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Case Study: Quetiapine Bipolar Trial

Patients with bipolar disorder randomized equally to one
of three treatment arms: placebo, Quetiapine 300 mg/day
or Quetiapine 600 mg/day (Calabrese et al., 2005).

Randomization was stratified by type of bipolar disorder.

Short-form version of the Quality of Life Enjoyment
Satisfaction Questionnaire (QLESSF, Endicott et al.,
1993), was scheduled to be measured at baseline, week 4
and week 8.
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Quetiapine Bipolar Trial

Focus on the subset of 234 patients with bipolar 1
disorder who were randomized to either the placebo
(n=116) or 600 mg/day (n=118) arms.

Only 65 patients (56%) in placebo arm and 68 patients
(58%) in the 600mg/day arm had a complete set of
QLESSF scores.

Patients with complete data tend to have higher average
QLESSF scores, suggesting that a complete-case analysis
could be biased.
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Observed Data

Figure: Treatment-specific (left: placebo; right: 600 mg/day
Quetiapine) trajectories of mean QLESSF scores, stratified by last
available measurement.
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Central Question

What is the difference in the mean QLESSF score at
week 8 between Quetiapine 600 mg/day and placebo
in the counterfactual world in which all patients were
followed to that week?
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Global Sensitivity Analysis

Inference about the treatment arm means requires two
types of assumptions:

(i) unverifiable assumptions about the distribution of
outcomes among those with missing data and

(ii) additional testable assumptions that serve to increase
the efficiency of estimation.
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Global Sensitivity Analysis

Type (i) assumptions are necessary to identify the
treatment-specific means.

By identification, we mean that we can write it as a
function that depends only on the distribution of the
observed data.

When a parameter is identified we can hope to estimate it
as precisely as we desire with a sufficiently large sample
size,

In the absence of identification, statistical inference is
fruitless as we would be unable to learn about the true
parameter value even if the sample size were infinite.
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Global Sensitivity Analysis

To address the identifiability issue, it is essential to
conduct a sensitivity analysis, whereby the data analysis is
repeated under different type (i) assumptions, so as to
investigate the extent to which the conclusions of the trial
are dependent on these subjective, unverifiable
assumptions.

The usefulness of a sensitivity analysis ultimately depends
on the plausibility of the unverifiable assumptions.

It is key that any sensitivity analysis methodology allow
the formulation of these assumptions in a transparent and
easy to communicate manner.
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Global Sensitivity Analysis

There are an infinite number of ways of positing type (i)
assumptions.

Ultimately, however, these assumptions prescribe how
missing outcomes should be ”imputed.”

A reasonable way to posit these assumptions is to

stratify individuals with missing outcomes according to
the data that we were able to collect on them and the
occasions at which the data were collected
separately for each stratum, hypothesize a connection
(or link) between the distribution of the missing outcome
with the distribution of the outcome among those with
the observed outcome and who share the same recorded
data.
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Global Sensitivity Analysis

Type (i) assumptions will not suffice when the repeated
outcomes are continuous or categorical with many levels.
This is because of data sparsity.

For example, the stratum of people who share the same
recorded data will typically be small. As a result, it is
necessary to draw strength across strata by ”smoothing.”

Without smoothing, the data analysis will rarely be
informative because the uncertainty concerning the
treatment arm means will often be too large to be of
substantive use.

As a result, it is necessary to impose type (ii) smoothing
assumptions.

Type (ii) assumptions should be scrutinized with standard
model checking techniques.
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Global Sensitivity Analysis

The global sensitivity framework proceeds by
parameterizing (i.e., indexing) the connections (i.e., type
(i) assumptions) via sensitivity analysis parameters.

The parameterization is configured so that a specific
value of the sensitivity analysis parameters (typically set
to zero) corresponds to a benchmark connection that is
considered reasonably plausible and sensitivity analysis
parameters further from the benchmark value represent
more extreme departures from the benchmark connection.
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Global Sensitivity Analysis

The global sensitivity analysis strategy that we propose is
focused on separate inferences for each treatment arm,
which are then combined to evaluate treatment effects.

For now, we will focus on monotone missing data.

Later, we will address missingness prior to last visit
on-study.

13 / 149



Notation: Quetiapine Bipolar Trial

Y0, Y1, Y2: QLESSF scores scheduled to be collected at
baseline, week 4 and week 8.

