results of this simulation in comparison to the actual observed data is shown in the

bottom row of Figure 2. In sharp contrast to the parametric modeling approach, the results

show excellent agreement between the actual and simulated datasets. For each treatment

group, inspection of the actual and simulated distribution of PSP scores at the study visit

with the largest Kolmogorov-Smirnov statistics reveals only small discrepancies.

Under SI-1, that is, when α = 0, the estimated counterfactual means of interest are 73.31

(95% CI: 69.71 to 76.91) and 74.52 (95% CI: 72.28 to 76.75) for the PBO and PP1M arms,

respectively. The estimated treatment difference is −1.20 (95% CI: -5.34 to 2.93). Relative to

the complete-case analysis, the SI-1 analysis corrects for bias in a direction that is anticipated:

the estimated means under SI-1 are lower and, since there is greater drop-out in the PBO arm,

there is a larger correction in that arm. As a consequence, the estimated treatment effect is

more favorable to PP1M, although the 95% CI still includes 0. For comparative purposes, the

plug-in procedure produces estimates of the means that are slightly lower (73.79 and 74.63)

and an estimated treatment difference that is slightly larger (-0.84). The logistic-truncated

normal and logistic-beta models for the distribution of the observed data produce markedly
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different results under SI-1. For the logistic-truncated model, the estimated means are 70.62

(95% CI: 67.01 to 74.24) and 74.68 (95% CI: 72.89 to 76.48) with an estimated difference

of -4.06 (95% CI: -8.13 to 0.01); for the logistic-beta model, the estimated means are 64.42

(95% CI: 55.15 to 73.69) and 70.55 (95% CI: 67.53 to 73.56) with an estimated difference of

-6.13 (95% CI: -15.96 to 3.71).

In our sensitivity analysis, we chose ρ to be the cumulative distribution of a Beta(6, 11)

random variable scaled to the interval 1 to 100. The shape of the function was chosen so

that when comparing patients on the low end (6 30) and high end (> 80) of the PSP scale

there is relatively less difference in the risk of drop-out than when comparing patients in the

middle of the PSP scale (30-80). When α > 0 (α < 0), patients with higher PSP scores are

more (less) likely to drop out. Since lower PSP scores represent worse function, it is plausible

that α 6 0. For completeness, we ranged the treatment-specific α values from -20 to 20.

In Figure 3 (a) and (b), we display the estimated treatment-specific mean PSP at Visit

16 as a function of α along with 95% pointwise confidence intervals. Figure 3 (c) displays

a contour plot of the estimated differences between mean PSP at Visit 16 for PBO versus

PP1M for various treatment-specific combinations of α. The point (0,0) corresponds to the

SI-1 assumption in both treatment arms. There are no treatment-specific combinations of

α for which the estimated treatment differences are clinically meaningful or statistically

significant (at the 0.05 level). Figure 3 (d) displays the estimated treatment-specific difference

in mean PSP at Visit 16 between non-completers and completers as a function of α. For each

treatment group and α, the estimated mean among non-completers is back-calculated from

the estimated overall mean (µ̂), the observed mean among completers (
∑

iRK,iYK,i/
∑

iRK,i)

and the proportion of completers (
∑

iRK,i/n). The differences in the negative range of α are

in the clinically meaningful range, suggesting that the considered choices of the sensitivity

analysis parameters are reasonable.
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[Figure 3 about here.]

5. Simulation study

As in our goodness-of-fit evaluation above, we simulated, using the estimated F ∗k and H∗k

and optimal choices of λF and λH , 1,000 datasets for each treatment group. For purposes of

the simulation study, we treat the best fit to the observed data as the true data generating

mechanism. We evaluate the performance of our procedures for various α values ranging

from -10 to 10. The target for each α is the mean computed using formula (1).

The results of our simulation study are displayed in Tables 1 and 2. In Table 1, we

report for each treatment group and each α the bias and mean-squared error (MSE) for

the plug-in estimator µ(P̂ ) and the one-step estimator µ̂. The results show that the one-

step estimator has less bias and lower MSE than the plug-in estimator, although the dif-

ferences are not dramatic. In Table 2, we report, for each treatment group and each α,

95% confidence interval coverage for six confidence interval procedures: (1) normality-based

confidence interval with influence function-based standard error estimator (Normal-IF); (2)

normality-based confidence interval with jackknife-based standard error estimator (Normal-

JK); (3) equal-tailed, Studentized-t bootstrap confidence interval with influence function-

based standard error estimator (Bootstrap-IF-ET); (4) equal-tailed, Studentized-t bootstrap

confidence interval with jackknife-based standard error estimator (Bootstrap-JK-ET); (5)

symmetric, Studentized-t bootstrap confidence interval with influence function-based stan-

dard error estimator (Bootstrap-IF-S); (6) symmetric, Studentized-t bootstrap confidence

interval with jackknife-based standard error estimator (Bootstrap-JK-S). Bootstrapping was

based on 1,000 datasets.

[Table 1 about here.]

[Table 2 about here.]
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We found that the normality-based confidence interval with influence function-based stan-

dard error estimator underperformed for both treatment groups and all choices of the

sensitivity analysis parameters. In general, the confidence interval procedures that used

jackknife standard errors performed better than their counterparts that used the influence

function-based standard error estimator. The symmetric, Studentized-t bootstrap confidence

interval with jackknife-based standard error estimator (Bootstrap-JK-S) exhibited the most

consistent performance across treatment groups and sensitivity analysis parameters.

Our simulation studies reveal some evidence of possible residual bias of the one-step

estimator in the context considered. The latter is based upon the use of kernel smoothing in

order to estimate the various conditional distribution functions required in the evaluation of

µ. It may be possible to achieve better small-sample behavior by employing alternative

conditional distribution function estimators with better theoretical properties, e.g., Hall

et al. (1999). An ensemble learning approach, e.g., van der Laan et al. (2007), may also

yield improved function estimators and decrease the residual bias of the resulting one-step

estimator. However, the benefits from improved function estimation may possibly be limited

by the relatively small sample size investigated in this simulation study. The use of correction

procedures based on higher-order asymptotic representations, as described in Robins et al.

(2008), van der Vaart et al. (2014), Carone et al. (2014) and Dı́az et al. (2016), may lead to

improved performance in smaller samples.

6. Discussion

In this paper, we have developed a semi-parametric method for conducting a global sensitivity

analysis of repeated measures studies with monotone missing data. We have developed an

open-source software package, called SAMON, that implements the methods discussed in this

paper.

Our approach does not, as of yet, accommodate auxiliary covariates Vk scheduled to be



20 Biometrics, 000 0000

measured at assessment k. Incorporating V k into the conditioning arguments of Assumptions

1 and 2 can serve to increase the plausibility of these assumptions. In particular, V k can be

allowed to influence the decision, for patients on study at visit k, to drop out between visits k

and k+ 1, and the unmeasured common causes of Y0, Y1, . . . , YK can be allowed to indirectly

impact the decision to drop out through their relationship with V k. In the context of SCA-

3004, it would be useful to incorporate the PANSS (Positive and Negative Symptom Scale)

and CGI (Clinical Global Impressions) scores as auxiliary covariates as they are related to

planned patient withdrawal as well as correlated with PSP. In future work, we plan to extend

the methods developed here to accommodate auxiliary covariates. An extension that handles

multiple reasons for drop-out is also worthwhile.

In this paper, we imposed a first-order Markovian assumption in modeling the distribution

of the observed data. The plausibility of this assumption was considered in the data analysis

as we have evaluated the goodness-of-fit of our model, as illustrated in the bottom row of

Figure 2. The Markovian assumption can be relaxed by incorporating the past history using

(1) a specified function of the past history, (2) semiparametric single index models (Hall

and Yao, 2005) or (3) recently developed methods in data adaptive non-parametric function

estimation (van der Laan, 2015).

For given α, our estimator of µ∗ is essentially an α-specific weighted average of the observed

outcomes at visit K. As a result, it does not allow extrapolation outside the support of

these outcomes. We found that one patient in the PBO arm who completed the study

with the lowest observed PSP score at the final visit had a very large influence on the

analysis. Under SI-1 and other values of α, this patient affected the estimated mean in

the PBO group by more than 3 points. In contrast to our approach, a mixed modeling

approach, which posits a multivariate normal model for the joint distribution of the full

data, does allow extrapolation. Inference under this approach is valid under MAR and correct
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specification of the multivariate normality assumption. We found that this approach provides

much more precise inference, yielding a statistically significant treatment effect in favor of

PP1M (treatment effect = -4.7, 95% CI: -7.7 to -1.8). Further, this approach was insensitive

to the PBO patient that we removed from our analysis. The disadvantages of the mixed

model approach are its reliance on normality and the difficulty of incorporating it into global

sensitivity analysis.

In SCA-3004 there is a difference, albeit not statistically significant, in baseline PSP score

between treatment groups. The PBO arm has a lower baseline mean PSP score than the

PP1M arm (71.2 vs. 72.9). Our method can easily address this imbalance by subtracting out

this difference from our effect estimates or by formally modeling change from baseline. In

either case, the treatment effect estimates would be less favorable to PP1M. It is notable that

a mixed model analysis that models change from baseline does yield a statistically significant

effect in favor of PP1M. It may also be of interest to adjust the treatment effect estimates

for other baseline covariates, either through regression or direct standardization. We will

address this issue in future work. We also plan to develop methods for handling intermittent

missing outcome data.

7. Supplementary Materials

Web Appendices referenced in Section 3.2.2 are available with this paper at the Biomet-

rics website on Wiley Online Library. The software package SAMON can be found at www.

missingdatamatters.org.
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Appendix: Canonical Gradient

The derivation of the canonical gradient is provided in Web Appendix A. Here, we present

its explicit form. Let πk+1(yk, yk+1) = [1 + exp{`k+1(yk) + αρ(yk+1)}]−1, where

`k+1(yk) := logit {Hk+1(yk)} − log

{∫
exp{ρk+1(yk, u)}dFk+1(u | yk)

}
.

Let π(yK) =
∏K−1

k=0 πk(yk, yk+1),

wk+1(yk) = E (exp{αρ(Yk+1)} | Rk+1 = 1, Yk = yk) ,

and gk+1(yk+1, yk) = {1−Hk+1(yk)}wk+1(yk) + exp{αρ(yk+1)}Hk+1(yk).

The canonical gradient is expressed as

D†(P )(o) := a0(y0) +
K−1∑

k=0

rk+1bk+1(yk+1, yk) +
K−1∑

k=0

rk{1− rk+1 −Hk+1(yk)}ck+1(yk)

where

a0(y0) = E

(
RKYK

π(Y K)
Y0 = y0

)
− µ(P )

bk+1(yk+1, yk)

= E

(
RKYK

π(Y K)
Rk+1 = 1, Yk+1 = yy+1, Yk = yk

)
− E

(
RKYK

π(Y K)
Rk+1 = 1, Yk = yk

)

+ E

(
RKYK

π(Y K)

(
exp{αρ(Yk+1)}
gk+1(Yk+1, Yk)
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Figure 1: Treatment-specific trajectories of mean PSP scores, stratified by last visit time.
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Figure 2: Left column: Comparison of the proportion dropping out before visit k + 1
among those on study at visit k based on the actual and simulated datasets. Right column:
Comparison, using the Kolmogorov-Smirnov statistics, of the empirical distribution of PSP
scores among those on study at visit k + 1 based on the actual and simulated datasets.
First row: Logistic regression for conditional probabilities of drop-out and truncated normal
regressions for outcomes; Second row: Logistic regression for conditional probabilities of drop-
out and beta regressions for outcomes; Third row: Non-parametric smoothing for conditional
probabilities of drop-out and for outcomes.

0.000 0.025 0.050 0.075 0.100 0.125

Conditional Probability of Dropout (observed data)

0.000

0.025

0.050

0.075

0.100

0.125

C
on

di
tio

na
l P

ro
ba

bi
lit

y 
of

 D
ro

po
ut

 (
si

m
ul

at
ed

 d
at

a)

Placebo arm
Active arm

0 5 10 15

Visit

0.00

0.05

0.10

0.15

0.20

K
ol

m
og

or
ov

-S
m

irn
ov

 S
ta

tis
tic

Active arm
Placebo arm

0.00 0.05 0.10 0.15

Conditional Probability of Dropout (observed data)

0.00

0.05

0.10

0.15

C
on

di
tio

na
l P

ro
ba

bi
lit

y 
of

 D
ro

po
ut

 (
si

m
ul

at
ed

 d
at

a)

Placebo arm
Active arm

0 5 10 15

Visit

0.00

0.05

0.10

0.15

0.20

K
ol

m
og

or
ov

-S
m

irn
ov

 S
ta

tis
tic

Active arm
Placebo arm

0.00 0.02 0.04 0.06 0.08 0.10 0.12

Conditional Probability of Dropout (actual data)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

C
on

di
tio

na
l P

ro
ba

bi
lit

y 
of

 D
ro

po
ut

 (
si

m
ul

at
ed

 d
at

a)

Active arm
Placebo arm

0 5 10 15

Visit

0.00

0.05

0.10

0.15

0.20

K
ol

m
og

or
ov

-S
m

irn
ov

 S
ta

tis
tic

Active arm
Placebo arm



28 Biometrics, 000 0000

Figure 3: (a) and (b): Treatment-specific mean PSP at Visit 16 as a function of α, along with
95% pointwise confidence intervals; (c): Contour plot of the estimated differences between
mean PSP at Visit 16 for PBO vs. PP1M for various treatment-specific combinations of α;
(d): Treatment-specific differences between the mean PSP for non-completers and completers,
as a function of α.
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Table 1: Treatment-specific simulation results: Bias and mean-squared error (MSE) for the

plug-in (µ(P̂ )) and one-step (µ̂) estimators, for various choices of α.

PBO PP1M
α Estimator µ∗ Bias MSE µ∗ Bias MSE

-10 µ(P̂ ) 72.89 0.76 1.75 73.76 0.41 1.36
µ̂ 0.50 1.58 0.31 1.26

-5 µ(P̂ ) 73.38 0.52 1.42 74.25 0.26 1.14
µ̂ 0.31 1.32 0.16 1.05

-1 µ(P̂ ) 73.74 0.38 1.23 74.59 0.17 1.02
µ̂ 0.19 1.18 0.06 0.95

0 µ(P̂ ) 73.80 0.36 1.21 74.63 0.16 1.01
µ̂ 0.18 1.17 0.08 0.95

1 µ(P̂ ) 73.84 0.35 1.19 74.67 0.18 1.01
µ̂ 0.17 1.15 0.05 0.94

5 µ(P̂ ) 74.00 0.30 1.13 74.67 0.16 1.00
µ̂ 0.13 1.11 0.04 0.93

10 µ(P̂ ) 74.15 0.24 1.08 74.84 0.15 0.97
µ̂ 0.10 1.08 0.06 0.91
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Table 2: Treatment-specific simulation results: Coverage for (1) normality-based confidence
interval with influence function-based standard error estimator (Normal-IF); (2) normality-
based confidence interval with jackknife-based standard error estimator (Normal-JK); (3)
equal-tailed, Studentized-t bootstrap confidence interval with influence function-based stan-
dard error estimator (Bootstrap-IF-ET); (4) equal-tailed, Studentized-t bootstrap confidence
interval with jackknife-based standard error estimator (Bootstrap-JK-ET); (5) symmetric,
Studentized-t bootstrap confidence interval with influence function-based standard error
estimator (Bootstrap-IF-S); (6) symmetric, Studentized-t bootstrap confidence interval with
jackknife-based standard error estimator (Bootstrap-JK-S), for various choices of α.

PBO PP1M
α Procedure Coverage (%) Coverage (%)

-10 Normal-IF 86.1 88.6
Normal-JK 92.1 92.6
Bootstrap-IF-ET 90.2 91.9
Bootstap-JK-ET 92.4 93.7
Bootstap-IF-S 92.3 92.7
Bootstap-JK-S 93.9 94.3

-5 Normal-IF 89.0 91.7
Normal-JK 94.1 94.2
Bootstrap-IF-ET 91.7 92.6
Bootstap-JK-ET 93.6 94.9
Bootstap-IF-S 94.1 94.2
Bootstap-JK-S 95.1 95.1

-1 Normal-IF 90.8 93.4
Normal-JK 94.9 94.8
Bootstrap-IF-ET 91.0 94.0
Bootstap-JK-ET 92.8 94.9
Bootstap-IF-S 94.4 94.7
Bootstap-JK-S 95.0 95.3

0 Normal-IF 90.7 93.5
Normal-JK 95.0 94.9
Bootstrap-IF-ET 92.8 93.9
Bootstap-JK-ET 94.3 95.0
Bootstap-IF-S 95.3 94.7
Bootstap-JK-S 96.0 95.1

1 Normal-IF 90.9 93.5
Normal-JK 94.9 94.8
Bootstrap-IF-ET 92.8 93.5
Bootstap-JK-ET 94.2 95.0
Bootstap-IF-S 95.3 94.6
Bootstap-JK-S 96.0 95.2

5 Normal-IF 91.5 93.7
Normal-JK 94.6 95.1
Bootstrap-IF-ET 92.6 93.8
Bootstap-JK-ET 93.8 94.7
Bootstap-IF-S 94.9 95.1
Bootstap-JK-S 96.0 95.5

10 Normal-IF 92.1 93.4
Normal-JK 94.8 95.0
Bootstrap-IF-ET 92.9 93.8
Bootstap-JK-ET 93.9 94.8
Bootstap-IF-S 94.7 95.0
Bootstap-JK-S 95.6 95.4
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Appendix A: Derivation of Canonical Gradient

In this section, we derive the efficient influence function in the nonparametric model M (EIF ) and in the Markov-
restricted model M0 (EIF0). To find EIF , we use the fact that the canonical gradient of target parameter is the efficient
influence function in model M . To find the EIF0, we project EIF onto to tangent space for the M0.

Let P denote a distribution in M , characterized by Pk(yk−1) = P (Rk = 1|Rk−1 = 0, Y k−1 = ykk−1), Fk(yk|yk−1) =

P (Yk ≤ yk|Rk = 1, Y k−1 = yk−1) and F0(y0) = P (Y0 ≤ y0). In what follows, expectations are taken with respect to P . Let
{Pη : η} denote a parametric submodel of M passing through P (i.e., Pη=0 = P ). Let s(O) be the score for η evaluated at
η = 0. Let T denote the tangent space of M . The canonical gradient is defined as the unique element D ∈ T that satisfies

∂

∂η
µ(Pη)

∣∣
η=0

= E{s(O)D(O)}.

We consider parametric submodels, indexed by η = {ε0, εk, υk : k = 1, . . . ,K}, characterized by

dF0,η0 = dF0(y0) {1 + ε0h0(y0)} : E{h0(Y0)} = 0

dFk,ηk(yk|yk−1) = dFk(yk|yk−1) {1 + εkhk(yk)} : E(hk(Y k)|Rk = 1, Y k−1) = 0

Pk,υk(yk−1) =
Pk(yk−1) exp{υklk(yk−1)}

Pk(yk−1) exp{υklk(yk−1)}+ 1− Pk(yk−1)
: lk(·) is any function of yk−1

The associated score functions evaluated at η = 0 are h0(Y0), Rkhk(Y k) and Rk−1{Rk − Pk(Y k−1)}lk(Y k−1).
The target parameter as a functional of Pη is

µ(Pη) =

∫
· · ·
∫
yK

K∏

j=1

(
dFj(yj |yj−1)

{
1 + εjhj(yj)

}( Pj(yj−1) exp{υj lj(yj−1)}
Pj(yj−1) exp{υj lj(yj−1)}+ 1− Pj(yj−1)

)

+
dFj(yj |yj−1) exp{αr(yj)}

{
1 + εjhj(yj)

}( 1−Pj(yj−1)

Pj(yj−1) exp{υj lj(yj−1)}+1−Pj(yj−1)

)

∫
exp{αr(yj)}dFj(yj |yj−1)

{
1 + εjhj(yj)

}


 dF0(y0) {1 + ε0h0(y0)}

In what follows, we represent Pk(yk−1), dFk(yk|yk−1), dF0(y0), αr(yk), hk(yk) and lk(yk−1) by Pk, Qk, Q0, αrk, hk and
lk, respectively. The derivative with respect to ε0 (evaluated at η = 0) is dε0(h0) equal to

∫
· · ·
∫
yK

K∏

j=1

(
QjPj +

Qj exp(αrj)(1− Pj)∫
exp(αrj)Qj

)
Q0h0

The derivative with respect to εk (evaluated at η = 0) is dεk(hk) equal to
∫
· · ·
∫
yK
∏

j 6=k

(
QjPj +

Qj exp(αrj)(1− Pj)∫
exp(αrj)Qj

)

×
{
QkPkhk +

(∫
exp(αrk)Qk

)
exp(αrk)Qkhk −Qk exp(αrk)

∫
exp(αrk)Qkhk

(
∫

exp(αrk)Qk)2
(1− Pk)

}
Q0

The derivative with respect to υk (evaluated at η = 0) is dυk(lk) equal to

∫
· · ·
∫
yK

K∏

j 6=k

(
QjPj +

Qj exp(αrj)(1− Pj)∫
exp(αrj)Qj

)(
Qk(Pk(1− Pk)lk)− Qk exp(rk)(Pk(1− Pk)lk)∫

exp(αrk)Qk

)
Q0

Any element of can be expressed as T can be expressed as

a(Y0) +
K∑

k=1

Rkbk(Y k) +
K∑

k=1

Rk−1(Rk − Pk)ck(Y k−1)

1



where E{a(Y0)} = 0, E(bj(Y j)|Rj = 1, Y j−1) = 0 and cj(·) is any function of Y j−1. We need to find functions a(Y0),bk(Y k)
and ck(Y k−1) such that

E{a(Y0)h0(Y0)} = dε0(h0)

E{Rkbk(Y k)hk(Y k)} = dεk(hk)

E{Rk−1(Rk − Pk)2ck(Y k−1)lk(Y k−1)} = dνk(lk)

First, notice that

E{a0(Y0)h0(Y0)} =

∫

y0

a0(y0)h0(y0)Q0

and

dε0(h0) =

∫

y0





∫
· · ·
∫
yK

K∏

j=1

(
QjPj +

Qj exp(αrj)(1− Pj)∫
exp(αrj)Qj

)
h0Q0

Thus, E{a∗0(Y0)h0(Y0)} = dε0(h0) where

a∗0(Y0) =

∫

y1

· · ·
∫

yK

yK

∏K
j=1

(
QjPj +

Qj exp(αrj)(1−Pj)∫
exp(αrj)Qj

)

∏K
j=1QjPj

K∏

j=1

QjPj = E

(
RKYK∏K

j=1

[
1 + exp

{
gj(Y j−1) + αr(Yj)

}]−1 Y0

)

with gk = log {(1− Pk) /Pk} − log
(∫

exp(rk)Qk
)
. Note that a∗0(Y0) does not have mean zero; it actually has mean µ. We

can substract out its mean to obtain a0(Y0) = a∗0(Y0)− µ; note that E{a0(Y0)h0(Y0)} = dε0(h0).
Second, notice that

E
{
Rkbk(Y k)hk(Y k)

}
=

∫

y0

· · ·
∫

yk

bk(yk)hk(yk)




k∏

j=1

QjPj


Q0

and

dεk(hk)

=

∫

y0

· · ·
∫

yk

∫

yk+1

· · ·
∫

yK


yK

∏K
j=1

(
QjPj +

Qj exp(αrj)(1−Pj)∫
exp(αrj)Qj

)

∏K
j=1QjPj






K∏

j=k+1

QjPj




(
hk −

exp(αrk) (1− Pk)
∫
y∗k

exp(αr∗k)Q∗kh
∗
k

Pk
(∫

exp(αrk)Qk
)2

+ exp(αrk)(1− Pk)
∫

exp(αrk)Qk

)


k∏

j=1

QjPj


Q0

=

∫

y0

· · ·
∫

yk

∫

yk+1

· · ·
∫

yK


yK

∏K
j=1

(
QjPj +

Qj exp(αrj)(1−Pj)∫
exp(αrj)Qj

)

∏K
j=1QjPj








K∏

j=k+1

QjPj


hk




k∏

j=1

QjPj


Q0−

∫

y0

· · ·
∫

yk−1

∫

yk

∫

yk+1

· · ·
∫

yK


yK

∏K
j=1

(
QjPj +

Qj exp(αrj)(1−Pj)∫
exp(αrj)Qj

)

∏K
j=1QjPj




Qk

K∏

j=k+1

QjPj




(
exp(αrk) (1− Pk)

∫
y∗k

exp(αr∗k)Q∗kh
∗
k

Pk
(∫

exp(αrk)Qk
)2

+ exp(αrk)(1− Pk)
∫

exp(αrk)Qk

)
Pk

k−1∏

j=1

QjPj


Q0

=

∫

y0

· · ·
∫

yk





∫

yk+1

· · ·
∫

yK


yK

∏K
j=1

(
QjPj +

Qj exp(αrj)(1−Pj)∫
exp(αrj)Qj

)

∏K
j=1QjPj






K∏

j=k+1

QjPj





hk




k∏

j=1

QjPj


Q0−

∫

y0

· · ·
∫

yk−1

∫

y∗k





∫

yk

∫

yk+1

· · ·
∫

yK


yK

∏K
j=1

(
QjPj +

Qj exp)αrj)(1−Pj)∫
exp(αrj)Qj

)

∏K
j=1QjPj






Qk

K∏

j=k+1

QjPj




(
exp(αrk) (1− Pk)

Pk
(∫

exp(αrk)Qk
)2

+ exp(αrk)(1− Pk)
∫

exp(αrk)Qk

)}
exp(αr∗k)h∗k


Q∗kPk

k−1∏

j=1

QjPj


Q0

=

∫

y0

· · ·
∫

yk

E

(
RKYK∏K

j=1

[
1 + exp

{
gj(Y j−1) + αr(Yj)

}]−1 Rk = 1, Y k = yk

)
hk




k∏

j=1

QjPj


Q0−

2



∫

y0

· · ·
∫

yk

E

(
RKYK∏K

j=1

[
1 + exp

{
gj(Y j−1) + αr(Yj)

}]−1
(

exp(αrk) (1− Pk)

Pk
(∫

exp(αrk)Qk
)2

+ exp(αrk)(1− Pk)
∫

exp(αrk)Qk

)
Rk = 1, Y k−1 = yk−1

)
exp(αrk)hk




k∏

j=1

QjPj


Q0

Thus E
{
Rkb

∗
k(Y k)hk(Y k)

}
= dεk(hk), where

b∗k(Y k)

= E

(
RKYK∏K

j=1

[
1 + exp

{
gj(Y j−1) + αr(Yj)

}]−1 Rk = 1, Y k

)
−

E

(
RKYK∏K

j=1

[
1 + exp

{
gj(Y j−1) + αr(Yj)

}]−1

(
exp(rk) (1− Pk)

Pk
(∫

exp(αrk)Qk
)2

+ exp(αrk)(1− Pk)
∫

exp(αrk)Qk

)
Rk = 1, Y k−1

)
×

exp(αrk)

Note that b∗k(Y k) does not have mean 0 given Rk = 1 and Y k−1. We can substract out E(b∗k(Y k)|Rk = 1, Y k−1) to obtain

bk(Y k)

= E

(
RKYK∏K

j=1

[
1 + exp

{
gj(Ȳj−1) + αr(Yj)

}]−1 |Rk = 1, Y k

)
− E

(
RKYK∏K

j=1

[
1 + exp

{
gj(Y j−1) + αr(Yj)

}]−1 |Rk = 1, Y k−1

)
−

E

(
RKYK∏K

j=1

[
1 + exp

{
gj(Y j−1) + αr(Yj)

}]−1

(
exp(αrk) (1− Pk)

Pk
(∫

exp(αrk)Qk
)2

+ exp(αrk)(1− Pk)
∫

exp(αrk)Qk

)
|Rk = 1, Y k−1

)
×

exp(αrk)+

E

(
RKYK∏K

j=1

[
1 + exp

{
gj(Y j−1) + αr(Yj)

}]−1

(
exp(αrk) (1− Pk)

Pk
{∫

exp(αrk)Qk
)2

+ exp(αrk)(1− Pk)
∫

exp(αrk)Qk

)
|Rk = 1, Y k−1

)
×

E
(
exp(αrk)|Rk = 1, Y k−1

)

Note that E
{
Rkbk(Y k)hk(Y k)

}
= dεk(hk) since E

(
h(Yk)|Rk = 1, Y k−1

)
= 0.

Third, notice that

E{Rk−1(Rk − Pk)2ck(Y k−1)lk(Y k−1)} =

∫

y0

· · ·
∫

yk−1

ck(yk−1)Pk(1− Pk)lk(yk−1)



k−1∏

j=1

QjPj


Q0

and

dυk(lk)

=

∫

y0

· · ·
∫

yk−1





∫

yk

· · ·
∫

yK

yK

∏K
j=1

(
QjPj +

Qj exp(αrj)(1−Pj)∫
exp(αrj)Qj

)

∏K
j=1QjPj

Qk − Qk exp(αrk)∫
exp(αrk)Qk

QkPk + Qk exp(αrk)(1−Pk)∫
exp(αrk)Qk




K∏

j=k

QjPj





×

Pk(1− Pk)lk



k−1∏

j=1

QjPj


Q0

Thus,

ck(Y k−1) = E


 RKYK∏K

j=1

[
1 + exp

{
gj(Y j−1) + αr(Yj)

}]−1


 1− exp(αrk)∫

exp(αrk)Qk

Pk + exp(αrk)(1−Pk)∫
exp(αrk)Qk


 Rk−1 = 1, Y k−1




This completes the derivation of EIF .
The tangent space for M0, T0, has elements of the form:

ã(Y0) +
K∑

k=1

Rk b̃k(Yk,Yk−1) +
K∑

k=1

Rk−1(Rk − Pk)c̃k(Yk−1)

3



where E{ã(Y0)} = 0 and E(b̃k(Yk, Yk−1)|Rk = 1, Yk−1) = 0. The projection of EIF onto T0 has ã(Y0) = a(Y0), b̃k(Yk, Yk−1) =
E(bk(Y k)|Rk = 1, Yk, Yk−1) and c̃k(Yk−1) = E(ck(Y k−1)|Rk−1 = 1, Yk−1). This completes the derivation of EIF0

Appendix B: Remainder Term - Explicit Form and Derivation

The remainder term has the following explicit form:

Rem(P, P ∗) = µ(P )− µ(P ∗) +

∫
D†(P )(o)dP ∗(o)

=
K−1∑

k=0

Rem1,k(P, P ∗) +
K−1∑

k=1

Rem2,k(P, P ∗) +
K−1∑

k=2

Rem3,k(P, P ∗) ,

where

Rem1,k(P, P
∗) := E∗ {RkE∗ (Rk+1 exp{αr(Yk+1)}|Rk = 1, Yk)Rem1,k,1(P, P

∗)(O)Rem1,k,2(P, P
∗)(O)} ,

Rem1,k,1(P, P
∗)(O) :=

E
(
RKYK exp{αr(Yk+1)}∏

j 6=k+1 πj(Yj−1,Yj)
Rk = 1, Yk

)

E(Rk+1 exp{αr(Yk+1)} Rk = 1, Yk)
−
E∗
(

RKYK exp{αr(Yk+1)}∏k
j=1 πj(Yj−1,Yj)

∏K
j=k+2

π∗j (Yj−1,Yj)
Rk = 1, Yk

)

E∗(Rk+1 exp{αr(Yk+1)} Rk = 1, Yk)
,

Rem1,k,2(P, P
∗)(O) :=

H∗k+1(Yk)

E∗(Rk+1 exp{αr(Yk+1)} Rk = 1, Yk)
− Hk+1(Yk)

E (Rk+1 exp{αr(Yk+1)} Rk = 1, Yk)
,

Rem2,k(P, P
∗) := E∗ {RkRem2,k,1(P, P

∗)(O)Rem2,k,2(P, P
∗)(O)} ,

Rem2,k,1(P, P
∗)(O) := E∗

(
RKYK∏K

j=k+1 πj(Yj−1, Yj)
Rk = 1, Yk

)
− E

(
RKYK∏K

j=k+1 πj(Yj−1, Yj)
Rk = 1, Yk

)
,

Rem2,k,2(P, P
∗)(O) := E

(
1∏k

j=1 πj(Yj−1, Yj)
Rk = 1, Yk

)
− E∗

(
1∏k

j=1 πj(Yj−1, Yj)
Rk = 1, Yk

)
,

Rem3,k(P, P
∗) := E∗ {RkRem3,k,1(P, P

∗)(O)Rem3,k,2(P, P
∗)(O)} ,

Rem3,k,1(P, P
∗)(O) := E∗

(
RKYK∏K

j=k+1 πj(Yj−1, Yj)
Rk = 1, Yk

)
− E

(
RKYK∏K

j=k+1 πj(Yj−1, Yj)
Rk = 1, Yk

)

Rem3,k,2(P, P
∗)(O) := E

(
1∏k

j=1 πj(Yj−1, Yj)
Rk = 1, Yk, Yk−1

)
− E∗

(
1∏k

j=1 πj(Yj−1, Yj)
Rk = 1, Yk, Yk−1

)
.

To derive this expression, we start by writing

µ(P ∗) =
K∑

k=1

E∗
{(

1

π∗k(Yk−1, Yk)
− 1

πk(Yk−1, Yk)

)
RKYK∏k−1

l=1 πl(Yl−1, Yl)
∏K
l=k+1 π

∗
l (Yl−1, Yl)

}
+ E∗

[
RKYK∏K

l=1 πl(Yl−1, Yl)

]

Using this expression, we can write

Rem(P, P ∗) = −
K∑

k=1

E∗
{(

1

π∗k(Yk−1, Yk)
− 1

πk(Yk−1, Yk)

)
RKYK∏k−1

l=1 πl(Yl−1, Yl)
∏K
l=k+1 π

∗
l (Yl−1, Yl)

}
−

E∗
(

RKYK∏K
l=1 πl(Yl−1, Yl)

)
+ E∗

{
E

(
RKYK∏K

l=1 πl(Yl−1, Yl)
Y0

)}
+

K∑

k=1

E∗
{
RkE

(
RKYK∏K

l=1 πl(Yl−1, Yl)
Rk = 1, Yk, Yk−1

)}
−

K∑

k=1

E∗
{
RkE

(
RKYK∏K

l=1 πl(Yl−1, Yl)
Rk = 1, Yk−1

)}
+

K∑

k=1

E∗
{
RkE

(
RKYK∏K

l=1 πl(Yl−1, Yl)

(
exp{αr(Yk)}
gk(Yk, Yk−1)

)
Rk = 1, Yk−1

)
Hk(Yk−1)

}
−

K∑

k=1

E∗
(
RkE

(
RKYK∏K

l=1 πl(Yl−1, Yl)

(
exp{αr(Yk)}
gk(Yk, Yk−1)

)
Rk = 1, Yk−1

)
Hk(Yk−1)

exp{αr(Yk)}
wk(Yk−1)

)
+

K∑

k=1

E∗
{
Rk−1{1−Rk −Hk(Yk−1)}E

(
RKYK∏K

l=1 πl(Yl−1, Yl)

(
exp{αr(Yk)}
gk(Yk, Yk−1)

)
Rk−1 = 1, Yk−1

)}
−

K∑

k=1

E∗
{
Rk−1{1−Rk −Hk(Yk−1)}E

(
RKYK∏K

l=1 πl(Yl−1, Yl)

(
1

gk(Yk, Yk−1)

)
Rk−1 = 1, Yk−1

)
wk(Yk−1)

}

Let Ek(Yk−1) = E (Rk exp{αr(Yk)} Rk−1 = 1, Yk−1). Through the properties of conditional expectations, we can write

Rem(P, P ∗) = −
K∑

k=1

E∗
{
Rk−1

(
H∗k(Yk−1)

E∗k(Yk−1)
− Hk(Yk−1)

Ek(Yk−1)

)
E∗
(

RKYK exp{αr(Yk)}∏k−1
l=1 πl(Yl−1, Yl)

∏K
l=k+1 π

∗
l (Yl−1, Yl)

Rk−1 = 1, Yk−1

)}
−

4



E∗
(

RKYK∏K
l=1 πl(Yl−1, Yl)

)
+ E∗

{
E

(
RKYK∏K

l=1 πl(Yl−1, Yl)
Y0

)}
+

K∑

k=1

E∗
{
RkE

(
RKYK∏K

l=1 πl(Yl−1, Yl)
Rk = 1, Yk, Yk−1

)}
−

K∑

k=1

E∗
{
Rk−1

(
1−H∗k(Yk−1)

1−Hk(Yk−1)

)
E

(
RKYK∏K

l=1 πl(Yl−1, Yl)
Rk−1 = 1, Yk−1

)}
+

K∑

k=1

E∗
{
Rk−1

(
1−H∗k(Yk−1)

1−Hk(Yk−1)

)
E

(
RKYK∏K

l=1 πl(Yl−1, Yl)

(
exp{αr(Yk)}
gk(Yk, Yk−1)

)
Rk−1 = 1, Yk−1

)
Hk(Yk−1)

}
−

K∑

k=1

E∗
(
Rk−1E

(
RKYK∏K

l=1 πl(Yl−1, Yl)

(
exp{αr(Yk)}
gk(Yk, Yk−1)

)
Rk−1 = 1, Yk−1

)
Hk(Yk−1)

E∗k(Yk−1)

Ek(Yk−1)

)
+

K∑

k=1

E∗
{
Rk−1

(
H∗k(Yk−1)−Hk(Yk−1)

Hk(Yk−1)

)
E

(
RKYK∏K

l=1 πl(Yl−1, Yl)

(
exp{αr(Yk)}
gk(Yk, Yk−1)

)
Rk−1 = 1, Yk−1

)
Hk(Yk−1)

}
−

K∑

k=1

E∗
{
Rk−1

(
H∗k(Yk−1)−Hk(Yk−1)

1−Hk(Yk−1)

)
E

(
RKYK∏K

l=1 πl(Yl−1, Yl)

(
1

gk(Yk, Yk−1)

)
Rk−1 = 1, Yk−1

)
Ek(Yk−1)

}

Using the fact that 1
πk(Yk−1,Yk)

= 1 + Hk(Yk−1)
Ek(Yk−1)

exp{αr(Yk)}, we can write

Rem(P, P ∗)

= −
K∑

k=1

E∗
{
Rk−1

(
H∗k(Yk−1)

E∗k(Yk−1)
− Hk(Yk−1)

Ek(Yk−1)

)
E∗
(

RKYK exp{αr(Yk)}∏k−1
l=1 πl(Yl−1, Yl)

∏K
l=k+1 π

∗
l (Yl−1, Yl)

Rk−1 = 1, Yk−1

)}
−

E∗
(

RKYK∏K
l=1 πl(Yl−1, Yl)

)
+ E∗

{
E

(
RKYK∏K

l=2 πl(Yl−1, Yl)
Y0

)}
+ E∗

(
E

(
RKYK exp{αr(Y1)}∏K

l=2 πl(Yl−1, Yl)
Y0

)
H1(Y0)

E1(Y0)

)
+

K∑

k=1

E∗
{
RkE

(
RKYK∏K

l=1 πl(Yl−1, Yl)
Rk = 1, Yk, Yk−1

)}
−

K∑

k=1

E∗
{
Rk−1

(
1−H∗k(Yk−1)

1−Hk(Yk−1)

)
E

(
RKYK∏k−1

l=1 πl(Yl−1, Yl)
∏K
l=k+1 πl(Yl−1, Yl)

Rk−1 = 1, Yk−1

)}
−

K∑

k=1

E∗
(
Rk−1

(
1−H∗k(Yk−1)

1−Hk(Yk−1)

)
E

(
RKYK exp{αr(Yk)}∏k−1

l=1 πl(Yl−1, Yl)
∏K
l=k+1 πl(Yl−1, Yl)

Rk−1 = 1, Yk−1

)
Hk(Yk−1)