Let Rk be the indicator that Yk is observed.

We assume R0 = 1 and that Rk = 0 implies Rk+1 = 0
(i.e., missingness is monotone).

Patient is on-study at visit k if Rk = 1

Patient discontinued prior to visit k if Rk = 0

Patient last seen at visit k − 1 if Rk−1 = 1 and Rk = 0.

Y obs
k equals to Yk if Rk = 1 and equals to nil if Rk = 0.
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Notation: Quetiapine Bipolar Trial

The observed data for an individual are

O = (Y0,R1,Y
obs
1 ,R2,Y

obs
2 ),

which has some distribution P∗ contained within a set of
distributions M (type (ii) assumptions discussed later).

The superscript ∗ will be used to denote the true value of
the quantity to which it is appended.

Any distribution P ∈M can be represented in terms of
the following distributions:

f (Y0)
P(R1 = 1|Y0)
f (Y1|R1 = 1,Y0)
P(R2 = 1|R1 = 1,Y1,Y0)
f (Y2|R2 = 1,Y1,Y0).
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Notation: Quetiapine Bipolar Trial

We assume that n independent and identically distributed
copies of O are observed.

The goal is to use these data to draw inference about
µ∗ = E ∗[Y2].

When necessary, we will use the subscript i to denote
data for individual i .
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Benchmark Assumption (Missing at Random)

A0(y0): patients last seen at visit 0 (R0 = 1,R1 = 0) with
Y0 = y0.

B1(y0): patients on-study at visit 1 (R1 = 1) with
Y0 = y0.

A1(y0, y1): patients last seen at visit 1 (R1 = 1,R2 = 0)
with Y0 = y0 and Y1 = y1.

B2(y0, y1): patients who complete study (R2 = 1) with
Y0 = y0 Y1 = y1.
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Benchmark Assumption (Missing at Random)

Missing at random posits the following type (i) “linking”
assumptions:

For each y0, the distribution of Y1 and Y2 is the same for
those in stratum A0(y0) as those in stratum B1(y0).

For each y0, y1, the distribution of Y2 is the same for
those in stratum A1(y0, y1) as those in stratum B2(y0, y1).
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Benchmark Assumption (Missing at Random)

Mathematically, we can express these assumptions as follows:

f ∗(Y1,Y2|A0(y0)) = f ∗(Y1,Y2|B1(y0)) for all y0 (1)

and

f ∗(Y2|A1(y0, y1)) = f ∗(Y2|B2(y0, y1)) for all y0, y1 (2)
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Benchmark Assumption (Missing at Random)

Using Bayes’ rule, we can re-write these expressions as:

P∗(R1 = 0|R0 = 1,Y0 = y0,Y1 = y1,Y2 = y2)

= P∗(R1 = 0|R0 = 1,Y0 = y0)

and

P∗(R2 = 0|R1 = 1,Y0 = y0,Y1 = y1,Y2 = y2)

= P∗(R2 = 0|R1 = 1,Y0 = y0,Y1 = y1)

Missing at random implies:
The decision to discontinue the study before visit 1 is like
the flip of a coin with probability depending on the value
of the outcome at visit 0.
For those on-study at visit 1, the decision to discontinue
the study before visit 2 is like the flip of a coin with
probability depending on the value of the outcomes at
visits 1 and 0.
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Benchmark Assumption (Missing at Random)

MAR is a type (i) assumption. It is ”unverifiable.”

For patients last seen at visit k , we cannot learn from the
observed data about the conditional (on observed history)
distribution of outcomes after visit k .

For patients last seen at visit k , any assumption that we
make about the conditional (on observed history)
distribution of the outcomes after visit k will be
unverifiable from the data available to us.

For patients last seen at visit k , the assumption that the
conditional (on observed history) distribution of outcomes
after visit k is the same as those who remain on-study
after visit k is unverifiable.
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Benchmark Assumption (Missing at Random)

Under MAR, µ∗ is identified. That is, it can be expressed as a
function of the distribution of the observed data. Specifically,

µ∗ = µ(P∗) =

∫
y0

∫
y1

∫
y2

y2dF
∗
2 (y2|y1, y0)dF ∗1 (y1|y0)dF ∗0 (y0)

where

F ∗2 (y2|y1, y0) = P∗(Y2 ≤ y2|B2(y1, y0))

F ∗1 (y1|y0) = P∗(Y1 ≤ y1|B1(y0))

F ∗0 (y0) = P∗(Y0 ≤ y0).
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Missing Not at Random (MNAR)

The MAR assumption is not the only one that is (a)
unverifiable and (b) allows identification of µ∗.