Ek(Yk−1)

)
+

K∑

k=1

E∗
(
Rk−1

(
1−H∗k(Yk−1)

1−Hk(Yk−1)

)
E

(
RKYK exp{αr(Yk)}∏k−1

l=1 πl(Yl−1, Yl)
∏K
l=k+1 πl(Yl−1, Yl)

Rk−1 = 1, Yk−1

)
Hk(Yk−1)

Ek(Yk−1)

)
−

K∑

k=1

E∗
(
Rk−1E

(
RKYK exp{αr(Yk)}∏k−1

l=1 πl(Yl−1, Yl)
∏K
l=k+1 πl(Yl−1, Yl)

Rk−1 = 1, Yk−1

)
Hk(Yk−1)

Ek(Yk−1)

E∗k(Yk−1)

Ek(Yk−1)

)
+

K∑

k=1

E∗
(
Rk−1

(
H∗k(Yk−1)−Hk(Yk−1)

Hk(Yk−1)

)
E

(
RKYK exp{αr(Yk)}∏k−1

l=1 πl(Yl−1, Yl)
∏K
l=k+1 πl(Yl−1, Yl)

Rk−1 = 1, Yk−1

)
Hk(Yk−1)

Ek(Yk−1)

)
−

K∑

k=1

E∗
{
Rk−1

(
H∗k(Yk−1)−Hk(Yk−1)

1−Hk(Yk−1)

)
E

(
RKYK∏k−1

l=1 πl(Yl−1, Yl)
∏K
l=k+1 πl(Yl−1, Yl)

Rk−1 = 1, Yk−1

)}

Cancelling and combining terms, we obtain

Rem(P, P ∗)

= −
K∑

k=1

E∗
{
Rk−1

(
H∗k(Yk−1)

E∗k(Yk−1)
− Hk(Yk−1)

Ek(Yk−1)

)
E∗
(

RKYK exp{αr(Yk)}∏k−1
l=1 πl(Yl−1, Yl)

∏K
l=k+1 π

∗
l (Yl−1, Yl)

Rk−1 = 1, Yk−1

)}
−

E∗
(

RKYK∏K
l=1 πl(Yl−1, Yl)

)
+ E∗

{
E

(
RKYK∏K

l=2 πl(Yl−1, Yl)
Y0

)}
+ E∗

[
E

[
RKYK exp{αr(Y1)}∏K

l=2 πl(Yl−1, Yl)
Y0

]
H1(Y0)

E1(Y0)

]
+

K∑

k=1

E∗
(
RkE

(
RKYK∏K

l=1 πl(Yl−1, Yl)
Rk = 1, Yk, Yk−1

))
−

K∑

k=1

E∗
{
Rk−1E

(
RKYK∏k−1

l=1 πl(Yl−1, Yl)
∏K
l=k+1 πl(Yl−1, Yl)

Rk−1 = 1, Yk−1

)}
−

K∑

k=1

E∗
(
Rk−1E

(
RKYK exp{αr(Yk)}∏k−1

l=1 πl(Yl−1, Yl)
∏K
l=k+1 πl(Yl−1, Yl)

Rk−1 = 1, Yk−1

)
Hk(Yk−1)

Ek(Yk−1)

E∗k(Yk−1)

Ek(Yk−1)

)
+

5



K∑

k=1

E∗
(
Rk−1

(
H∗k(Yk−1)−Hk(Yk−1)

Hk(Yk−1)

)
E

(
RKYK exp{αr(Yk)}∏k−1

l=1 πl(Yl−1, Yl)
∏K
l=k+1 πl(Yl−1, Yl)

Rk−1 = 1, Yk−1

)
Hk(Yk−1)

Ek(Yk−1)

)

Through further algebraic manipulation, we obtain that Rem(P, P ∗) = Rem1(P, P ∗) +Rem2(P, P ∗), where

Rem1(P, P
∗)

= −
K∑

k=1

E∗
{
Rk−1E

∗
k(Yk−1)

(
H∗k(Yk−1)

E∗k(Yk−1)
− Hk(Yk−1)

Ek(Yk−1)

)



E∗
(

RKYK exp{αr(Yk)}∏k−1
l=1

πl(Yl−1,Yl)
∏K

l=k+1
π∗
l
(Yl−1,Yl)

Rk−1 = 1, Yk−1

)

E∗k(Yk−1)
−
E

(
RKYK exp{αr(Yk)}∏k−1

l=1
πl(Yl−1,Yl)

∏K
l=k+1

πl(Yl−1,Yl)
Rk−1 = 1, Yk−1

)

Ek(Yk−1)








and

Rem2(P, P
∗) = −E∗

(
RKYK∏K

l=1 πl(Yl−1, Yl)

)
+

K∑

k=1

E∗
{
RkE

(
RKYK∏K

l=1 πl(Yl−1, Yl)
Rk = 1, Yk, Yk−1

)}
−
K−1∑

k=1

E∗
{
RkE

(
RKYK∏K

l=1 πl(Yl−1, Yl)
Rk = 1, Yk

)}

Notice that Rem1(P, P ∗) is second order. It remains to show that Rem2(P, P ∗) is second order. In our derivation, we
use the fact that, for k = 1, . . . ,K − 1,

E

(
RKYK∏K

l=k+1 πl(Yl−1, Yl)
Rk = 1, Yk, Yk−1

)
= E

(
RKYK∏K

l=k+1 πl(Yl−1, Yl)
Rk = 1, Yk

)

and

E∗
{
RkE

(
1

∏k
l=1 πl(Yl−1, Yl)

Rk = 1, Yk

)
E∗
(

RKYK∏K
l=k+1 πl(Yl−1, Yl)

Rk = 1, Yk

)}

= E∗
{
Rk+1E

(
1

∏k
l=1 πl(Yl−1, Yl)

Rk = 1, Yk

)
E∗
(

RKYK∏K
l=k+1 πl(Yl−1, Yl)

Rk+1 = 1, Yk+1, Yk

)}

= E∗
{

Rk+1

πk+1(Yk, Yk+1)
E

(
1

∏k
l=1 πl(Yl−1, Yl)

Rk = 1, Yk

)
E∗
(

RKYK∏K
l=k+2 πl(Yl−1, Yl)

Rk+1 = 1, Yk+1

)}

= E∗
{
Rk+1E

(
1

∏k+1
l=1 πl(Yl−1, Yl)

Rk+1 = 1, Yk+, Yk

)
E∗
(

RKYK∏K
l=k+2 πl(Yl−1, Yl)

Rk+1 = 1, Yk+1

)}

We can write

Rem2(P, P
∗) =− E∗

{
R1E

∗
(

1

π1(Y1, Y0)
R1 = 1, Y1

)
E∗
(

RKYK∏K
l=2 πl(Yl−1, Yl)

R1 = 1, Y1

)}
+

E∗
{
R1E

∗
(

1

π1(Y1, Y0)
R1 = 1, Y1

)
E

(
RKYK∏K

l=2 πl(Yl−1, Yl)
R1 = 1, Y1

)}
−

E∗
{
R1E

(
1

π1(Y1, Y0)
R1 = 1, Y1

)
E

(
RKYK∏K

l=2 πl(Yl−1, Yl)
R1 = 1, Y1

)}
+

K∑

k=2

E∗
{
RkE

(
1

∏k
l=1 πl(Yl−1, Yl)

Rk = 1, Yk, Yk−1

)
E

(
RKYK∏K

l=k+1 πl(Yl−1, Yl)
Rk = 1, Yk

)}
−

K−1∑

k=2

E∗
{
RkE

(
1

∏k
l=1 πl(Yl−1, Yl)

Rk = 1, Yk

)
E

(
RKYK∏K

l=k+1 πl(Yl−1, Yl)
Rk = 1, Yk

)}

We add the following zero terms to Rem2(P, P ∗):

A(P, P ∗) =

K−1∑

k=1

[
E∗
{
RkE

(
1

∏k
l=1 πl(Yl−1, Yl)

Rk = 1, Yk

)
E∗
(

RKYK∏K
l=k+1 πl(Yl−1, Yl)

Rk = 1, Yk

)}
−

E∗
{
RkE

(
1

∏k
l=1 πl(Yl−1, Yl)

Rk = 1, Yk

)
E∗
(

RKYK∏K
l=k+1 πl(Yl−1, Yl)

Rk = 1, Yk

)}]
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=
K−1∑

k=1

E∗
{
RkE

(
1

∏k
l=1 πl(Yl−1, Yl)

Rk = 1, Yk

)
E∗
(

RKYK∏K
l=k+1 πl(Yl−1, Yl)

Rk = 1, Yk

)}
−

K∑

k=2

E∗
{
RkE

(
1

∏k
l=1 πl(Yl−1, Yl)

Rk = 1, Yk, Yk−1

)
E∗
(

RKYK∏K
l=k+1 πl(Yl−1, Yl)

Rk = 1, Yk

)}

B(P, P ∗) =
K−1∑

k=2

[
E∗
{
RkE

∗
(

1
∏k
l=1 πl(Yl−1, Yl)

Rk = 1, Yk, Yk−1

)
E∗
(

RKYK∏K
l=k+1 πl(Yl−1, Yl)

Rk = 1, Yk

)}
−

E∗
{
RkE

∗
(

1
∏k
l=1 πl(Yl−1, Yl)

Rk = 1, Yk, Yk−1

)
E∗
(

RKYK∏K
l=k+1 πl(Yl−1, Yl)

Rk = 1, Yk

)}]
+

[
E∗
{
RkE

∗
(

1
∏k
l=1 πl(Yl−1, Yl)

Rk = 1, Yk, Yk−1

)
E

(
RKYK∏K

l=k+1 πl(Yl−1, Yl)
Rk = 1, Yk

)}
−

E∗
{
RkE

∗
(

1
∏k
l=1 πl(Yl−1, Yl)

Rk = 1, Yk, Yk−1

)
E

(
RKYK∏K

l=k+1 πl(Yl−1, Yl)
Rk = 1, Yk

)}]

So,

Rem2(P, P ∗) =− E∗
{
R1E

∗
(

1

π1(Y1, Y0)
R1 = 1, Y1

)
E∗
(

RKYK∏K
l=2 πl(Yl−1, Yl)

R1 = 1, Y1

)}
+

E∗
{
R1E

∗
(

1

π1(Y1, Y0)
R1 = 1, Y1

)
E

(
RKYK∏K

l=2 πl(Yl−1, Yl)
R1 = 1, Y1

)}
−

E∗
{
R1E

(
1

π1(Y1, Y0)
R1 = 1, Y1

)
E

(
RKYK∏K

l=2 πl(Yl−1, Yl)
R1 = 1, Y1

)}
+

E∗
{
R1E

(
1

π1(Y1, Y0)
R1 = 1, Y1

)
E∗
(

RKYK∏K
l=2 πl(Yl−1, Yl)

R1 = 1, Y1

)}
+

K∑

k=2

E∗
{
RkE

(
1

∏k
l=1 πl(Yl−1, Yl)

Rk = 1, Yk, Yk−1

)
E

(
RKYK∏K

l=k+1 πl(Yl−1, Yl)
Rk = 1, Yk

)}
−

K−1∑

k=2

E∗
{
RkE

(
1

∏k
l=1 πl(Yl−1, Yl)

Rk = 1, Yk

)
E

(
RKYK∏K

l=k+1 πl(Yl−1, Yl)
Rk = 1, Yk

)}
+

K−1∑

k=2

E∗
{
RkE

(
1

∏k
l=1 πl(Yl−1, Yl)

Rk = 1, Yk

)
E∗
(

RKYK∏K
l=k+1 πl(Yl−1, Yl)

Rk = 1, Yk

)}
−

K∑

k=2

E∗
{
RkE

(
1

∏k
l=1 πl(Yl−1, Yl)

Rk = 1, Yk, Yk−1

)
E∗
(

RKYK∏K
l=k+1 πl(Yl−1, Yl)

Rk = 1, Yk

)}
+

K−1∑

k=2

[
E∗
{
RkE

∗
(

1
∏k
l=1 πl(Yl−1, Yl)

Rk = 1, Yk, Yk−1

)
E∗
(

RKYK∏K
l=k+1 πl(Yl−1, Yl)

Rk = 1, Yk

)}
−

E∗
{
RkE

∗
(

1
∏k
l=1 πl(Yl−1, Yl)

Rk = 1, Yk, Yk−1

)
E∗
(

RKYK∏K
l=k+1 πl(Yl−1, Yl)

Rk = 1, Yk

)}]
+

[
E∗
{
RkE

∗
(

1
∏k
l=1 πl(Yl−1, Yl)

Rk = 1, Yk, Yk−1

)
E

(
RKYK∏K

l=k+1 πl(Yl−1, Yl)
Rk = 1, Yk

)}
−

E∗
{
RkE

∗
(

1
∏k
l=1 πl(Yl−1, Yl)

Rk = 1, Yk, Yk−1

)
E

(
RKYK∏K

l=k+1 πl(Yl−1, Yl)
Rk = 1, Yk

)}]
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Through algebra,

Rem2(P, P ∗) =− E∗
[
R1

{
E∗
(

1

π1(Y1, Y0)
R1 = 1, Y1

)
− E

(
1

π1(Y1, Y0)
R1 = 1, Y1

)}

{
E∗
(

RKYK∏K
l=2 πl(Yl−1, Yl)

R1 = 1, Y1

)
− E

(
RKYK∏K

l=2 πl(Yl−1, Yl)
R1 = 1, Y1

)}]
+

K−1∑

k=2

E∗
[
Rk

{
E∗
(

1
∏k
l=1 πl(Yl−1, Yl)

Rk = 1, Yk, Yk−1

)
− E

(
1

∏k
l=1 πl(Yl−1, Yl)

Rk = 1, Yk, Yk−1

)}

{
E∗
(

RKYK∏K
l=k+1 πl(Yl−1, Yl)

Rk = 1, Yk

)
− E

(
RKYK∏K

l=k+1 πl(Yl−1, Yl)
Rk = 1, Yk

)}]
−

K−1∑

k=2

E∗
{
RkE

(
1

∏k
l=1 πl(Yl−1, Yl)

Rk = 1, Yk

)
E

(
RKYK∏K

l=k+1 πl(Yl−1, Yl)
Rk = 1, Yk

)}
+

K−1∑

k=2

E∗
{
RkE

(
1

∏k
l=1 πl(Yl−1, Yl)

Rk = 1, Yk

)
E∗
(

RKYK∏K
l=k+1 πl(Yl−1, Yl)

Rk = 1, Yk

)}
−

K−1∑

k=2

E∗
{
RkE

∗
(

1
∏k
l=1 πl(Yl−1, Yl)

Rk = 1, Yk, Yk−1

)
E∗
(

RKYK∏K
l=k+1 πl(Yl−1, Yl)

Rk = 1, Yk

)}
+

K−1∑

k=2

E∗
{
RkE

∗
(

1
∏k
l=1 πl(Yl−1, Yl)

Rk = 1, Yk, Yk−1

)
E

(
RKYK∏K

l=k+1 πl(Yl−1, Yl)
Rk = 1, Yk

)}

We now use the fact that, for all k = 2, . . . ,K − 1 and fk(Yk),

E∗
{
RkE

∗
(

1
∏k
l=1 πl(Yl−1, Yl)

Rk = 1, Yk, Yk−1

)
fk(Yk)

}
= E∗

{
RkE

∗
(

1
∏k
l=1 πl(Yl−1, Yl)

Rk = 1, Yk

)
fk(Yk)

}

to conclude that

Rem2(P, P ∗) =−
K−1∑

k=1]

E∗
[
Rk

{
E∗
(

1
∏k
l=1 πl(Yl−1, Yl)

Rk = 1, Yk

)
− E

(
1

∏k
l=1 πl(Yl−1, Yl)

Rk = 1, Yk

)}

{
E∗
(

RKYK∏K
l=k+1 πl(Yl−1, Yl)

Rk = 1, Yk

)
− E

(
RKYK∏K

l=k+1 πl(Yl−1, Yl)
Rk = 1, Yk

)}]
+

K−1∑

k=2

E∗
[
Rk

{
E∗
(

1
∏k
l=1 πl(Yl−1, Yl)

Rk = 1, Yk, Yk−1

)
− E

(
1

∏k
l=1 πl(Yl−1, Yl)

Rk = 1, Yk, Yk−1

)}

{
E∗
(

RKYK∏K
l=k+1 πl(Yl−1, Yl)

Rk = 1, Yk

)
− E

(
RKYK∏K

l=k+1 πl(Yl−1, Yl)
Rk = 1, Yk

)}]

In this form, it is easy to see that Rem2(P, P ∗) is second order.

Appendix C: Proof of Theorem 1

We can write that

µ̂− µ∗ = µ(P̂ )− µ(P ∗) +
1

n

n∑

i=1

D†(P̂ )(Oi)

= −
∫
D†(P̂ )(o)dP ∗(o) +Rem(P̂ , P ∗) +

1

n

n∑

i=1

D†(P̂ )(Oi)

=
1

n

n∑

i=1

D†(P ∗)(Oi) +

∫ {
D†(P̂ )(o)−D†(P ∗)(o)

}
d(Pn − P ∗)(o) +Rem(P̂ , P ∗).

Under conditions (a) and (b), we obtain that µ̂ is an asymptotically linear estimator of µ∗ with influence function D†(P ∗).
Since D†(P ∗) is the canonical gradient of µ at P ∗ relative to M0, we conclude that µ̂ is asymptotically efficient relative to
M0.
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Abstract

Randomized trials with patient reported outcomes are commonly plagued by missing data.

The analysis of such trials relies on untestable assumptions about the missing data mechanism.

To address this issue, it has been recommended that the sensitivity of the trial results to as-

sumptions should be a mandatory reporting requirement. In this paper, we discuss a recently

developed methodology (Scharfstein et al., Biometrics, 2017) for conducting sensitivity analysis of

randomized trials in which outcomes are scheduled to be measured at fixed points in time after

randomization and some subjects prematurely withdraw from study participation. The method-

ology is explicated in the context of a placebo-controlled randomized trial designed to evaluate a

treatment for bipolar disorder. We present a comprehensive data analysis and a simulation study

to evaluate the performance of the method. A software package entitled SAMON (R and SAS

versions) that implements our methods is available at www.missingdatamatters.org.

∗dscharf@jhu.edu
†amcderm1@jhu.edu
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1 Introduction

Missing outcome data are a widespread problem in clinical trials, including those with patient-reported

outcomes. Since such outcomes require active engagement of patients and patients, while encouraged,

are not required to remain or provide data while on-study, high rates of missing data can be expected.

To understand the magnitude of this issue, we reviewed all randomized trials 1 reporting five major

patient-reported outcomes (SF-36, SF-12, Patient Health Questionnaire-9, Kansas City Cardiomy-

opathy Questionnaire, Minnesota Living with Heart Failure Questionnaire) published in five leading

general medical journals (New England Journal of Medicine, Journal of the American Medical Associ-

ation, Lancet, British Medical Journal, PLoS One) between January 1, 2008 and January 31, 2017. We

identified 145 studies, which are summarized in Table 1. There is large variation in the percentages of

missing data, with 78.6% of studies reporting percentages greater than 10%, 43.4% greater than 20%

and 24.8% greater than 30%. Fielding et al. [46] conducted a similar review of clinical trials reporting

quality of life outcomes in four of these journals during 2005/6 and found a comparable distribution of

missing data percentages. Given the quality of these journals, it is likely that the percentages reported

in Fielding et al. [46] and in Table 1 are an optimistic representation of percentages of missing data

across the universe of clinical trials with patient-reported outcomes published in the medical literature.

Missing outcome data complicates the inferences that can be drawn about treatment effects. While

unbiased estimates of treatment effects can be obtained from trials with no missing data, this is no

longer true when data are missing on some patients. The essential problem is that inference about

treatment effects relies on unverifiable assumptions about the nature of the mechanism that generates

the missing data. While we may know the reasons for missing data, we do not know the distribution

of outcomes for patients with missing data, how it compares to that of patients with observed data

1We focused on randomized trials in which patients in each treatment group were scheduled to be interviewed at a
common set of post baseline assessment times. We excluded crossover trials, 10 trials in which patients were at high risk
of death during the scheduled follow-up period, and 6 studies which did not report follow-up rates at the assessment
times.
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and whether differences in these distributions can be explained by the observed data.

It is widely recognized that the way to address the problem caused by missing outcome data is

to posit varying assumptions about the missing data mechanism and evaluate how inference about

treatment effects is affected by these assumptions. Such an approach is called ”sensitivity analysis.”

A 2010 National Research Council (NRC) report entitled ”The Prevention and Treatment of Missing

Data in Clinical Trials” [90] and a follow-up manuscript published in the New England Journal of

Medicine [91] recommends:

Sensitivity analyses should be part of the primary reporting of findings from clinical trials.

Examining sensitivity to the assumptions about the missing data mechanism should be a

mandatory component of reporting.

Li et al. [89] echoed this recommendation (see Standard 8) in their PCORI sponsored report entitled

”Minimal Standards in the Prevention and Handling of Missing Data in Observational and Experi-

mental Patient Centered Outcomes Research”.

The set of possible assumptions about the missing data mechanism is very large and cannot be

fully explored. As discussed in Scharfstein et al. [136], there are three main approaches to sensitivity

analysis: ad-hoc, local and global.

• Ad-hoc sensitivity analysis involves analyzing data using a few different analytic methods (e.g.,

last or baseline observation carried forward, complete or available case analysis, mixed models,

imputation) and evaluating whether the resulting inferences are consistent. The problem with

this approach is that consistency of inferences across the various methods does not imply that

there are no reasonable assumptions under which the inference about the treatment effect is

different.

• Local sensitivity analysis [94, 156, 153, 27] evaluates whether inferences are robust in a small

neighborhood around a reasonable benchmark assumption, such as the classic missing at random
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assumption [92]. Unfortunately, this approach does not address whether the inferences are robust

to plausible assumptions outside of the local neighborhood.

• Global sensitivity analysis [131, 138, 133, 134, 31, 136, 137] emphasized in Chapter 5 of the

NRC report [90], evaluates robustness of results across a much broader range of assumptions

that include a reasonable benchmark assumption and a collection of additional assumptions that

trend toward best and worst case assumptions. From this analysis, it can be determined how

much deviation from the benchmark assumption is required in order for the inferences to change.

If the deviation is judged to be sufficiently far from the benchmark assumption, then greater

credibility is lent to the benchmark analysis; if not, the benchmark analysis can be considered

to be fragile. Some researchers have dubbed this approach “tipping point analysis” [169, 18].

In this paper, we consider randomized clinical trials in which patient-reported outcomes are sched-

uled to be measured at baseline (prior to randomization) and at a fixed number of post-baseline

assessment times. We assume that some patients discontinue participation prior to the final assess-

ment time and that all outcomes are observed while the patients are on-study. This assumption implies

that there is no intermittent missing outcome data. We discuss a recently developed methodology [137]

for conducting global sensitivity analysis of such trials. We explicate the methodology in the context

of a randomized trial designed to evaluate the efficacy of quetiapine fumarate for the treatment of

patients with bipolar disorder.

2 Quetiapine Bipolar Trial

The Quetiapine Bipolar trial was a multi-center, placebo-controlled, double-dummy study in which

patients with bipolar disorder were randomized equally to one of three treatment arms: placebo,

Quetiapine 300 mg/day or Quetiapine 600 mg/day [17]. Randomization was stratified by type of

bipolar disorder: 1 or 2. A key secondary patient-reported endpoint was the short-form version of
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the Quality of Life Enjoyment Satisfaction Questionnaire (QLESSF, [41]), which was scheduled to be

measured at baseline, week 4 and week 8 2.

In this paper, we will focus on the subset of 234 patients with bipolar 1 disorder who were ran-

domized to either the placebo (n=116) or 600 mg/day (n=118) arms 3 We seek to compare the mean

QLESSF outcomes at week 8 between these two treatment groups, in a world in which there are no

missing outcomes. Unfortunately, this comparison is complicated because patients prematurely with-

drew from the study. Figure 1 displays the treatment-specific trajectories of mean QLESSF scores,

stratified by last available measurement. Notice that only 65 patients (56%) in placebo arm and 68

patients (58%) in the 600mg/day arm had a complete set of QLESSF scores. Further, the patients with

complete data tend to have higher average QLESSF scores, suggesting that a complete-case analysis

could be biased.

3 Global Sensitivity Analysis

Chapter 5 of the NRC report [90] lays out a general framework for global sensitivity analysis. In

this framework, inference about treatment effects requires two types of assumptions: (i) untestable

assumptions about the distribution of outcomes among those with missing data and (ii) testable

assumptions that serve to increase the efficiency of estimation (see Figure 2). Type (i) assumptions

are required to “identify” parameters of interest: identification means that one can mathematically

express parameters of interest (e.g., treatment arm-specific means, treatment effects) in terms of the

distribution of the observed data. In other words, if one were given the distribution of the observed

data and given a type (i) assumption, then one could compute the value of the parameter of interest

(see arrows in Figure 2). In the absence of identification, one cannot learn the value of the parameter

2Data were abstracted from the clinical study report available at http://psychrights.org/research/
Digest/NLPs/Seroquel/UnsealedSeroquelStudies/. The number of patients that were abstracted does not exactly match
the number of patients reported in Calabrese et al., [17]

3These sample sizes exclude three randomized patients - one from placebo and two from 600 mg/day Quetiapine.
From each group, one patient was removed because of undue influence on the analysis. In the 600 mg/day Quetiapine
arm, one patient had incomplete questionaire data at baseline.
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of interest based only on knowledge of the distribution of the observed data. Identification implies

that the parameters of interest can, in theory, be estimated if the sample size is large enough.

There are an infinite number of ways of positing type (i) assumptions. It is impossible to consider

all such assumptions. A reasonable way of positing these assumptions is to

(a) stratify individuals with missing outcomes according to the data that were able to be collected

on them and the occasions at which the data were collected, and

(b) separately for each stratum, hypothesize a connection (or link) between the distribution of

the missing outcomes with the distribution of these outcomes for patients who share the same

recorded data and for whom the distribution is identified.

The connection that is posited in (b) is a type (i) assumption. The problem with this approach is that

the stratum of people who share the same recorded data will typically be very small (e.g., the number

of patients who share exactly the same baseline data will be very small). As a result, it is necessary

to draw strength across strata by “smoothing.” Smoothing is required because, in practice, we are not

working with large enough sample sizes. Without smoothing, the data analysis will not be informative

because the uncertainty (i.e., standard errors) of the parameters of interest will be too large to be of

substantive use. Thus, it is necessary to impose type (ii) smoothing assumptions (represented by the

inner circle in Figure 2). Type (ii) assumptions are testable (i.e., place restrictions on the distribution

of the observed data) and should be scrutinized via model checking.

The global sensitivity framework proceeds by parameterizing (i.e., indexing) the connections (i.e.,

type (i) assumptions) in (b) above via sensitivity analysis parameters. The parameterization is config-

ured so that a specific value of the sensitivity analysis parameters (typically set to zero) corresponds

to a benchmark connection that is considered reasonably plausible and sensitivity analysis parameters

further from the benchmark value represent more extreme departures from the benchmark connection.

The global sensitivity analysis strategy that we propose is focused on separate inferences for each

treatment arm, which are then combined to evaluate treatment effects. Until the last part of this
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section, our focus will be on estimation of the mean outcome at week 8 (in a world without missing

outcomes) for one of the treatment groups and we will suppress reference to treatment assignment.

3.1 Notation and Data Structure

Let Y0, Y1 and Y2 denote the QLESSF scores scheduled to be collected at baseline, week 4 and week 8,

respectively. Let Rk be the indicator that Yk is observed. We assume R0 = 1 and that Rk = 0 implies

Rk+1 = 0 (i.e., missingness is monotone). We refer to a patient as on-study at visit k if Rk = 1, as

discontinued prior to visit k if Rk = 0 and last seen at visit k − 1 if Rk−1 = 1 and Rk = 0. We define

Y obsk to be equal to Yk if Rk = 1 and equal to nil if Rk = 0.

The observed data for an individual are O = (Y0, R1, Y
obs
1 , R2, Y

obs
2 ), which is drawn from some

distribution P ∗ contained within a set of distributions M (to be discussed later). Throughout, the

superscript ∗ will be used to denote the true value of the quantity to which it is appended. Any

distribution P ∈ M can be represented in terms of the following distributions: f(Y0), P [R1 = 1|Y0],

f(Y1|R1 = 1, Y0), P [R2 = 1|R1 = 1, Y1, Y0] and f(Y2|R2 = 1, Y1, Y0).

We assume that n independent and identically distributed copies of O are observed. The goal is to

use these data to draw inference about µ∗ = E∗[Y2]. When necessary, we will use the subscript i to

denote data for individual i.

3.2 Benchmark Assumption (Missing at Random)

Missing at random [92] is a widely used assumption for analyzing longitudinal studies with missing

outcome data. To understand this assumption, we define the following strata:

• A0(y0): patients last seen at visit 0 with Y0 = y0.

• B1(y0): patients on-study at visit 1 with Y0 = y0.

• A1(y1, y0): patients last seen at visit 1 with Y1 = y1 and Y0 = y0.
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• B2(y1, y0): patients on-study at visit 2 with Y1 = y1 and Y0 = y0.

Missing at random posits the following type (i) “linking” assumptions:

• For all y0, the distribution of Y1 and Y2 for patients in strata A0(y0) is the same as the distribution

of Y1 and Y2 for patients in strata B1(y0)

• For all y0, y1, the distribution of Y2 for patients in strata A1(y1, y0) is the same as the distribution

of Y2 for patients in strata B2(y1, y0)

Mathematically, we can express these assumptions as follows:

f∗(Y1, Y2|R1 = 0, Y0 = y0︸ ︷︷ ︸
A0(y0)

) = f∗(Y1, Y2|R1 = 1, Y0 = y0︸ ︷︷ ︸
B1(y0)

) for all y0 (1)

and

f∗(Y2|R2 = 0, R1 = 1, Y1 = y1, Y0 = y0︸ ︷︷ ︸
A1(y1,y0)

) = f∗(Y2|R2 = 1, Y1 = y1, Y0 = y0︸ ︷︷ ︸
B2(y1,y0)

) for all y1, y0 (2)

Using Bayes’ rule, we can re-write these expressions as:

P ∗[R1 = 0|Y2 = y2, Y1 = y1, Y0 = y0] = P ∗[R1|Y0 = y0] (3)

and

P ∗[R2 = 0|R1 = 1, Y2 = y2, Y1 = y1, Y0 = y0] = P ∗[R2 = 0|R1 = 1, Y1 = y1, Y0 = y0] (4)

Written in this way, missing at random implies that the drop-out process is stochastic with the following

properties:

• The decision to discontinue the study before visit 1 is like the flip of a coin with probability

depending on the value of the outcome at visit 0.
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• For those on-study at visit 1, the decision to discontinue the study before visit 2 is like the flip

of a coin with probability depending on the value of the outcomes at visits 1 and 0.

Under missing at random, µ∗ is identified. That is, it can be expressed as a function of the

distribution of the observed data. Specifically,

µ∗ = µ(P ∗) =

∫

y0

∫

y1

∫

y2

y2dF
∗
2 (y2|y1, y0)dF ∗1 (y1|y0)dF ∗0 (y0) (5)

where F ∗2 (y2|y1, y0) = P ∗[Y2 ≤ y2|R2 = 1, Y1 = y1, Y0 = y0], F ∗1 (y1|y0) = P ∗[Y1 ≤ y1|R1 = 1, Y0 = y0]

and F ∗0 (y0) = P ∗[Y0 ≤ y0].

Before proceeding to the issue of estimation, we will build a class of assumptions around the missing

at random assumption using a modeling device called exponential tilting [7].

3.3 Missing Not at Random and Exponential Tilting

To build a class of missing not at random assumptions, consider Equation (1) of the missing at random

assumption. This equation is equivalent to the following two assumptions:

f∗(Y2|R1 = 0, Y1 = y1, Y0 = y0︸ ︷︷ ︸
A0(y1,y0)

) = f∗(Y2|R1 = 1, Y1 = y1, Y0 = y0︸ ︷︷ ︸
B1(y1,y0)

) for all y0, y1 (6)

and

f∗(Y1|R1 = 0, , Y0 = y0︸ ︷︷ ︸
A0(y0)

) = f∗(Y1|R1 = 1, Y0 = y0︸ ︷︷ ︸
B1(y0)

) for all y0 (7)

where

• A0(y1, y0) ⊂ A0(y0): patients last seen at visit 0 with Y0 = y0 and Y1 = y1.

• B1(y1, y0) ⊂ B1(y0): patients on-study at visit 1 with Y0 = y0 and Y1 = y1.

Equation (6) posits the following type (i) ”linking” assumption:
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• For all y0 and y1, the distribution of Y2 for patients in strata A0(y1, y0) is the same as the

distribution of Y2 for patients in strata B1(y1, y0)

It has been referred to as the “non-future” dependence assumption [32] because it implies that R1

(i.e., the decision to drop-out before visit 1) is independent of Y2 (i.e., the future outcome) after

conditioning on the Y0 (i.e., the past outcome) and Y1 (i.e., the most recent outcome). We will retain

this assumption.

Next, we impose the following exponential tilting ”linking” assumptions:

f∗(Y1|R1 = 0, Y0 = y0︸ ︷︷ ︸
A0(y0)

) ∝ f∗(Y1|R1 = 1, Y0 = y0︸ ︷︷ ︸
B1(y0)

) exp{αr(Y1)} for all y0 (8)

f∗(Y2|R2 = 0, R1 = 1, Y1 = y1, Y0 = y0︸ ︷︷ ︸
A1(y1,y0)

) ∝ f∗(Y2|R2 = 1, Y1 = y1, Y0 = y0︸ ︷︷ ︸
B2(y1,y0)

) exp{αr(Y2)} for all y0, y1

(9)

where r(·) is a specified function which we will assume to be an increasing function of its argument

and α is a sensitivity analysis parameter. The missing not at random class of assumptions that we

propose involves Equations (6), (8) and (9), where r(·) is considered fixed and α is a sensitivity analysis

parameter that serves as the class index. Importantly, notice how (8) reduces to (7) and (9) reduces

to (2) when α = 0. Thus, when α = 0, the MAR assumption is obtained. When α > 0 (< 0), notice

that (8) and (9) imply

• For all y0, the distribution of Y1 for patients in strata A0(y0) is weighted more heavily (i.e.,

tilted) to higher (lower) values than the distribution of Y1 for patients in strata B1(y0)

• For all y0, y1, the distribution of Y2 for patients in strata A1(y1, y0) is weighted more heavily

weighted (i.e., tilted) to higher (lower) values than the distribution of Y2 for patients in strata

B2(y1, y0)

The amount of ”tilting” increases with the magnitude of α.
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Using Bayes’ rule, we can re-write expressions (6), (8) and (9) succinctly as:

logit P ∗[R1 = 0|Y2 = y2, Y1 = y1, Y0 = y0] = l∗1(y0) + αr(y1) (10)

and

logit P ∗[R2 = 0|R1 = 1, Y2 = y2, Y1 = y1, Y0 = y0] = l∗2(y1, y0) + αr(y2) (11)

where

l∗1(y0;α) = logit P ∗[R1 = 0|Y0 = y0]− logE∗[exp{αr(Y1)}|R1 = 1, Y0 = y0]

and

l∗2(y1, y0;α) = logit P ∗[R2 = 0|R1 = 1, Y1 = y1, Y0 = y0]−

logE∗[exp{αr(Y2)}|R2 = 1, Y1 = y1, Y0 = y0]

Written in this way, the drop-out process is stochastic with the following properties:

• The decision to discontinue the study before visit 1 is like the flip of a coin with probability

depending on the value of the outcome at visit 0 and, in a specified way, the value of the

outcome at visit 1.

• For those on-study at visit 1, the decision to discontinue the study before visit 2 is like the flip

of a coin with probability depending on the value of the outcomes at visits 1 and 0 and, in a

specified way, the value of the outcome at visit 2.

11



For given α, µ∗ is identified. Specifically, µ∗ = µ(P ∗;α) equals

∫

y0

∫

y1

∫

y2

y2

{
dF ∗2 (y2|y1, y0){1−H∗2 (y1, y0)}+

dF ∗2 (y2|y1, y0) exp{αr(y2)}∫
y′2
dF ∗2 (y′2|y1, y0) exp{αr(y′2)}H

∗
2 (y1, y0)

}
×

{
dF ∗1 (y1|y0){1−H∗1 (y0)}+

dF ∗1 (y1|y0) exp{αr(y1)}∫
y′1
dF ∗1 (y′1|y0) exp{αr(y′1)}H

∗
1 (y0)

}
dF ∗0 (y0) (12)

where H∗2 (y1, y0) = P ∗[R2 = 0|R1 = 1, Y1 = y1, Y0 = y0] and H∗1 (y0) = P ∗[R1 = 0|Y0 = y0]

4 Inference

For given α, formula (12) shows that µ∗ depends on F ∗2 (y2|y1, y0), F ∗1 (y1|y0), H∗2 (y1, y0) and H∗1 (y0).

Thus, it is natural to consider estimating µ∗ by ”plugging in” estimators of F ∗2 (y2|y1, y0), F ∗1 (y1|y0),

F ∗0 (y0), H∗2 (y1, y0) and H∗1 (y0) into (12). How can we estimate these latter quantities? With the

exception of F ∗0 (y0), it is tempting to think that we can use non-parametric procedures to estimate

these quantities. For example, a non-parametric estimate of F ∗2 (y2|y1, y0) would take the form:

F̂2(y2|y1, y0) =

∑n
i=1R2,iI(Y2,i ≤ y2)I(Y1,i = y1, Y0,i = y0)∑n

i=1R2,iI(Y1,i = y1, Y0,i = y0)

This estimator will perform very poorly (i.e., have high levels of uncertainly in moderate sample sizes)

because the number of subjects who complete the study (i.e., R2 = 1) and are observed to have

outcomes at visits 1 and 0 exactly equal to y1 and y0 will be very small and can only be expected to

grow very slowly as the sample size increases. As a result, a a plug-in estimator of µ∗ that uses such

non-parametric estimators will perform poorly. We address this problem in three ways.

12



4.1 Testable Assumptions

First we make the estimation task slightly easier by assuming that

F ∗2 (y2|y1, y0) = F ∗2 (y2|y1) (13)

and

H∗2 (y1, y0) = H∗2 (y1) (14)

That is, (13) states that, among subjects who complete the study, information about Y0 does not

provide any information about the distribution of Y2 above and beyond information about Y1 and (14)

states that, among subjects on-study at visit 1, information about Y0 does not influence of the risk

of dropping out before visit 2 above and beyond information about Y1. These assumptions are, with

large enough samples, testable from the observed data. As such, we distinguish them from type (i)

assumptions and refer to them as type (ii) assumptions.

4.2 Kernel Smoothing with Cross-Validation

Second we estimate F ∗2 (y2|y1), F ∗1 (y1|y0), H∗2 (y1) and H∗1 (y0) using kernel smoothing techniques. To

motivate this idea, consider the following non-parametric estimate of F ∗2 (y2|y1)

F̂2(y2|y1) =

∑n
i=1R2,iI(Y2,i ≤ y2)I(Y1,i = y1)∑n

i=1R2,iI(Y1,i = y1)

This estimator will still perform poorly, although better than F̂2(y2|y1, y0), since there will be at least

as many completers with Y1 values equal to y1 than completers with Y1 and Y0 values equal to y1 and

y0, respectively. To improve its performance, we replace I(Y1,i = y1) by φ
(
Y1,i−y1
λF2

)
, where φ(·) is the

density function for a standard normal random variable and λF2 is a tuning parameter. For fixed λF2 ,
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let

F̂2(y2|y1;λF2
) =

∑n
i=1R2,iI(Y2,i ≤ y2)φ

(
Y1,i−y1
λF2

)

∑n
i=1R2,iφ

(
Y1,i−y1
λF2

)

This estimator allows all completers to contribute, not just those with Y1 values equal to y1; it assigns

weight to completers according to how far their Y1 values are from y1, with closer values assigned more

weight. The larger λF2 , the larger the influence of values of Y1 further from y1 on the estimator. As

λF2
→ ∞, the contribution of each completer to the estimator becomes equal, yielding bias but low

variance. As λF2
→ 0, only completers with Y1 values equal to y1 contribute, yielding low bias but

high variance.