23 / 149



Missing Not at Random (MNAR)

The first part of the MAR assumption (see (1) above) is

f ∗(Y1,Y2|A0(y0)) = f ∗(Y1,Y2|B1(y0)) for all y0

It is equivalent to

f ∗(Y2|A0(y0),Y1 = y1)

= f ∗(Y2|B1(y0),Y1 = y1) for all y0, y1 (3)

and
f ∗(Y1|A0(y0)) = f ∗(Y1|B1(y0)) for all y0 (4)
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Missing Not at Random (MNAR)

In building a class of MNAR models, we will retain (3):

For all y0, y1, the distribution of Y2 for patients in stratum
A0(y0) with Y1 = y1 is the same as the distribution of Y2

for patients in stratum B1(y0) with Y1 = y1.

The decision to discontinue the study before visit 1 is
independent of Y2 (i.e., the future outcome) after
conditioning on the Y0 (i.e., the past outcome) and Y1

(i.e., the most recent outcome).

Non-future dependence (Diggle and Kenward, 1994)
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Missing Not at Random (MNAR)

Generalizing (4) Using Exponential Tilting

f ∗(Y1|A0(y0))

∝ f ∗(Y1|B1(y0)) exp{αr(Y1)} for all y0 (5)

Generalizing (2) Using Exponential Tilting

f ∗(Y2|A1(y0, y1))

∝ f ∗(Y2|B2(y0, y1)) exp{αr(Y2)} for all y0, y1 (6)

r(y) is a specified increasing function; α is a sensitivity
analysis parameter.

α = 0 is MAR.
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Missing Not at Random (MNAR)

When α > 0 (< 0)

For each y0, the distribution of Y1 for patients in stratum
A0(y0) is weighted more heavily to higher (lower) values
than the distribution of Y1 for patients in stratum B1(y0).

For each y0, y1, the distribution of Y2 for patients in
stratum A1(y0, y1) is weighted more heavily to higher
(lower) values than the distribution of Y2 for patients in
stratum B2(y0, y1).

The amount of ”tilting” increases with the magnitude of α.
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Missing Not at Random (MNAR)

Using Bayes’ rule, we can re-write (3), (5) and (6) as:

logit P∗(R1 = 0|R0 = 1,Y0 = y0,Y1 = y1,Y2 = y2)

= l∗1 (y0;α) + αr(y1)

and

logit P∗(R2 = 0|R1 = 1,Y0 = y0,Y1 = y1,Y2 = y2)

= l∗2 (y0, y1;α) + αr(y2)

where

l∗1 (y0;α) = logit P∗(R1 = 0|R0 = 1,Y0 = y0)−
log E ∗(exp{αr(Y1)}|B1(y0))

and

l∗2 (y1, y0;α) = logit P∗(R2 = 0|R1 = 1,Y0 = y0,Y1 = y1)−
log E ∗(exp{αr(Y2)}|B2(y1, y0))
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Missing Not at Random (MNAR)

Written in this way:

The decision to discontinue the study before visit 1 is like
the flip of a coin with probability depending on the value
of the outcome at visit 0 and (in a specified way) the
value of the outcome at visit 1.

For those on-study at visit 1, the decision to discontinue
the study before visit 2 is like the flip of a coin with
probability depending on the value of the outcomes at
visits 0 and 1 and (in a specified way) the value of the
outcome at visit 2.
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Exponential Tilting Explained

f (Y |R = 0) ∝ f (Y |R = 1) exp{αr(Y )}

If [Y |R = 1] ∼ N(µ, σ2) and r(Y ) = Y ,
[Y |R = 0] ∼ N(µ + ασ2, σ2)

If [Y |R = 1] ∼ Beta(a, b) and r(Y ) = log(Y ),
[Y |R = 0] ∼ Beta(a + α, b), α > −a.

If [Y |R = 1] ∼ Gamma(a, b) and r(Y ) = log(Y ),
[Y |R = 0] ∼ Gamma(a + α, b), α > −a.

If [Y |R = 1] ∼ Gamma(a, b) and r(Y ) = Y ,
[Y |R = 0] ∼ Gamma(a, b − α), α < b.

If [Y |R = 1] ∼ Bernoulli(p) and r(Y ) = Y ,

[Y |R = 0] ∼ Bernoulli
(

p exp(α)
p exp(α)+1−p

)
.
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Missing Not at Random (MNAR)

For given α, µ∗ is identified. Specifically, µ∗ = µ(P∗;α) equals

∫
y0

∫
y1

∫
y2

y2

dF∗2 (y2|y1, y0){1− H∗2 (y1, y0)} +
dF∗2 (y2|y1, y0) exp{αr(y2)}∫
y′
2
dF∗2 (y′2 |y1, y0) exp{αr(y

′
2)}

H∗2 (y1, y0)

×dF∗1 (y1|y0){1− H∗1 (y0)} +
dF∗1 (y1|y0) exp{αr(y1)}∫
y′
1
dF∗1 (y′1 |y0) exp{αr(y

′
1)}

H∗1 (y0)

 dF∗0 (y0)

where

H∗2 (y1, y0) = P∗(R2 = 0|R1 = 1,Y1 = y1,Y0 = y0)

and
H∗1 (y0) = P∗(R1 = 0|R0 = 1,Y0 = y0)

µ∗ is written as a function of the distribution of the
observed data (depending on α).
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Global Sensitivity Analysis
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Global Sensitivity Analysis
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Global Sensitivity Analysis
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Inference

For given α, the above formula shows that µ∗ depends on

F ∗2 (y2|y1, y0) = P∗(Y2 ≤ y2|B2(y1, y0))

F ∗1 (y1|y0) = P∗(Y1 ≤ y1|B1(y0))

H∗2 (y1, y0) = P∗(R2 = 0|R1 = 1,Y1 = y1,Y0 = y0)

H∗1 (y0) = P∗(R1 = 0|R0 = 1,Y0 = y0).

It is natural to consider estimating µ∗ by “plugging in”
estimators of these quantities.

How can we estimate these latter quantities? With the
exception of F ∗0 (y0), it is tempting to think that we can use
non-parametric procedures to estimate these quantities.
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Inference

A non-parametric estimate of F ∗2 (y2|y1, y0) would take the
form:

F̂2(y2|y1, y0) =

∑n
i=1 R2,i I (Y2,i ≤ y2)I (Y1,i = y1,Y0,i = y0)∑n

i=1 R2,i I (Y1,i = y1,Y0,i = y0)

This estimator will perform very poorly (i.e., have high
levels of uncertainty in moderate sample sizes) because
the number of subjects who complete the study (i.e.,
R2 = 1) and are observed to have outcomes at visits 1
and 0 exactly equal to y1 and y0 will be very small and
can only be expected to grow very slowly as the sample
size increases.

As a result, a a plug-in estimator of µ∗ that uses such
non-parametric estimators will perform poorly.
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Inference - Type (ii) Assumptions

We make the estimation task slightly easier by assuming that

F ∗2 (y2|y1, y0) = F ∗2 (y2|y1) (7)

and
H∗2 (y1, y0) = H∗2 (y1) (8)
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Inference - Kernel Smoothing

Estimate F ∗2 (y2|y1), F ∗1 (y1|y0), H∗2 (y1) and H∗1 (y0) using kernel
smoothing techniques.

To motivate this idea, consider the following non-parametric
estimate of F ∗2 (y2|y1)

F̂2(y2|y1) =

∑n
i=1 R2,i I (Y2,i ≤ y2)I (Y1,i = y1)∑n

i=1 R2,i I (Y1,i = y1)

This estimator will still perform poorly, although better
than F̂2(y2|y1, y0).

Replace I (Y1,i = y1) by φ
(

Y1,i−y1
σF2

)
, where φ(·) is

standard normal density and σF2 is a tuning parameter.

F̂2(y2|y1;σF2) =

∑n
i=1 R2,i I (Y2,i ≤ y2)φ

(
Y1,i−y1
σF2

)
∑n

i=1 R2,iφ
(

Y1,i−y1
σF2

)
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Inference - Kernel Smoothing

This estimator allows all completers to contribute, not
just those with Y1 values equal to y1

It assigns weight to completers according to how far their
Y1 values are from y1, with closer values assigned more
weight.

The larger σF2 , the larger the influence of values of Y1

further from y1 on the estimator.