To address the bias-variance trade-off, cross validation [62] is typically used to select λF2
. In cross

validation, the dataset is randomly divided into J (typically, 10) approximately equal parts. Each part

is called a validation set. Let Vj be the indices of the subjects in the jth validation set. Let nj be the

associated number of subjects. Let F̂
(j)
2 (y2|y1;λF2

) be the estimator of F ∗2 (y2|y1) based on the dataset

that excludes the jth validation set (referred to as the jth training set). If λF2 is a good choice then

one would expect

CVF∗2 (·|·)(λF2
) =

1

J

J∑

j=1





1

nj

∑

i∈Vj

R2,i

∫ {
I(Y2,i ≤ y2)− F̂ (j)

2 (y2|Y1,i;λF2
)
}2

dF̂ ◦2 (y2)

︸ ︷︷ ︸
Distance for i ∈ Vj





(15)

will be small, where F̂ ◦2 (y2) is the empirical distribution of Y2 among subjects on-study at visit 2. In

(15), the quantity in the vertical braces is a measure of how well the estimator of F2(y2|y1) based on

the jth training set “performs” on the jth validation set. For each individual i in the jth validation set

with an observed outcome at visit 2, we measure, by the quantity above the horizontal brace in (15),

the distance (or loss) between the collection of indicator variables {I(Y2,i ≤ y2) : dF̂ ◦2 (y2) > 0} and the

corresponding collection of predicted values {F̂ (j)
2 (y2|Y1,i;λF2

) : dF̂ ◦2 (y2) > 0}. The distance for each
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of these individuals are then summed and divided by the number of subjects in the jth validation set.

Finally, an average across the J validation/training sets is computed. We can then estimate F ∗2 (y2|y1)

by F̂2(y2|y1; λ̂F2), where λ̂F2 = argmin CVF∗2 (·|·)(λF2).

Using this idea, we can estimate F ∗1 (y1|y0) by

F̂1(y1|y0; λ̂F1) =

∑n
i=1R1,iI(Y1,i ≤ y1)φ

(
Y0,i−y0
λ̂F1

)

∑n
i=1R1,iφ

(
Y0,i−y0
λ̂F1

)

where λ̂F1 is the minimizer of

CVF∗1 (·|·)(λF1
) =

1

J

J∑

j=1





1

nj

∑

i∈Vj

R1,i

∫ {
I(Y1,i ≤ y1)− F̂ (j)

1 (y1|Y0,i;λF1
)
}2

dF̂ ◦1 (y1)





and F̂ ◦1 (y1) is the empirical distribution of Y1 among subjects on-study at visit 1. Further, we estimate

H∗k(yk−1) (k = 1, 2) by

Ĥk(yk−1; λ̂Hk
) =

∑n
i=1Rk−1,i(1−Rk,i)φ

(
Yk−1,i−yk−1

λ̂Hk

)

∑n
i=1Rk−1,iφ

(
Yk−1,i−yk−1

λ̂Hk

)

where λ̂Hk
is the minimizer of

CVH∗k(·)(λHk
) =

1

J

J∑

j=1





1

nj

∑

i∈Vj

Rk−1,i{1−Rk,i − Ĥ(j)
k (Yk−1,i; λ̂Hk

)}Ĥ◦k





and Ĥ◦k is the proportion of individual with drop out between visits k−1 and k among those on-study

at visit k − 1.
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4.3 Correction Procedure

The cross-validation procedure for selecting tuning parameters achieves optimal finite-sample bias-

variance trade-off for the quantities requiring smoothing, i.e., the conditional distribution functions

F ∗k (yk|yk−1) and probability mass functions H∗k(yk−1). This optimal trade-off is usually not optimal

for estimating µ∗. In fact, the plug-in estimator of µ∗ could possibly suffer from excessive and asymp-

totically non-negligible bias due to inadequate tuning. This may prevent the plug-in estimator from

enjoying regular asymptotic behavior, upon which statistical inference is generally based. In particular,

the resulting estimator may have a slow rate of convergence, and common methods for constructing

confidence intervals, such as the Wald and bootstrap intervals, can have poor coverage properties.

Thus, our third move is to “correct” the plug-in estimator. Specifically, the goal is to construct an es-

timator that is “asymptotically linear” (i.e., can be expressed as the average of i.i.d. random variables

plus a remainder term that is asymptotically negligible).

We now motivate the correction procedure. Let M be the class of distributions for the observed

data O that satisfy constraints (13) and (14). It can be shown that, for P ∈M,

µ(P ;α)− µ(P ∗;α) = −E∗[ψP (O;α)− ψP∗(O;α)] + Rem(P, P ∗;α), (16)

where ψP (O;α) is a “derivative” of µ(·;α) at P and Rem(P, P ∗;α) is a “second-order” remainder

term which converges to zero as P tends to P ∗. This derivative is used to quantify the change in

µ(P ;α) resulting from small perturbations in P ; it also has mean zero (i.e., E∗[ψP∗(O;α)] = 0). The

remainder term is second order in the sense that it can be written as or bounded by the product of

terms involving differences between (functionals of) P and P ∗.
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Equation (16) plus some simple algebraic manipulation teaches us that

µ(P̂ ;α)︸ ︷︷ ︸
Plug-in

−µ(P ∗;α) =
1

n

n∑

i=1

ψP∗(Oi;α)− 1

n

n∑

i=1

ψP̂ (Oi;α) (17)

+
1

n

n∑

i=1

{ψP̂ (Oi;α)− ψP∗(Oi;α)− E∗[ψP̂ (O;α)− ψP∗(O;α)]} (18)

+Rem(P̂ , P ∗;α) (19)

where P̂ is the estimated distribution of P ∗ discussed in the previous section. Under smoothness and

boundedness conditions, term (18) will be oP∗(n
−1/2) (i.e., will converge in probabity to zero even

when it is multipled by
√
n). Provided P̂ converges to P ∗ at a reasonably fast rate, term (19) will also

be oP∗(n
−1/2). The second term in (17) prevents us from concluding that the plug-in estimator can

be essentially represented as an average of i.i.d terms plus oP∗(n
−1/2) terms. However, by adding the

second term in (17) to the plug-in estimator, we can construct a “corrected” estimator that does have

this representation. Formally, the corrected estimator is

µ̃α = µ(P̂ ;α)︸ ︷︷ ︸
Plug-in

+
1

n

n∑

i=1

ψP̂ (Oi;α)

The practical implication is that µ̃α converges in probability to µ∗ and

√
n (µ̃α − µ∗) =

1√
n

n∑

i=1

ψP∗(Oi;α) + oP∗(1)

With this representation, we see that ψP∗(O;α) is the so-called influence function. By the central limit

theorem, we then know that
√
n (µ̃α − µ∗) converges to a normal random variable with mean 0 and

variance σ2
α = E∗[ψP∗(O;α)2]. The asymptotic variance can be estimated by σ̃2

α = 1
n

∑n
i=1 ψP̂ (Oi;α)2.

A (1−γ)% Wald-based confidence interval for µ∗(α) can be constructed as µ̃(α)±z1−γ/2σ̃α/
√
n, where

zq is the qth quantile of a standard normal random variable.
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The efficient influence function in model M is presented in Appendix A.

4.4 Confidence interval construction

For given α, there are many ways to construct confidence intervals for µ∗. Above, we discussed the

Wald-based technique. In Section 6, we present the results of a simulation study in which this technqiue

results in poor coverage in moderately sized samples. The poor coverage can be explained in part due

to the fact that σ̃(α)2 can be severely downward biased in finite samples [37].

Resampling-based procedures may be used to improve performance. A first idea is to consider the

jackknife estimator for σ2
α:

σ̃2
JK,α = (n− 1)

n∑

i=1

{µ̃(−i)
α − µ̃(·)

α }2

where µ̃
(−i)
α is the estimator of µ∗ with the ith individual deleted from the dataset and µ̃

(·)
α =

1
n

∑n
i=1 µ̃

(−i)
α . This estimator is known to be conservative [38], but is the “method of choice if one does

not want to do bootstrap computations” [37]. Using the jackknife estimator of the variance, one can

construct a Wald confidence interval with σ̃α replaced by σ̃JK,α. Our simulation study in Section 6

demonstrates that these latter intervals perform better, but still have coverage lower than desired.

Another idea is to use studentized-t bootstrap. Here, confidence intervals are formed by choosing

cutpoints based on the distribution of




µ̃
(b)
α − µ̃α
s̃e
(
µ̃
(b)
α

) : b = 1, 2, . . . , B



 (20)

where µ̃
(b)
α is the estimator of µ∗ based on the bth bootstrap dataset and s̃e

(
µ̃
(b)
α

)
is an estimator of

the standard error of µ̃
(b)
α (e.g., σ̃α/

√
n or σ̃JK,α/

√
n ) . An equal-tailed confidence interval takes the

form:
{
µ̃α − t1−γ/2s̃e

(
µ̃(b)
α

)
, µ̃α − tγ/2s̃e

(
µ̃(b)
α

)}
,
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where tq is the qth quantile of (20). A symmetric confidence interval takes the form:

{
µ̃α − t∗1−γ s̃e

(
µ̃(b)
α

)
, µ̃α + t∗1−γ s̃e

(
µ̃(b)
α

)}
,

where t∗1−γ is selected so that (1− γ) of the distribution of (20) is between −t∗1−γ and t∗1−γ .

In terms of bootstrapping, there are two main choices: non-parametric and parametric. The

advantage of non-parametric bootstrap is that it does not require a model for the distribution of

the observed data. Since our analysis depends on correct specification and on estimation of such a

model, it makes sense to use this model to bootstrap observed datasets. In our data analysis and

simulation study, we use the estimated distribution of the observed data to generate bootstrapped

observed datasets.

Our simulation study in Section 6 shows that the symmetric studentized-t bootstrap with jackknife

standard errors performs best. We used this procedure in our data analysis.

5 Analysis of Quetiapine Trial

The first step of the analysis is to estimate the smoothing parameters and assess the goodness of fit of

our models for H∗j (drop-out) and F ∗j (outcome). We assumed a common smoothing parameter for the

H∗j (j = 1, 2) models and a common smoothing parameter for F ∗j (j = 1, 2) models; F ∗0 was estimated

by its empirical distribution. The estimated smoothing parameters for the drop-out (outcome) model

are 11.54 (6.34) and 9.82 (8.05) for the placebo and 600 mg arms, respectively. In the placebo arm,

the observed percentages of last being seen at visits 0 and 1 among those at risk at these visits are

8.62% and 38.68%, respectively. Estimates derived from the estimated model for the distribution of

the observed data are 7.99% and 38.19%, respectively. For the 600 mg arm, the observed percentages

are 11.02% and 35.24% and the model-based estimates are 11.70% and 35.08%. In the placebo arm,

the Kolmogorov-Smirnov distances between the empirical distribution of the observed outcomes and
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the model-based estimates of the distribution of outcomes among those on-study at visits 1 and 2 are

0.013 and 0.033, respectively. In the 600 mg arm, these distances are 0.013 and 0.022. These results

suggest that our model for the observed data fits the observed data well.

Under missing at random, the estimated values of µ∗ are 46.45 (95% CI: 42.35,50.54) and 62.87

(95% CI: 58.60,67.14) for the placebo and 600 mg arms, respectively. The estimated difference between

600 mg and placebo is 16.42 (95% 10.34, 22.51), which represents both a statistically and clinically

significant improvement in quality of life in favor of Quetiapine. 4

In our sensitivity analysis, we set r(y) = y and ranged the sensitivity analysis parameter from

-10 and 10 in each treatment arm.5 Figure 3 presents treatment-specific estimates (along with 95%

pointwise confidence intervals) of µ∗ as a function of α. To help interpret the sensitivity analysis

parameter, Figure 4 displays treatment-specific differences between the estimated mean QLESSF at

Visit 2 among non-completers and the estimated mean among completers, as a function of α. For

example, when α = −10 non-completers are estimated to have more than 20 points lower quality of

life than completers; this holds for both treatment arms. In contrast, when α = 10 non-completers are

estimated to have 6 and 11 points higher quality of life than completers in the placebo and Quetiapine

arms, respectively. The plausibility of α can be judged with respect the plausibility of these differences.

In this setting, it may be considered unreasonable that completers are worse off in terms of quality of

life than non-completers, in which case α should be restricted to be less than 6 in the placebo arm and

less than 3 in the Quentiapine arm.

Figure 5 displays a contour plot of the estimated differences between mean QLESSF at Visit 2

for Quentiapine vs. placebo for various treatment-specific combinations of the sensitivity analysis

parameters. The point (0,0) corresponds to the MAR assumption in both treatment arms. The figure

shows that the differences are statistically significant (represented by dots) in favor of Quetiapine at

almost all combinations of the sensitivity analysis parameters. Only when the sensitivity analysis

4All confidence intervals are symmetric studentized-t bootstrap with jackknife standard errors.
5According to Dr. Dennis Rivicki and Dr. Jean Endicott, there is no evidence to suggest that there is a differential

effect of a unit change in QLESSF on the hazard of drop-out based on its location on the scale.
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are highly differential (e.g., α(placebo) = 8 and α(Quetaipine) = −8) are the differences no longer

statistically significant. This figure shows that conclusions under MAR are highly robust.

6 Simulation Study

To evaluate the statistical properties of our proposed procedure, we conducted a realistic simulation

study that mimics the data structure in the Quetiapine study. We generated 2500 placebo and Que-

tiapine datasets using the estimated distributions of the observed data from the Quentiapine study

as the true data generating mechanisms. For given treatment-specific α, these true data generating

mechanisms can be mapped to a true value of µ∗. For each dataset, the sample size was to set to 116

and 118 in the placebo and Quetiapine arms, respectively.

Table 2 reports bias and mean-squared error for the plug-in and corrected estimators, as a function

of α. The bias tends to be low for both estimators and the mean-squared error is lower for the corrected

estimators, except at extreme values of α.

Table 3 reports the coverage properties of six difference methods for constructing confidence inter-

vals: (1) Wald with influence function standard errors (Wald-IF), (2) Wald with jackknife standard

errors (Wald-JK), (3) equal-tailed studentized parametric bootstrap with influence function standard

errors (Bootstrap-IF-ET), (4) equal-tailed studentized parametric bootstrap with jackknife standard

errors (Bootstrap-JK-ET), (5) symmetric studentized parametric bootstrap with influence function

standard errors (Bootstrap-IF-S) and (6) symmetric studentized parametric bootstrap with jackknife

standard errors (Bootstrap-JK-S); 2000 parametric bootstraps were used. The results demonstrate that

using jackknife standard errors is superior to influence function standard errors. In this simulation,

the best performing procedures are Wald with jackknife standard errors and symmetric studentized

parametric bootstrap with jackknife standard errors, with the latter experiencing, for some values of α,

coverages 1-2% higher than nominal levels. In other simulations (reported elsewhere), we have found

that Wald with jacknife standard errors can have lower than nominal levels of coverage. Thus, we
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recommend using symmetric studentized parametric bootstrap with jackknife standard errors.

7 Discussion

Our review of leading medical journals demonstrated that missing data are a common occurrence in

randomized trials with patient-reported outcomes. As per the 2010 NRC report [90], it is essential to

evaluate the robustness of trial results to untestable assumptions about the underlying missing data

mechanism. In this paper, we have presented a methodology [137] for conducting global (as opposed

to ad-hoc or local) sensitivity analysis of trials in which (1) outcomes are scheduled to be measured at

fixed points after randomization and (2) missing data are monotone. While we developed our method

in the context of a motivating example with two post-baseline measurements, it naturally generalizes to

studies with more measurements [137]. Our sensitivity analysis is anchored around the commonly used

missing at random assumption. We have developed a software package called SAMON to implement

our procedure. R and SAS versions of the software are available at www.missingdatamatters.org.

We have found that our procedure can be sensitive to outliers. In fact, we discarded two patients

(one from each treatment arm) from the Quetiapine Study because of their undue influence. In the

placebo arm, the patient was a completer and had baseline, visit 1 and visit 2 raw scores of 17, 26

and 48, respectively. At α = 10, the scaled absolute DFBETA for this observation was 2.75 with the

next largest absolute DFBETA being 1.13. In the Quetiapine arm, the patient was a completer and

had baseline, visit 1 and visit 2 raw scores of 31, 29 and 18, respectively. At α = −10, the scaled

absolute DFBETA for this observation was 3.20 with the next largest absolute DFBETA being 0.52.

One way to address the issue of outliers would be the robustify the influence function using ideas from

the robust statistics literature [69].

Our procedure does not currently handle intermittent missing data. In many randomized trials,

intermittent missing data is usually a second order concern. We propose imputing intermittent obser-

vations, under a reasonable assumption (see, for example, [130]) to create a monotone data structure
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and then apply the methods outlined in this paper with proper accounting for uncertainty in the

imputation process.

We believe that the methods and software that we have developed should be applied to all trials

with missing outcome data, including but limited to those that are patient-reported. Trial results

that are sensitive to untestable assumptions about the missing data mechanism should be viewed with

skepticism, while greater credence should be given those that exhibit robustness. Our methods are not

a substitute for study designs and procedures that minimize missing data.
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carlo Comi, Jérôme de Seze, Gavin Giovannoni, Hans-Peter Hartung, Bernhard Hemmer, et al.

Ocrelizumab versus placebo in primary progressive multiple sclerosis. New England Journal of

Medicine, 2016.

[113] M Mordin, C Masaquel, C Abbott, and C Copley-Merriman. Factors affecting the health-related

quality of life of patients with cervical dystonia and impact of treatment with abobotulinumtox-

inA (dysport): results from a randomised, double-blind, placebo-controlled study. BMJ Open,

4(10):e005150, 2014.

[114] MC Morey, DC Snyder, R Sloane, HJ Cohen, B Peterson, TJ Hartman, P Miller, DC Mitchell,

and W Demark-Wahnefried. Effects of home-based diet and exercise on functional outcomes

40



among older, overweight long-term cancer survivors: RENEW: a randomized controlled trial.

JAMA, 301(18):1883–91, 2009.

[115] AJ Morgan, AF Jorm, and AJ Mackinnon. Self-help for depression via e-mail: A randomised

controlled trial of effects on depression and self-help behaviour. PLoS One, 8(6):e66537, 2013.

[116] CJ Morrell, P Slade, R Warner, G Paley, S Dixon, SJ Walters, T Brugha, M Barkham, GJ Parry,

and J Nicholl. Clinical effectiveness of health visitor training in psychologically informed ap-

proaches for depression in postnatal women: pragmatic cluster randomised trial in primary care.

BMJ, 338:a3045, 2009.

[117] AW Murphy, ME Cupples, SM Smith, M Byrne, MC Byrne, and J Newell. Effect of tailored

practice and patient care plans on secondary prevention of heart disease in general practice:

cluster randomised controlled trial. BMJ, 339:b4220, 2009.

[118] P Musiat, P Conrod, J Treasure, A Tylee, C Williams, and U Schmidt. Targeted prevention

of common mental health disorders in university students: randomised controlled trial of a

transdiagnostic trait-focused web-based intervention. PLoS One, 9(4):e93621, 2014.

[119] H Nagayama, K Tomori, K Ohno, K Takahashi, K Ogahara, T Sawada, S Uezu, R Nagatani,

and K Yamauchi. Effectiveness and cost-effectiveness of occupation-based occupational therapy

using the aid for decision making in occupation choice (ADOC) for older residents: Pilot cluster

randomized controlled trial. PLoS One, 11(3):e0150374, 2016.

[120] B Oerkild, M Frederiksen, JF Hansen, and E Prescott. Home-based cardiac rehabilitation is

an attractive alternative to no cardiac rehabilitation for elderly patients with coronary heart

disease: results from a randomised clinical trial. BMJ Open, 2(6), 2012.

[121] D Pareyson, MM Reilly, A Schenone, GM Fabrizi, T Cavallaro, L Santoro, G Vita, A Quattrone,

L Padua, F Gemignani, F Visioli, M Laura, D Radice, D Calabrese, RA Hughes, and A Solari.

41



Ascorbic acid in Charcot-Marie-Tooth disease type 1A (CMT-TRIAAL and CMT-TRAUK): a

double-blind randomised trial. Lancet Neurol, 10(4):320–8, 2011.

[122] A Patel, M Buszewicz, J Beecham, M Griffin, G Rait, I Nazareth, A Atkinson, J Barlow, and

A Haines. Economic evaluation of arthritis self management in primary care. BMJ, 339:b3532,

2009.

[123] Vikram Patel, Benedict Weobong, Helen A Weiss, Arpita Anand, Bhargav Bhat, Basavraj Katti,

Sona Dimidjian, Ricardo Araya, Steve D Hollon, Michael King, et al. The healthy activity

program (hap), a lay counsellor-delivered brief psychological treatment for severe depression, in

primary care in india: a randomised controlled trial. The Lancet, 389(10065):176–185, 2017.

[124] J Poole, K Mavromatis, JN Binongo, A Khan, Q Li, M Khayata, E Rocco, M Topel, X Zhang,

C Brown, MA Corriere, J Murrow, S Sher, S Clement, K Ashraf, A Rashed, T Kabbany, R Neu-

man, A Morris, A Ali, S Hayek, J Oshinski, YS Yoon, EK Waller, and AA Quyyumi. Effect of

progenitor cell mobilization with granulocyte-macrophage colony-stimulating factor in patients

with peripheral artery disease: a randomized clinical trial. JAMA, 310(24):2631–9, 2013.

[125] Atif Rahman, Syed Usman Hamdani, Naila Riaz Awan, Richard A Bryant, Katie S Dawson,

Muhammad Firaz Khan, Mian Mukhtar-Ul-Haq Azeemi, Parveen Akhtar, Huma Nazir, Anna

Chiumento, et al. Effect of a multicomponent behavioral intervention in adults impaired by

psychological distress in a conflict-affected area of pakistan: a randomized clinical trial. JAMA,

316(24):2609–2617, 2016.

[126] M Ramly, MF Ming, K Chinna, S Suboh, and R Pendek. Effect of vitamin D supplementation

on cardiometabolic risks and health-related quality of life among urban premenopausal women

in a tropical country–a randomized controlled trial. PLoS One, 9(10):e110476, 2014.

[127] DA Richards, JJ Hill, L Gask, K Lovell, C Chew-Graham, P Bower, J Cape, S Pilling, R Araya,

D Kessler, JM Bland, C Green, S Gilbody, G Lewis, C Manning, A Hughes-Morley, and

42



M Barkham. Clinical effectiveness of collaborative care for depression in UK primary care

(CADET): cluster randomised controlled trial. BMJ, 347:f4913, 2013.

[128] David A Richards, David Ekers, Dean McMillan, Rod S Taylor, Sarah Byford, Fiona C Warren,

Barbara Barrett, Paul A Farrand, Simon Gilbody, Willem Kuyken, et al. Cost and outcome of

behavioural activation versus cognitive behavioural therapy for depression (cobra): a randomised,

controlled, non-inferiority trial. The Lancet, 388(10047):871–880, 2016.

[129] LP Richardson, E Ludman, E McCauley, J Lindenbaum, C Larison, C Zhou, G Clarke, D Brent,

and W Katon. Collaborative care for adolescents with depression in primary care: a randomized

clinical trial. JAMA, 312(8):809–16, 2014.

[130] James M Robins. Non-response models for the analysis of non-monotone non-ignorable missing

data. Statistics in Medicine, 16(1):21–37, 1997.

[131] JM Robins, A Rotnitzky, and DO Scharfstein. Sensitivity analysis for selection bias and unmea-

sured confounding in missing data and causal inference models. In E. Halloran, editor, Statistical

Models for Epidemiology, pages 1–94. Springer-Verlag, 2000.

[132] BL Rollman, BH Belnap, MS LeMenager, S Mazumdar, PR Houck, PJ Counihan, WN Kapoor,

HC Schulberg, and CF Reynolds. Telephone-delivered collaborative care for treating post-CABG

depression: a randomized controlled trial. JAMA, 302(19):2095–103, 2009.

[133] A Rotnitzky, JM Robins, and DO Scharfstein. Semiparametric regression for repeated outcomes

with non-ignorable non-response. Journal of the American Statistical Association, 93:1321–1339,

1998.

[134] A Rotnitzky, DO Scharfstein, TL Su, and JM Robins. A sensitivity analysis methodology for

randomized trials with potentially non-ignorable cause-specific censoring. Biometrics, 57:103–

113, 2001.

43



[135] Chris Salisbury, Alicia O’Cathain, Louisa Edwards, Clare Thomas, Daisy Gaunt, Sandra

Hollinghurst, Jon Nicholl, Shirley Large, Lucy Yardley, Glyn Lewis, et al. Effectiveness of

an integrated telehealth service for patients with depression: a pragmatic randomised controlled

trial of a complex intervention. The Lancet Psychiatry, 3(6):515–525, 2016.

[136] D Scharfstein, A McDermott, W Olson, and Wiegand F. Global sensitivity analysis for repeated

measures studies with informative drop-out. Statistics in Biopharmaceutical Research, 6:338–348,

2014.

[137] DO Scharfstein, A McDermott, I Diaz, Carone M, N Lunardon, and I Turkoz. Global sensitivity

analysis for repeated measures studies with informative drop-out: A semi-parametric approach.

Biometrics, 2017.

[138] DO Scharfstein, A Rotnitzky, and JM Robins. Adjusting for non-ignorable drop-out using semi-

parametric non-response models (with discussion). Journal of the American Statistical Associa-

tion, 94:1096–1146, 1999.

[139] M Sharpe, KA Goldsmith, AL Johnson, T Chalder, J Walker, and PD White. Rehabilitative

treatments for chronic fatigue syndrome: long-term follow-up from the PACE trial. Lancet

Psychiatry, 2(12):1067–74, 2015.

[140] DE Simkiss, HA Snooks, N Stallard, PK Kimani, B Sewell, D Fitzsimmons, R Anthony, S Win-

stanley, L Wilson, CJ Phillips, and S Stewart-Brown. Effectiveness and cost-effectiveness of

a universal parenting skills programme in deprived communities: multicentre randomised con-

trolled trial. BMJ Open, 3(8), 2013.

[141] R Small, L Watson, J Gunn, C Mitchell, and S Brown. Improving population-level maternal

health: a hard nut to crack? long term findings and reflections on a 16-community randomised

trial in Australia to improve maternal emotional and physical health after birth. PLoS One,

9(2):e88457, 2014.

44



[142] NL Stanley, MA andWilson, DM Novy, HM Rhoades, PD Wagener, AJ Greisinger, JA Cully,

and ME Kunik. Cognitive behavior therapy for generalized anxiety disorder among older adults

in primary care: a randomized clinical trial. JAMA, 301(14):1460–7, 2009.

[143] DR Strayer, WA Carter, BC Stouch, SR Stevens, L Bateman, PJ Cimoch, CW Lapp, DL Pe-

terson, and WM Mitchell. A double-blind, placebo-controlled, randomized, clinical trial of the

TLR-3 agonist rintatolimod in severe cases of chronic fatigue syndrome. PLoS One, 7(3):e31334,

2012.

[144] FM Stuby, S Dobele, SD Schaffer, S Mueller, A Ateschrang, M Baumann, and D Zieker. Early

functional postoperative therapy of distal radius fracture with a dynamic orthosis: results of a

prospective randomized cross-over comparative study. PLoS One, 10(3):e0117720, 2015.

[145] MD Sullivan, WJ Katon, LC Lovato, ME Miller, AM Murray, KR Horowitz, RN Bryan, HC Ger-

stein, S Marcovina, BE Akpunonu, J Johnson, JF Yale, J Williamson, and LJ Launer. Associa-

tion of depression with accelerated cognitive decline among patients with type 2 diabetes in the

ACCORD-MIND trial. JAMA Psychiatry, 70(10):1041–7, 2013.

[146] JS Temel, JA Greer, A Muzikansky, ER Gallagher, S Admane, VA Jackson, CM Dahlin, CD Blin-

derman, J Jacobsen, WF Pirl, JA Billings, and TJ Lynch. Early palliative care for patients with

metastatic non-small-cell lung cancer. N Engl J Med, 363(8):733–42, 2010.

[147] SP Therkelsen, G Hetland, T Lyberg, I Lygren, and E Johnson. Effect of a medicinal agaricus

blazei murill-based mushroom extract, AndoSan, on symptoms, fatigue and quality of life in

patients with ulcerative colitis in a randomized single-blinded placebo controlled study. PLoS

One, 11(3):e0150191, 2016.

[148] Stig Palm Therkelsen, Geir Hetland, Torstein Lyberg, Idar Lygren, and Egil Johnson. Effect

of the medicinal agaricus blazei murill-based mushroom extract, andosan tm, on symptoms,

45



fatigue and quality of life in patients with crohn’s disease in a randomized single-blinded placebo

controlled study. PloS one, 11(7):e0159288, 2016.

[149] N Titov, G Andrews, M Davies, K McIntyre, E Robinson, and K Solley. Internet treatment for

depression: a randomized controlled trial comparing clinician vs. technician assistance. PLoS

One, 5(6):e10939, 2010.

[150] N Titov, BF Dear, L Johnston, C Lorian, J Zou, B Wootton, J Spence, PM McEvoy, and

RM Rapee. Improving adherence and clinical outcomes in self-guided internet treatment for

anxiety and depression: randomised controlled trial. PLoS One, 8(7):e62873, 2013.

[151] N Titov, BF Dear, L Johnston, PM McEvoy, B Wootton, MD Terides, M Gandy, V Fogliati,

R Kayrouz, and RM Rapee. Improving adherence and clinical outcomes in self-guided internet

treatment for anxiety and depression: a 12-month follow-up of a randomised controlled trial.

PLoS One, 9(2):e89591, 2014.

[152] A Tiwari, DY Fong, KH Yuen, H Yuk, P Pang, J Humphreys, and L Bullock. Effect of an

advocacy intervention on mental health in Chinese women survivors of intimate partner violence:

a randomized controlled trial. JAMA, 304(5):536–43, 2010.

[153] A.B. Troxel, G. Ma, and D.F. Heitjan. An index of local sensitivity to nonignorability. Statistica

Sinica, 14:1221–1237, 2004.

[154] AA Tsiatis. Semiparametric Theory and Missing Data. 2006. Springer Verlag, New York, 2006.

[155] WA van Gemert, J van der Palen, EM Monninkhof, A Rozeboom, R Peters, H Wittink, AJ Schuit,

and PH Peeters. Quality of life after diet or exercise-induced weight loss in overweight to obese

postmenopausal women: The SHAPE-2 randomised controlled trial. PLoS One, 10(6):e0127520,

2015.

46



[156] G. Verbeke, G. Molenberghs, H. Thijs, E. Lesaffre, and M.G. Kenward. Sensitivity analysis for

nonrandom dropout: A local influence approach. Biometrics, 57:7–14, 2001.

[157] M Wall, MP McDermott, KD Kieburtz, JJ Corbett, SE Feldon, DI Friedman, DM Katz, JL Kelt-

ner, EB Schron, and MJ Kupersmith. Effect of acetazolamide on visual function in patients with

idiopathic intracranial hypertension and mild visual loss: the idiopathic intracranial hypertension

treatment trial. JAMA, 311(16):1641–51, 2014 Apr 23-30.

[158] TS Walsh, LG Salisbury, JL Merriweather, JA Boyd, DM Griffith, G Huby, S Kean, SJ Macken-

zie, A Krishan, SC Lewis, GD Murray, JF Forbes, J Smith, JE Rattray, AM Hull, and P Ramsay.

Increased hospital-based physical rehabilitation and information provision after intensive care

unit discharge: The RECOVER randomized clinical trial. JAMA Intern Med, 175(6):901–10,

2015.

[159] J Walters, H Cameron-Tucker, K Wills, N Schuz, J Scott, A Robinson, M Nelson, P Turner,

R Wood-Baker, and EH Walters. Effects of telephone health mentoring in community-recruited

chronic obstructive pulmonary disease on self-management capacity, quality of life and psycho-

logical morbidity: a randomised controlled trial. BMJ Open, 3(9):e003097, 2013.

[160] C Wang, CH Schmid, R Rones, R Kalish, J Yinh, DL Goldenberg, Y Lee, and T McAlindon. A

randomized trial of tai chi for fibromyalgia. N Engl J Med, 363(8):743–54, 2010.

[161] D Wardlaw, SR Cummings, J Van Meirhaeghe, L Bastian, JB Tillman, J Ranstam, R Eastell,

P Shabe, K Talmadge, and S Boonen. Efficacy and safety of balloon kyphoplasty compared

with non-surgical care for vertebral compression fracture (FREE): a randomised controlled trial.

Lancet, 373(9668):1016–24, 2009.

[162] JN Weinstein, TD Tosteson, JD Lurie, AN Tosteson, E Blood, B Hanscom, H Herkowitz, F Cam-

misa, T Albert, SD Boden, A Hilibrand, H Goldberg, S Berven, and H An. Surgical versus

nonsurgical therapy for lumbar spinal stenosis. N Engl J Med, 358(8):794–810, 2008.

47



[163] Constance M Weisner, Felicia W Chi, Yun Lu, Thekla B Ross, Sabrina B Wood, Agatha Hinman,

David Pating, Derek Satre, and Stacy A Sterling. Examination of the effects of an intervention

aiming to link patients receiving addiction treatment with health care: the linkage clinical trial.

Jama psychiatry, 73(8):804–814, 2016.

[164] DM Weiss, RJ Casten, BE Leiby, LA Hark, AP Murchison, D Johnson, S Stratford, J Henderer,

BW Rovner, and JA Haller. Effect of behavioral intervention on dilated fundus examination

rates in older african american individuals with diabetes mellitus: A randomized clinical trial.

JAMA Ophthalmol, 133(9):1005–12, 2015.

[165] PD White, KA Goldsmith, AL Johnson, L Potts, R Walwyn, JC DeCesare, HL Baber, M Burgess,

LV Clark, DL Cox, J Bavinton, BJ Angus, G Murphy, M Murphy, H O’Dowd, D Wilks,

P McCrone, T Chalder, and M Sharpe. Comparison of adaptive pacing therapy, cognitive be-

haviour therapy, graded exercise therapy, and specialist medical care for chronic fatigue syndrome

(PACE): a randomised trial. Lancet, 377(9768):823–36, 2011.

[166] A Wilkins, H Mossop, I Syndikus, V Khoo, D Bloomfield, C Parker, J Logue, C Scrase, H Pat-

terson, A Birtle, J Staffurth, Z Malik, M Panades, C Eswar, J Graham, M Russell, P Kirkbride,

JM O’Sullivan, A Gao, C Cruickshank, C Griffin, D Dearnaley, and E Hall. Hypofractionated

radiotherapy versus conventionally fractionated radiotherapy for patients with intermediate-risk

localised prostate cancer: 2-year patient-reported outcomes of the randomised, non-inferiority,

phase 3 CHHiP trial. Lancet Oncol, 16(16):1605–16, 2015.

[167] J Williams, T Russell, D Durai, WY Cheung, A Farrin, K Bloor, S Coulton, and G Richardson.

Effectiveness of nurse delivered endoscopy: Findings from randomised multi-institution nurse

endoscopy trial (MlNuET). BMJ (Clinical Research Ed.), 338(7693):b231, 2009.

[168] K Witt, C Daniels, J Reiff, P Krack, J Volkmann, MO Pinsker, M Krause, V Tronnier, M Kloss,

A Schnitzler, L Wojtecki, K Botzel, A Danek, R Hilker, V Sturm, A Kupsch, E Karner, and

48



G Deuschl. Neuropsychological and psychiatric changes after deep brain stimulation for parkin-

son’s disease: a randomised, multicentre study. Lancet Neurol, 7(7):605–14, 2008.

[169] X. Yan, S. Lee, and N. Li. Missing data handling methods in medical device clinical trials.

Journal of Biopharmaceutical Statistics, 19:1085–1098, 2009.

[170] JO Younge, MF Wery, RA Gotink, EM Utens, M Michels, D Rizopoulos, EF van Rossum,

MG Hunink, and JW Roos-Hesselink. Web-based mindfulness intervention in heart disease: A

randomized controlled trial. PLoS One, 10(12):e0143843, 2015.

[171] LN Zonneveld, YR van Rood, R Timman, CG Kooiman, A Van’t Spijker, and JJ Busschbach. Ef-

fective group training for patients with unexplained physical symptoms: a randomized controlled

trial with a non-randomized one-year follow-up. PLoS One, 7(8):e42629, 2012.

49



Appendix A: Influence Function

Let

π∗(y0, y1, y2;α) = [(1 + exp{l∗1(y0;α) + αr(y1)})(1 + exp{l∗2(y1;α) + αr(y2)})]−1

w∗1(y0;α) = E∗ [exp{αr(Y1)} | R1 = 1, Y0 = y0] ,

w∗2(y1;α) = E∗ [exp{αr(Y2)} | R2 = 1, Y1 = y1] ,

g∗1(y0, y1;α) = {1−H∗1 (y0)}w∗1(y0;α) + exp{αr(y1)}H∗1 (y0).

g∗2(y1, y2;α) = {1−H∗2 (y1)}w∗2(y1;α) + exp{αr(y2)}H∗2 (y1).

Using semiparametric theory [154], the efficient influence function in modelM can be computed

as:

ψP∗(O;α) := a∗0(Y0;α) +R1b
∗
1(Y0, Y1;α) +R2b

∗
2(Y1, Y2;α) +

{1−R1 −H∗1 (Y0)}c∗1(Y0;α) +R1{1−R2 −H∗2 (Y1)}c∗2(Y1;α)

where

a∗0(Y0) = E∗
[
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Y0

]
− µ(P ∗;α)
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[

R2Y2
π∗(Y0, Y1, Y2;α)

R2 = 1, Y2, Y1

]
− E∗

[
R2Y2

π∗(Y0, Y1, Y2;α)
R2 = 1, Y1

]

+ E∗
[

R2Y2
π∗(Y0, Y1, Y2;α)

[
exp{αr(Y2)}
g∗2(Y1, Y2;α)

]
R2 = 1, Y1

]
H∗2 (Y1)

{
1− exp{αr(Y2)}

w∗2(Y1;α)

}

c∗1(Y0) = E∗
[

R2Y2
π∗(Y0, Y1, Y2;α)

[
exp{αr(Y1)}
g∗1(Y0, Y1;α)

]
Y0

]

− E∗
[

R2Y2
π∗(Y0, Y1, Y2;α)

[
1

g∗1(Y0, Y1;α)

]
Y0

]
w∗1(Y0;α)

c∗2(Y1) = E∗
[

R2Y2
π∗(Y0, Y1, Y2;α)

[
exp{αr(Y2)}
g∗2(Y1, Y2;α)

]
R1 = 1, Y1

]

− E∗
[

R2Y2
π∗(Y0, Y1, Y2;α)

[
1

g∗2(Y1, Y2;α)

]
R1 = 1, Y1

]
w∗2(Y1;α)

50



T
a
b

le
1
:

L
is

t
o
f

S
tu

d
ie

s

S
tu

d
y

In
d
ic
a
ti
o
n

J
o
u
r
n
a
l

E
n
d
p
o
in
t

n
F
o
ll
o
w
-U

p
M

is
si
n
g

D
a
ta

(%
)

B
er

en
d

e
(2

0
1
6
)

L
y
m

e
D

is
ea

se
N

E
J
M

S
F

-3
6

2
8
0

1
4

w
k
s.

6
.8

%
C

o
h

en
(2

0
1
1
)

C
a
rd

ia
c

S
u

rg
ey

N
E

J
M

S
F

-3
6

1
8
0
0

1
,6

,1
2

m
o
s.