As σF2 →∞, the contribution of each completer to the
estimator becomes equal, yielding bias but low variance.

As σF2 → 0, only completers with Y1 values equal to y1
contribute, yielding low bias but high variance.
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Inference - Cross-Validation

To address the bias-variance trade-off, cross validation is
typically used to select σF2 .

Randomly divide dataset into J (typically, 10)
approximately equal sized validation sets.
Let Vj be the indices of the patients in jth validation set.
Let nj be the associated number of subjects.

Let F̂
(j)
2 (y2|y1;σF2) be the estimator of F ∗2 (y2|y1) based

on the dataset that excludes the jth validation set.
If σF2 is a good choice then one would expect

CVF∗
2
(·|·)(σF2 ) =

1

J

J∑
j=1


1

nj

∑
i∈Vj

R2,i

∫ {
I (Y2,i ≤ y2)− F̂

(j)
2 (y2|Y1,i ;σF2 )

}2
dF̂◦2 (y2)︸ ︷︷ ︸

Distance for i ∈ Vj



will be small, where F̂ ◦2 (y2) is the empirical distribution of
Y2 among subjects on-study at visit 2.
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Inference - Cross-Validation

For each individual i in the jth validation set with an
observed outcome at visit 2, we measure, by the quantity
above the horizontal brace, the distance (or loss) between
the collection of indicator variables
{I (Y2,i ≤ y2) : dF̂ ◦2 (y2) > 0} and the corresponding
collection of predicted values
{F̂ (j)

2 (y2|Y1,i ;σF2) : dF̂ ◦2 (y2) > 0}.
The distances for each of these individuals are then
summed and divided by the number of subjects in the jth
validation set.

An average across the J validation/training sets is
computed.

We can then estimate F ∗2 (y2|y1) by F̂2(y2|y1; σ̂F2), where
σ̂F2 = argmin CVF∗2 (·|·)(σF2).
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Inference - Cross-Validation

We use similar ideas to estimate

F ∗1 (y1|y0)

H∗2 (y1)

H∗1 (y0)

In our software, we set σF2 = σF1 = σF and minimize a single
CV function.

In our software, we set σH2 = σH1 = σH and minimize a single
CV function.
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Inference - Potential Problem

The cross-validation procedure for selecting tuning
parameters achieves optimal finite-sample bias-variance
trade-off for the quantities requiring smoothing.

This optimal trade-off is usually not optimal for
estimating µ∗.

The plug-in estimator of µ∗ could, in theory, suffer from
excessive and asymptotically non-negligible bias due to
inadequate tuning.

This may prevent the plug-in estimator from having
regular asymptotic behavior, upon which statistical
inference is generally based.

The resulting estimator may have a slow rate of
convergence, and common methods for constructing
confidence intervals, such as the Wald and bootstrap
intervals, can have poor coverage properties.
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Inference - Correction Procedure

Let M be the class of distributions for the observed data
O that satisfy constraints (7) and (8).

For P ∈M, it can be shown that

µ(P ;α)− µ(P∗;α)

= −E ∗[(ψP(O;α)− ψP∗(O;α)) + Rem(P ,P∗;α), (9)

where ψP(O;α) is a “derivative” of µ(·;α) at P and
Rem(P ,P∗;α) is a ”second-order” remainder term which
converges to zero as P tends to P∗.
The derivative is used to quantify the change in µ(P ;α)
resulting from small perturbations in P ; it also has mean
zero (i.e., E ∗[ψP∗(O;α)] = 0).

The remainder term is second order in the sense that it
can be written as or bounded by the product of terms
involving differences between (functionals of) P and P∗.
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Inference - Correction Procedure

Equation (9) plus some simple algebraic manipulation teaches
us that

µ(P̂ ;α)︸ ︷︷ ︸
Plug-in

−µ(P∗;α)

=
1

n

n∑
i=1

ψP∗(Oi ;α)− 1

n

n∑
i=1

ψP̂(Oi ;α) (10)

+
1

n

n∑
i=1

{ψP̂(Oi ;α)− ψP∗(Oi ;α)− E ∗[ψP̂(O;α)− ψP∗(O;α)]}

(11)

+ Rem(P̂ ,P∗;α) (12)

where P̂ is the estimated distribution of P∗ discussed in the
previous section.
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Inference - Correction Procedure

Under smoothness and boundedness conditions, term (11)
will be oP∗(n

−1/2) (i.e., will converge in probabity to zero
even when it is multipled by

√
n).