9
.5

%
-9

.7
%

F
ro

b
el

l
(2

0
1
0
)

A
C

L
In

ju
ry

N
E

J
M

S
F

-3
6

1
4
1

3
,6

,1
2
,2

4
m

o
s.

1
4
.2

%
-1

4
.9

%
G

h
o
g
a
w

a
la

(2
0
1
6
)

L
u

m
b

a
r

S
p

o
n

d
y
lo

li
st

h
es

is
N

E
J
M

S
F

-3
6

6
6

1
.5

,
3
,

6
,

1
2
,

2
4
,

3
6
,

4
8

m
o
s.

1
2
.1

%
-

3
1
.8

%
K

h
a
n

(2
0
0
8
)

H
ea

rt
F

a
il

u
re

N
E

J
M

M
L

H
F

Q
8
1

6
m

o
s.

0
.0

%
K

ir
k
le

y
(2

0
0
8
)

O
se

te
o
a
rt

h
ri

ti
s

N
E

J
M

S
F

-3
6

1
8
8

3
,6

,1
2
,1

8
,

2
4

m
o
s.

9
.6

%
-2

1
.3

%
M

a
rk

(2
0
0
9
)

M
y
o
ca

rd
ia

l
In

fa
rc

ti
o
n

N
E

J
M

S
F

-3
6

9
5
1

4
,1

2
,2

4
m

o
s.

1
2
.4

%
-1

8
.7

%
M

o
n
ta

lb
a
n

(2
0
1
6
)

M
u

lt
ip

le
S

cl
er

o
si

s
N

E
J
M

S
F

-3
6

7
3
2

1
2
0

w
k
s.

2
1
.3

%
T

em
el

(2
0
1
0
)

M
et

a
st

a
ti

c
L

u
n

g
C

a
n

ce
r

N
E

J
M

P
H

Q
-9

1
5
1

1
2

w
k
s.

3
1
.1

%
W

a
n

g
(2

0
1
0
)

F
ib

ro
m

y
a
lg

ia
N

E
J
M

S
F

-3
6

6
6

1
2
,2

4
w

k
s.

7
.6

%
-1

0
.6

%
W

ei
n

st
ei

n
(2

0
0
8
)

S
p

in
a
l

S
te

n
o
si

s
N

E
J
M

S
F

-3
6

2
8
9

1
.5

,3
,6

,1
2
,2

4
m

o
s.

1
1
.8

%
-2

3
.5

%
C

h
a
ld

er
(2

0
1
5
)

C
h

ro
n

ic
F

a
ti

g
u

e
S

y
n

d
ro

m
e

L
a
n

ce
t-

P
S

F
-3

6
6
4
1

5
2

w
k
s.

1
4
.0

%
C

h
ri

st
en

se
n

(2
0
1
6
)

In
so

m
n

ia
/
D

ep
re

ss
io

n
L

a
n

ce
t-

P
P

H
Q

-9
1
1
4
9

6
w

k
s.

,
6

m
o
s.

4
9
.4

%
-5

6
.1

%
F

er
n

a
n

d
ez

-R
h

o
d

es
(2

0
1
1
)

S
p

in
a
l

&
B

u
lb

a
r

M
u

sc
u

la
r

A
tr

o
p

h
y

L
a
n

ce
t-

N
S

F
-3

6
5
0

2
4

m
o
s.

1
4
.0

%
G

a
n

z
(2

0
1
5
)

D
u

ct
a
l

C
a
rc

in
o
m

a
In

S
it

u
L

a
n

ce
t

S
F

-1
2

1
1
9
3

E
v
er

y
6

m
o
s.

th
ru

5
4

m
o
s.

4
.9

%
-3

5
.2

%
G

o
u

d
ie

(2
0
1
4
)

C
O

P
D

L
a
n

ce
t-

R
M

S
F

-3
6

1
2
0

1
2

w
k
s.

5
.8

%
H

eg
a
rt

y
(2

0
1
3
)

In
ti

m
a
te

P
a
rt

n
er

V
io

le
n

ce
L

a
n

ce
t

S
F

-1
2

2
7
2

6
,1

2
m

o
s.

3
0
.9

%
-3

2
.0

%
M

cM
il

la
n

(2
0
1
4
)

S
le

ep
A

p
n

o
ea

L
a
n

ce
t-

R
M

S
F

-3
6

2
7
8

3
,1

2
m

o
s.

1
1
.9

%
-1

6
.9

%
M

id
d

el
to

n
(2

0
1
1
)

S
tr

o
k
e

L
a
n

ce
t

S
F

-3
6

1
1
2
6

9
0

d
a
y
s

1
0
.4

%
P

a
re

y
so

n
(2

0
1
1
)

C
h

a
rc

o
t-

M
a
ri

e-
T

o
o
th

D
is

ea
se

L
a
n

ce
t-

N
S

F
-3

6
2
7
7

2
4

m
o
s.

2
0
.2

%
P

a
te

l
(2

0
1
6
)

D
ep

re
ss

io
n

L
a
n

ce
t

P
H

Q
-9

4
9
5

3
m

o
s.

5
.9

%
R

ic
h

a
rd

s
(2

0
1
6
)

D
ep

re
ss

io
n

L
a
n

ce
t

P
H

Q
-9

4
4
0

6
,

1
2
,

1
8

m
o
s.

1
3
.6

%
-

1
9
.1

%
S

h
a
rp

e
(2

0
1
5
)

C
h

ro
n

ic
F

a
ti

g
u

e
S

y
n

d
ro

m
e

L
a
n

ce
t-

P
S

F
-3

6
4
8
1

1
2
,2

4
,5

2
,1

3
4

w
k
s.

2
5
.0

%
-2

6
.1

%
S

a
li

sb
u

ry
(2

0
1
6
)

D
ep

re
ss

io
n

L
a
n

ce
t-

P
P

H
Q

-9
6
0
9

4
,8

,1
2

m
o
s.

1
3
.8

%
-1

5
.4

%
W

a
rd

la
w

(2
0
0
9
)

V
er

te
b

ra
l

F
ra

ct
u

re
L

a
n

ce
t

S
F

-3
6

3
0
0

1
,3

,6
,1

2
m

o
s.

1
3
.0

%
-2

5
.0

%
W

h
it

e
(2

0
1
1
)

C
h

ro
n

ic
F

a
ti

g
u

e
S

y
n

d
ro

m
e

L
a
n

ce
t

S
F

-3
6

6
4
1

1
2
,

2
4
,

5
2

w
k
s.

4
.4

%
-5

.6
%

W
il

k
in

s
(2

0
1
5
)

L
o
ca

li
ze

d
P

ro
st

a
te

C
a
n

ce
r

L
a
n

ce
t-

O
S

F
-3

6
2
1
0
0

2
4

m
o
s.

3
1
.2

%
W

it
t

(2
0
0
8
)

P
a
rk

in
so

n
’s

L
a
n

ce
t-

N
S

F
-3

6
1
5
6

6
m

o
s.

2
1
.2

%
A

h
im

a
st

o
s

(2
0
1
3
)

P
er

ip
h

er
a
l

A
rt

er
y

D
is

ea
se

J
A

M
A

S
F

-3
6

2
1
2

6
m

o
s.

5
.7

%
B

ek
el

m
a
n

(2
0
1
5
)

H
ea

rt
F

a
il

u
re

J
A

M
A

-I
M

K
C

C
Q

3
9
2

3
,6

,1
2

m
o
s.

1
0
.2

%
-1

5
.6

%
B

er
k

(2
0
1
3
)

F
a
m

il
ia

l
A

m
y
lo

id
P

o
ly

n
eu

ro
p

a
th

y
J
A

M
A

S
F

-3
6

1
3
0

1
,2

y
rs

.
3
2
.3

%
-4

7
.7

%
C

h
ib

a
n

d
a

(2
0
1
6
)

M
en

ta
l

D
is

o
rd

er
s

J
A

M
A

P
H

Q
-9

5
7
3

6
m

o
s.

9
.1

%
C

u
rt

is
(2

0
1
3
)

Q
u

a
li

ty
o
f

C
o
m

m
u

n
ic

a
ti

o
n

J
A

M
A

S
F

-1
2

4
7
2

1
0

m
o
s.

5
8
.9

%
D

ix
o
n

(2
0
1
2
)

O
b

st
ru

ct
iv

e
S

le
ep

A
p

n
ea

J
A

M
A

S
F

-3
6

6
0

2
y
rs

.
1
3
.3

%
D

o
b

sc
h

a
(2

0
0
9
)

M
u

sc
u

lo
sk

el
et

a
l

P
a
in

J
A

M
A

P
H

Q
-9

4
0
1

3
,6

,1
2

m
o
s.

3
.0

%
-9

.7
%

E
m

m
el

o
t-

V
o
n
k

(2
0
0
8
)

L
o
w

T
es

to
st

er
o
n

e
J
A

M
A

S
F

-3
6

2
3
7

3
,6

m
o
s.

5
.1

%
-1

2
.7

%
E

n
g
el

(2
0
1
6
)

P
T

S
D

/
D

ep
re

ss
io

n
J
A

M
A

-I
M

S
F

-1
2

6
6
0

3
,6

,1
2

m
o
s.

6
.4

%
-1

2
.1

%
F

a
k
h

ry
(2

0
1
5
)

In
te

rm
it

te
n
t

C
la

u
d

ic
a
ti

o
n

J
A

M
A

S
F

-3
6

2
1
2

1
2

m
o
s.

8
.0

%
F

ly
n

n
(2

0
0
9
)

H
ea

rt
F

a
il

u
re

J
A

M
A

K
C

C
Q

2
3
3
1

3
,6

,9
,1

2
,2

4
,3

6
m

o
s.

1
2
.6

%
-7

5
.4

%
F

ra
n

k
(2

0
1
6
)

H
u

n
ti

n
g
to

n
D

is
ea

se
J
A

M
A

S
F

-3
6

9
0

1
2

w
k
s.

<
1
0
%

G
o
ld

b
er

g
(2

0
1
5
)

A
cu

te
S

ci
a
ti

ca
J
A

M
A

S
F

-3
6

2
6
9

3
,5

2
w

k
s.

0
.7

%
-1

3
.0

%
C
o
n
ti
n
u
ed

o
n
n
ex
t
pa

ge

51



T
a
b

le
1

–
C
o
n
ti
n
u
ed

fr
o
m

p
re
vi
o
u
s
pa

ge

S
tu

d
y

In
d
ic
a
ti
o
n

J
o
u
r
n
a
l

E
n
d
p
o
in
t

n
F
o
ll
o
w
-U

p
M

is
si
n
g

D
a
ta

(%
)

H
a
lp

er
in

(2
0
1
4
)

D
ia

b
et

es
J
A

M
A

-S
S

F
-3

6
4
3

1
y
r.

1
1
.6

%
H

a
re

(2
0
1
2
)

Is
ch

em
ic

C
a
rd

io
m

y
o
p

a
th

y
J
A

M
A

M
L

H
F

Q
3
1

3
,6

,1
2

m
o
s.

9
.7

%
-2

2
.6

%
H

u
ff

m
a
n

(2
0
1
4
)

D
ep

re
ss

io
n

/
A

n
x
ie

ty
J
A

M
A

-I
M

S
F

-1
2

1
8
3

2
4

w
k
s.

6
.0

%
K

it
zm

a
n

(2
0
1
6
)

H
ea

rt
F

a
il

u
re

J
A

M
A

M
L

H
F

Q
1
0
0

2
0

w
k
s.

8
.0

%
K

le
v
en

s
(2

0
1
2
)

In
ti

m
a
te

P
a
rt

n
er

V
io

le
n

ce
J
A

M
A

S
F

-1
2

2
7
0
0

1
y
r.

1
2
.4

%
K

ra
v
it

z
(2

0
1
3
)

D
ep

re
ss

io
n

J
A

M
A

S
F

-1
2

6
0
3

1
2

w
k
s.

2
2
.6

%
K

ro
en

k
e

(2
0
0
9
)

P
a
in

a
n

d
D

ep
re

ss
io

n
J
A

M
A

S
F

-3
6

2
5
0

1
,3

,6
,1

2
m

o
s.

4
.0

%
-1

8
.0

%
K

ro
en

k
e

(2
0
1
0
)

D
ep

re
ss

io
n

J
A

M
A

S
F

-3
6

4
0
5

1
,3

,6
,1

2
m

o
s.

1
2
.6

%
-3

3
.6

%
L

a
u

te
n

sc
h

la
g
er

(2
0
0
8
)

A
lz

h
ei

m
er

’s
D

is
ea

se
J
A

M
A

S
F

-3
6

1
7
0

1
8

m
o
s.

2
1
.8

%
L

eB
la

n
c

(2
0
1
5
)

D
ep

re
ss

io
n

J
A

M
A

-I
M

P
H

Q
-9

3
0
1

3
,6

m
o
s.

6
0
.8

%
-6

2
.5

%
L

en
ze

(2
0
0
9
)

A
n

x
ie

ty
J
A

M
A

S
F

-3
6

1
7
7

1
2

w
k
s.

2
2
.6

%
M

a
rk

lu
n

d
(2

0
1
5
)

S
le

ep
J
A

M
A

-I
M

S
F

-3
6

9
6

4
m

o
s.

5
.2

%
M

a
rt

in
(2

0
1
6
)

W
ei

g
h
t

L
o
ss

J
A

M
A

-I
M

S
F

-3
6

2
2
0

1
2
,

2
4

m
o
s.

9
.1

%
-1

3
.6

%
M

cD
er

m
o
tt

(2
0
0
9
)

P
er

ip
h

er
a
l

A
rt

er
y

D
is

ea
se

J
A

M
A

S
F

-3
6

1
5
6

6
m

o
s.

1
9
.2

%
M

cD
er

m
o
tt

(2
0
1
3
)

P
er

ip
h

er
a
l

A
rt

er
y

D
is

ea
se

J
A

M
A

S
F

-3
6

1
9
4

6
m

o
s.

8
.2

%
M

cF
a
ll

(2
0
1
0
)

P
T

S
D

J
A

M
A

P
H

Q
-9

9
4
3

3
,6

,9
,1

2
,1

5
,1

8
m

o
s.

1
2
.4

%
-2

1
.4

%
M

o
h

r
(2

0
1
2
)

D
ep

re
ss

io
n

J
A

M
A

P
H

Q
-9

3
2
5

4
,9

,
1
4
,1

8
w

k
s.

9
.2

%
-1

3
.2

%
M

o
re

y
(2

0
0
9
)

W
ei

g
h
t

C
o
n
tr

o
l

J
A

M
A

S
F

-3
6

6
4
1

1
2

m
o
s.

1
2
.9

%
P

o
o
le

(2
0
1
3
)

P
er

ip
h

er
a
l

A
rt

er
y

D
is

ea
se

J
A

M
A

S
F

-3
6

1
5
9

3
,6

m
o
s.

6
.9

%
-1

8
.2

%
R

a
h

m
a
n

(2
0
1
6
)

P
sy

ch
o
lo

g
ic

a
l

D
is

tr
es

s
J
A

M
A

P
H

Q
-9

3
4
6

3
m

o
s.

1
2
.4

%
R

ic
h

a
rd

so
n

(2
0
1
4
)

D
ep

re
ss

io
n

J
A

M
A

P
H

Q
-9

1
0
1

6
,1

2
m

o
s.

1
8
.8

%
-2

0
.8

%
R

o
ll

m
a
n

(2
0
0
9
)

D
ep

re
ss

io
n

J
A

M
A

S
F

-3
6

3
0
2

2
,4

,8
m

o
s.

1
4
.6

%
-1

6
.6

%
S

ta
n

le
y

(2
0
0
9
)

A
n

x
ie

ty
J
A

M
A

S
F

-1
2

1
3
4

3
,6

,9
,1

2
,1

5
m

o
s.

1
4
.2

%
-3

1
.3

%
S

u
ll

iv
a
n

(2
0
1
3
)

D
ia

b
et

es
J
A

M
A

-P
P

H
Q

-9
2
9
7
7

2
0
,4

0
m

o
s.

6
.8

%
-1

1
.1

%
T

iw
a
ri

(
2
0
1
0
)

In
it

im
a
te

P
a
rt

n
er

V
io

le
n

ce
J
A

M
A

S
F

-1
2

2
0
0

3
,9

m
o
s.

0
.0

%
W

a
ll

(2
0
1
4
)

In
tr

a
cr

a
n

ia
l

H
y
p

er
te

n
si

o
n

J
A

M
A

-N
S

F
-3

6
1
6
5

6
m

o
s.

2
3
.6

%
W

a
ls

h
(2

0
1
5
)

P
h
y
si

ca
l

R
eh

a
b

il
it

a
ti

o
n

J
A

M
A

-
IM

S
F

-1
2

2
4
0

3
,6

,1
2

m
o
s.

1
7
.9

%
-3

5
.4

%
W

ei
sn

er
(2

0
1
6
)

A
d

d
ic

ti
o
n

J
A

M
A

-P
P

H
Q

-9
5
0
3

6
m

o
s.

9
,.

5
%

W
ei

ss
(2

0
1
5
)

D
ia

b
et

ic
R

et
in

o
p

a
th

y
P

re
v
en

ti
o
n

J
A

M
A

-O
P

H
Q

-9
2
0
6

6
m

o
s.

1
3
.1

%
A

d
a
m

se
n

(2
0
0
9
)

C
a
n

ce
r

B
M

J
S

F
-3

6
2
6
9

6
w

k
s.

1
2
.6

%
A

n
g
u

er
a

(2
0
1
6
)

D
ep

re
ss

io
n

B
M

J
-I

P
H

Q
-9

6
2
6

4
,8

,1
2

w
k
s.

5
5
.4

%
-6

9
.8

%
A

rn
o
ld

(2
0
0
9
)

C
h

es
t

P
a
in

B
M

J
S

F
-3

6
7
0
0

1
m

o
.

2
9
.4

%
B

a
rn

h
o
o
rn

(2
0
1
5
)

P
a
in

B
M

J
-O

S
F

-3
6

5
6

3
,6

,9
m

o
s.

3
.6

%
-5

.4
%

B
ru

h
n

(2
0
1
3
)

C
h

ro
n

ic
P

a
in

B
M

J
-O

S
F

-1
2

1
9
6

6
m

o
s.

3
3
.7

%
-3

4
.2

%
B

u
rt

o
n

(2
0
1
2
)

U
n

ex
p

la
in

ed
S

y
m

p
to

m
s

B
M

J
-O

P
H

Q
-9

3
2

1
2

w
k
s.

1
8
.8

%
B

u
ss

e
(2

0
1
6
)

T
ib

ia
l

F
ra

ct
u

re
s

B
M

J
S

F
-3

6
5
0
1

6
,1

2
,1

8
,2

6
,3

8
,5

2
w

k
s.

5
.2

%
-

3
9
.9

%
C

a
rt

w
ri

g
h
t

(2
0
1
3
)

C
h

ro
n

ic
C

o
n

d
it

io
n

s
B

M
J

S
F

-1
2

1
5
7
3

4
,1

2
m

o
s.

3
7
.3

%
-3

8
.1

%
C

o
h

en
(2

0
0
9
)

T
ro

ch
a
n
te

ri
c

P
a
in

B
M

J
S

F
-3

6
6
5

1
,3

m
o
s.

4
.6

%
-4

6
.2

%
C

o
v
en

tr
y

(2
0
1
5
)

C
h

ro
n

ic
C

o
n

d
it

io
n

s
B

M
J

P
H

Q
-9

3
8
7

4
m

o
s.

1
6
.0

%
C

u
th

b
er

ts
o
n

(2
0
0
9
)

T
ra

u
m

a
B

M
J

S
F

-3
6

2
8
6

6
,1

2
m

o
s.

2
5
.9

%
-3

4
.6

%
D

ij
k
-D

e
V

ri
es

(2
0
1
5
)

D
ia

b
et

es
C

a
re

B
M

J
-O

2
6
4

S
F

-1
2

4
,1

2
m

o
s.

1
1
.7

%
-1

5
.5

%
C
o
n
ti
n
u
ed

o
n
n
ex
t
pa

ge

52



T
a
b

le
1

–
C
o
n
ti
n
u
ed

fr
o
m

p
re
vi
o
u
s
pa

ge

S
tu

d
y

In
d
ic
a
ti
o
n

J
o
u
r
n
a
l

E
n
d
p
o
in
t

n
F
o
ll
o
w
-U

p
M

is
si
n
g

D
a
ta

(%
)

D
u

m
v
il

le
(2

0
0
9
)

L
eg

U
lc

er
s

B
M

J
S

F
-1

2
2
6
7

1
2

m
o
s.

4
7
.9

%
E

l-
K

h
o
u

ry
(2

0
1
5
)

F
a
ll

P
re

v
en

ti
o
n

B
M

J
S

F
-3

6
7
0
6

1
2
,2

4
m

o
s.

1
5
.2

%
-1

9
.5

%
F

is
h

er
(2

0
1
5
)

P
o
st

p
a
rt

u
m

M
en

ta
l

D
is

o
rd

er
s

B
M

J
-O

4
0
0

S
F

-3
6

2
6

w
k
s.

9
.0

%
F

ro
b

el
l

(2
0
1
3
)

A
C

L
In

ju
ry

B
M

J
S

F
-3

6
1
2
1

5
y
rs

.
0
.8

%
G

il
b

o
d

y
(2

0
1
5
)

D
ep

re
ss

io
n

B
M

J
P

H
Q

-9
6
9
1

4
,1

2
,2

4
m

o
s.

2
3
.9

%
-3

3
.3

%
G

ra
n

d
e

(2
0
1
5
)

C
a
re

G
iv

in
g

B
M

J
S

&
P

C
S

F
-1

2
6
8
1

4
.5

m
o
s.

1
.8

%
G

ri
ffi

n
(2

0
1
4
)

F
ra

ct
u

re
s

B
M

J
S

F
-3

6
1
5
1

2
y
rs

.
2
3
.2

%
H

el
lu

m
(2

0
1
1
)

B
a
ck

P
a
in

B
M

J
S

F
-3

6
1
7
9

1
.5

,3
,6

,1
2
,2

4
m

o
s.

7
.8

%
-2

2
.3

%
H

o
lz

el
(2

0
1
6
)

D
ep

re
ss

io
n

/
B

a
ck

P
a
in

B
M

J
-O

P
H

Q
-9

4
3
5

2
m

o
s.

3
3
.8

%
J
en

k
in

so
n

(2
0
0
9
)

K
n

ee
P

a
in

B
M

J
S

F
-3

6
3
8
9

2
4

m
o
s.

1
8
.8

%
K

h
a
la

fa
ll

a
h

(2
0
1
2
)

P
re

g
n

a
n

cy
B

M
J
-O

S
F

-3
6

1
9
6

4
w

k
s.

3
5
.7

%
K

o
ek

(2
0
0
9
)

P
so

ri
a
si

s
B

M
J

S
F

-3
6

1
9
6

E
n

d
o
f

T
h

er
a
p
y

6
.1

%
L

a
w

to
n

(2
0
0
8
)

In
a
ct

iv
e

W
o
m

en
B

M
J

S
F

-3
6

1
0
8
9

1
2
,2

4
m

o
s.

7
.4

%
-1

0
.6

%
L

y
(2

0
1
4
)

D
ep

re
ss

io
n

B
M

J
-O

P
H

Q
-9

8
1

2
,6

m
o
s.

1
1
.1

%
-1

4
.8

%
M

a
n

si
k
k
a
m

a
k
i

(2
0
1
5
)

M
en

o
p

a
u

se
B

M
J
-O

S
F

-3
6

1
7
6

0
.5

,
2
.5

,
4

y
rs

.
1
5
.3

%
-

4
6
.0

%
M

cC
le

ll
a
n

(2
0
1
2
)

S
o
ft

T
is

su
e

In
ju

ry
B

M
J
-O

S
F

-1
2

3
7
2

2
,8

w
k
s.

4
0
.1

%
-4

2
.7

%
M

o
rd

in
(2

0
1
4
)

C
er

v
ic

a
l

D
y
st

o
n

ia
B

M
J
-O

S
F

-3
6

1
1
6

8
w

k
s.

2
8
.4

%
M

o
rr

el
l

(2
0
0
9
)

P
o
st

n
a
ta

l
D

ep
re

ss
io

n
B

M
J

S
F

-1
2

4
0
8
4

1
.5

,6
,1

2
m

o
s.

3
6
.2

%
-5

8
.9

%
M

u
rp

h
y

(2
0
0
9
)

H
ea

rt
D

is
ea

se
B

M
J

S
F

-1
2

9
0
3

1
8

m
o
s.

2
8
.1

%
O

er
k
il

d
(2

0
1
2
)

C
o
ro

n
a
ry

H
ea

rt
D

is
ea

se
B

M
J
-O

S
F

-1
2

4
0

3
,6

,1
2

m
o
s.

5
.0

%
-1

0
.0

%
P

a
te

l
(2

0
0
9
)

O
st

eo
a
rt

h
ri

ti
s

B
M

J
S

F
-3

6
8
1
2

4
,1

2
m

o
s.

3
8
.2

%
-4

0
.5

%
R

ic
h

a
rd

s
(2

0
1
3
)

D
ep

re
ss

io
n

B
M

J
P

H
Q

-9
5
8
1

4
,1

2
m

o
s.

1
3
.7

%
-1

4
.7

%
S

im
k
is

s
(2

0
1
3
)

P
a
re

n
ti

n
g

S
k
il

ls
B

M
J
-O

S
F

-1
2

2
8
6

9
m

o
s.

1
9
.2

%
W

a
lt

er
s

(2
0
1
3
)

C
O

P
D

B
M

J
-O

S
F

-3
6

1
8
2

6
,1

2
m

o
s.

1
3
.7

%
-1

5
.4

%
W

il
li

a
m

s
(2

0
0
9
)

G
a
st

ro
in

te
st

in
a
l

E
n

d
o
sc

o
p
y

B
M

J
S

F
-3

6
1
8
8
8

1
,

3
0
,

3
6
5

d
a
y
s

2
3
.3

%
-3

2
.7

%
A

d
le

r
(2

0
1
3
)

D
ep

re
ss

io
n

P
L

o
S

S
F

-1
2

4
4

6
w

k
s.

1
5
.9

%
A

n
d

re
ev

a
(2

0
1
4
)

C
a
rd

io
v
a
sc

u
la

r
D

is
ea

se
P

L
o
S

S
F

-3
6

2
5
0
1

3
y
rs

.
2
1
.0

%
B

en
d

a
(2

0
1
5
)

H
ea

rt
F

a
il

u
re

P
L

o
S

S
F

-3
6

2
4

1
2

w
k
s.

2
9
.2

%
B

er
g
m

a
n

n
(2

0
1
4
)

Is
ch

em
ic

H
ea

rt
D

is
ea

se
P

L
o
S

S
F

-3
6

2
1
3

3
m

o
s.

1
5
.0

%
C

o
n
b

o
y

(2
0
1
6
)

G
u

lf
W

a
r

Il
ln

es
s

P
L

o
S

S
F

-3
6

1
0
4

2
,4

,6
m

o
s.

1
3
.6

%
-

1
9
.4

%
C

o
o
le

y
(2

0
0
9
)

A
n

x
ie

ty
P

L
o
S

S
F

-3
6

8
7

1
2

w
k
s.

1
7
.2

%
F

a
v
ra

t
(2

0
1
4
)

Ir
o
n

D
efi

ci
en

cy
P

L
o
S

S
F

-1
2

2
9
4

5
6

d
a
y
s

3
.7

%
F

ra
n

co
is

(2
0
1
5
)

A
lc

o
h

o
l

D
ep

en
d

en
ce

P
L

o
S

S
F

-3
6

6
6
7

1
2
,2

4
w

k
s.

1
8
.6

%
-3

9
.7

%
G

a
v
i

(2
0
1
4
)

F
ib

ro
m

y
a
lg

ia
P

L
o
S

S
F

-3
6

8
0

1
6

w
k
s.

1
7
.5

%
G

in
e-

G
a
rr

ig
a

(2
0
1
3
)

C
h

ro
n

ic
C

o
n

d
it

io
n

s
P

L
o
S

S
F

-1
2

3
6
2

3
,6

,1
2

m
o
s.

1
2
.7

%
-1

6
.0

%
G

lo
zi

er
(2

0
1
3
)

D
ep

re
ss

io
n

,
C

a
rd

io
v
a
sc

u
la

r
D

is
ea

se
P

L
o
S

P
H

Q
-9

5
6
2

1
2

w
k
s.

4
.3

%
H

su
(2

0
1
5
)

F
ro

ze
n

S
h

o
u

ld
er

P
L

o
S

S
F

-3
6

7
2

6
m

o
s.

8
.3

%
K

en
ea

ly
(2

0
1
5
)

C
h

ro
n

ic
C

o
n

d
it

io
n

s
P

L
o
S

S
F

-3
6

1
7
1

6
m

o
s.

1
1
.7

%
K

im
(2

0
1
4
)

C
h

ro
n

ic
K

n
ee

O
st

eo
a
rt

h
ri

ti
s

P
L

o
S

S
F

-3
6

2
1
2

5
w

k
s.

8
.5

%
K

o
g
u

re
(2

0
1
5
)

B
a
ck

P
a
in

P
L

o
S

S
F

-3
6

1
8
6

6
m

o
s.

3
.8

%
L

a
m

b
er

t
(2

0
1
6
)

L
ep

ro
sy

P
L

o
S

-
N

T
D

S
F

-3
6

7
3

2
8

w
k
s.

2
0
.5

%
C
o
n
ti
n
u
ed

o
n
n
ex
t
pa

ge

53



T
a
b

le
1

–
C
o
n
ti
n
u
ed

fr
o
m

p
re
vi
o
u
s
pa

ge

S
tu

d
y

In
d
ic
a
ti
o
n

J
o
u
r
n
a
l

E
n
d
p
o
in
t

n
F
o
ll
o
w
-U

p
M

is
si
n
g

D
a
ta

(%
)

L
a
u

(2
0
1
5
)

M
et

a
b

o
li

c
S

y
n

d
ro

m
e

P
L

o
S

S
F

-3
6

1
7
3

1
2

w
k
s.

1
1
.0

%
M

a
cP

h
er

so
n

(2
0
1
3
)

D
ep

re
ss

io
n

/
C

o
-M

o
rb

id
P

a
in

P
L

o
S

-M
P

H
Q

-9
7
5
5

3
,6

,9
,1

2
m

o
s.

1
8
.7

%
-2

4
.6

%
L

ei
(2

0
1
6
)

P
a
rk

in
so

n
’s

D
is

ea
se

P
L

o
S

S
F

-1
2

1
5

3
w

k
s.

0
.0

%
M

ea
d

(2
0
1
1
)

S
tr

o
k
e

P
L

o
S

S
F

-3
6

1
4
0
0

6
4

w
k
s.

2
2
.9

%
M

er
o
m

(2
0
1
6
)

F
a
ll

s
P

L
o
S

S
F

-1
2

5
3
0

1
2

m
o
s.

2
1
.9

%
M

iy
a
g
a
w

a
(2

0
1
3
)

N
a
rc

o
le

p
sy

P
L

o
S

S
F

-3
6

3
0

1
6

w
k
s.

6
.7

%
M

o
h

r
(2

0
1
3
)

D
ep

re
ss

io
n

P
L

o
S

P
H

Q
-9

1
0
2

1
2

w
k
s.

1
3
.7

%
M

o
rg

a
n

(2
0
1
3
)

D
ep

re
ss

io
n

P
L

o
S

P
H

Q
-9

1
7
3
6

3
,6

w
k
s.

5
5
.5

%
-6

6
.9

%
M

u
si

a
t

(2
0
1
4
)

M
en

ta
l

H
ea

lt
h

P
L

o
S

P
H

Q
-9

1
0
4
7

6
,1

2
w

k
s.

5
0
.3

%
-6

1
.7

%
N

a
g
a
y
a
m

a
(2

0
1
6
)

A
g
in

g
P

L
o
S

S
F

-3
6

5
4

4
m

o
s.

1
8
.5

%
R

a
m

ly
(2

0
1
4
)

V
it

a
m

in
D

D
efi

ci
en

cy
P

L
o
S

S
F

-3
6

1
9
2

6
,1

2
m

o
s.

6
.8

%
-1

0
.9

%
S

m
a
ll

(2
0
1
4
)

P
o
st

p
a
rt

u
m

H
ea

lt
h

P
L

o
S

S
F

-3
6

1
8
4
2
4

2
y
rs

.
6
2
.9

%
S

tr
a
y
er

(2
0
1
2
)

C
h

ro
n

ic
F

a
ti

g
u

e
P

L
o
S

S
F

-3
6

2
3
4

4
0

w
k
s.

1
7
.1

%
S

tu
b
y

(2
0
1
5
)

D
is

ta
l

R
a
d

iu
s

F
ra

ct
u

re
P

L
o
S

S
F

-3
6

2
9

3
m

o
s.

0
.0

%
T

h
er

k
el

se
n

(2
0
1
6
)

U
lc

er
a
ti

v
e

C
o
li

ti
s

P
L

o
S

S
F

-3
6

6
2

3
w

k
s.

1
9
.4

%
T

h
er

k
el

se
n

(2
0
1
6
)

C
ro

h
n

’s
D

is
ea

se
P

L
o
S

S
F

-3
6

7
6

3
w

k
s.

3
4
.2

%
T

it
o
v

(2
0
1
0
)

D
ep

re
ss

io
n

P
L

o
S

P
H

Q
-9

1
4
1

P
o
st

T
x
.,

4
m

o
s.

1
7
.0

%
-2

9
.2

%
T

it
o
v

(2
0
1
3
)

D
ep

re
ss

io
n

P
L

o
S

P
H

Q
-9

2
7
4

3
m

o
s.

4
0
.1

%
T

it
o
v

(2
0
1
4
)

D
ep

re
ss

io
n

P
L

o
S

P
H

Q
-9

2
7
4

1
2

m
o
s.

4
2
.7

%
v
a
n

G
em

er
t

(2
0
1
5
)

W
ei

g
h
t

C
o
n
tr

o
l

P
L

o
S

S
F

-3
6

2
4
3

4
m

o
s.

1
1
.1

%
Y

o
u

n
g
e

(2
0
1
5
)

H
ea

rt
D

is
ea

se
P

L
o
S

S
F

-3
6

3
2
4

3
m

o
s.

2
0
.1

%
Z

o
n

n
ev

el
d

(2
0
1
2
)

U
n

ex
p

la
in

ed
S

y
m

p
to

m
s

P
L

o
S

S
F

-3
6

1
6
2

3
m

o
s,

3
,1

2
m

o
s

P
o
st

T
x
.

1
7
.9

%
-4

7
.3

%

54



Table 2: Treatment- and α-specific simulation results: Bias and mean-squared error (MSE) for the

plug-in (µ(P̂ ;α)) and corrected (µ̃α ) estimators, for various choices of α.
Placebo Quetiapine

α Estimator µ∗ Bias MSE µ∗ Bias MSE
-10 Plug-in 40.85 0.02 4.43 56.07 0.40 4.69

Corrected 0.43 4.56 0.42 4.72
-5 Plug-in 43.45 0.05 4.29 59.29 0.34 4.55

Corrected 0.27 4.26 0.24 4.35
-1 Plug-in 46.02 0.28 4.34 62.58 0.50 4.39

Corrected 0.18 4.22 0.14 4.00
0 Plug-in 46.73 0.36 4.44 63.42 0.55 4.36

Corrected 0.17 4.27 0.14 3.95
1 Plug-in 47.45 0.43 4.57 64.25 0.59 4.32

Corrected 0.16 4.36 0.15 3.92
5 Plug-in 50.48 0.66 5.33 67.34 0.59 4.20

Corrected 0.14 5.11 0.19 4.15
10 Plug-in 54.07 0.51 5.78 70.51 0.07 4.02

Corrected 0.04 6.30 -0.05 4.66
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Table 3: Treatment- and α-specific simulation results: Confidence interval coverage for (1) Wald
with influence function standard errors (Wald-IF), (2) Wald with jackknife standard errors (Wald-
JK), (3) equal-tailed studentized parametric bootstrap with influence function standard errors
(Bootstrap-IF-ET), (4) equal-tailed studentized parametric bootstrap with jackknife standard er-
rors (Bootstrap-JK-ET), (5) symmetric studentized parametric bootstrap with influence function
standard errors (Bootstrap-IF-S) and (6) symmetric studentized parametric bootstrap with jack-
knife standard errors (Bootstrap-JK-S); 2000 parametric bootstraps were used.

Placebo Quetiapine
α Procedure Coverage Coverage

-10 Wald-IF 91.5% 90.5%
Wald-JK 95.0% 94.6%
Bootstrap-IF-ET 94.3% 93.8%
Bootstap-JK-ET 94.4% 93.4%
Bootstap-IF-S 95.2% 94.6%
Bootstap-JK-S 95.0% 94.6%

-5 Wald-IF 93.5% 92.9%
Wald-JK 95.0% 94.8%
Bootstrap-IF-ET 95.2% 94.6%
Bootstap-JK-ET 94.8% 94.6%
Bootstap-IF-S 95.4% 95.2%
Bootstap-JK-S 95.1% 95.2%

-1 Wald-IF 93.9% 94.2%
Wald-JK 94.9% 95.4%
Bootstrap-IF-ET 95.1% 94.8%
Bootstap-JK-ET 95.1% 94.6%
Bootstap-IF-S 95.3% 96.4%
Bootstap-JK-S 95.1% 96.3%

0 Wald-IF 93.8% 94.0%
Wald-JK 95.0% 95.4%
Bootstrap-IF-ET 94.6% 94.5%
Bootstap-JK-ET 94.6% 94.6%
Bootstap-IF-S 95.5% 96.6%
Bootstap-JK-S 95.2% 96.7%

1 Wald-IF 93.3% 93.7%
Wald-JK 95.1% 95.5%
Bootstrap-IF-ET 94.6% 94.6%
Bootstap-JK-ET 94.6% 94.6%
Bootstap-IF-S 95.5% 96.5%
Bootstap-JK-S 95.2% 96.5%

5 Wald-IF 90.8% 91.3%
Wald-JK 95.3% 95.7%
Bootstrap-IF-ET 93.2% 91.6%
Bootstap-JK-ET 93.8% 93.0%
Bootstap-IF-S 95.5% 95.4%
Bootstap-JK-S 95.8% 96.4%

10 Wald-IF 85.4% 87.8%
Wald-JK 94.9% 94.5%
Bootstrap-IF-ET 88.2% 87.0%
Bootstap-JK-ET 92.2% 89.7%
Bootstap-IF-S 94.6% 93.9%
Bootstap-JK-S 95.5% 95.1%
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Figure 1: Treatment-specific (left: placebo; right: 600 mg/day Quetiapine) trajectories of mean
QLESSF scores, stratified by last available measurement. Blue, brown and orange represent the
trajectories of patients last seen at visits 0, 1 and 2, respectively. The number in parentheses at
the end of each trajectory represents the number of associated patients.
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Figure 2: Schematic representation of the global sensitivity analysis framework. Circles represent
modeling restrictions placed on the distribution of the observed data, with the outer circle indi-
cating no restrictions and the inner circle indicating type (ii) restrictions. The arrows indicate a
mappings from the distribution of the observed data to the true mean, which depends on the type
(i) assumptions.
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Figure 3: Treatment-specific (left: placebo; right: 600 mg/day Quentiapine) estimates (along with
95% pointwise confidence intervals) of µ∗ as a function of α.
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Figure 4: Treatment-specific differences between the estimated mean QLESSF at Visit 2 among
non-completers and the estimated mean among completers, as a function of α.
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Figure 5: Contour plot of the estimated differences between mean QLESSF at Visit 2 for Quentiap-
ine vs. placebo for various treatment-specific combinations of the sensitivity analysis parameters.
The point (0,0) corresponds to the MAR assumption in both treatment arms.
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