Provided P̂ converges to P∗ at a reasonably fast rate,
term (12) will also be oP∗(n

−1/2).

The second term in (10) prevents us from concluding that
the plug-in estimator can be essentially represented as an
average of i.i.d terms plus oP∗(n

−1/2) terms.

By adding the second term in (10) to the plug-in
estimator, we can construct a “corrected” estimator that
does have this representation.
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Inference - Correction Procedure

The corrected estimator is

µ̃α = µ(P̂ ;α)︸ ︷︷ ︸
Plug-in

+
1

n

n∑
i=1

ψP̂(Oi ;α)

The practical implication is that µ̃α converges in probability to
µ∗ and

√
n (µ̃α − µ∗) =

1√
n

n∑
i=1

ψP∗(Oi ;α) + oP∗(1)

With this representation, we see that ψP∗(O;α) is the
so-called influence function.
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Inference - Correction Procedure

By the central limit theorem, we then know that√
n (µ̃α − µ∗) converges to a normal random variable

with mean 0 and variance σ2
α = E ∗[ψP∗(O;α)2].

The asymptotic variance can be estimated by
σ̃2
α = 1

n

∑n
i=1 ψP̂(Oi ;α)2.

A (1− γ)% Wald-based confidence interval for µ∗ can be
constructed as µ̃α ± z1−γ/2σ̃α/

√
n, where zq is the qth

quantile of a standard normal random variable.
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Inference - Efficient Influence Function/Gradient

Let

π∗(y0, y1, y2;α)−1 = (1 + exp{l∗1 (y0;α) + αr(y1)})×
(1 + exp{l∗2 (y1;α) + αr(y2)})

w ∗1 (y0;α) = E ∗ (exp{αr(Y1)} | R1 = 1,Y0 = y0) ,

w ∗2 (y1;α) = E ∗ (exp{αr(Y2)} | R2 = 1,Y1 = y1) ,

g ∗1 (y0, y1;α) = {1− H∗1 (y0)}w ∗1 (y0;α) + exp{αr(y1)}H∗1 (y0).

g ∗2 (y1, y2;α) = {1− H∗2 (y1)}w ∗2 (y1;α) + exp{αr(y2)}H∗2 (y1).
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Inference - Efficient Influence Function/Gradient

ψP∗(O;α) := a∗0(Y0;α) +

R1b
∗
1(Y0,Y1;α) +

R2b
∗
2(Y1,Y2;α) +

{1− R1 − H∗1 (Y0)}c∗1 (Y0;α) +

R1{1− R2 − H∗2 (Y1)}c∗2 (Y1;α)

where
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Inference - Efficient Influence Function/Gradient

a∗0 (Y0) = E∗
(

R2Y2

π∗(Y0, Y1, Y2;α)
Y0

)
− µ(P∗;α)

b∗1 (Y0, Y1;α) = E∗
(

R2Y2

π∗(Y0, Y1, Y2;α)
R1 = 1, Y1, Y0

]
)− E∗

(
R2Y2

π∗(Y0, Y1, Y2;α)
R1 = 1, Y0

)

+ E∗
(

R2Y2

π∗(Y0, Y1, Y2;α)

[
exp{αr(Y1)}
g∗1 (Y0, Y1;α)

]
R1 = 1, Y0

)
H∗1 (Y0)

{
1−

exp{αr(Y1)}
w∗1 (Y0;α)

}

b∗2 (Y1, Y2;α) = E∗
(

R2Y2

π∗(Y0, Y1, Y2;α)
R2 = 1, Y2, Y1

)
− E∗

(
R2Y2

π∗(Y0, Y1, Y2;α)
R2 = 1, Y1

)

+ E∗
(

R2Y2

π∗(Y0, Y1, Y2;α)

[
exp{αr(Y2)}
g∗2 (Y1, Y2;α)

]
R2 = 1, Y1

)
H∗2 (Y1)

{
1−

exp{αr(Y2)}
w∗2 (Y1;α)

}

c∗1 (Y0) = E∗
(

R2Y2

π∗(Y0, Y1, Y2;α)

[
exp{αr(Y1)}
g∗1 (Y0, Y1;α)

]
Y0

)

− E∗
(

R2Y2

π∗(Y0, Y1, Y2;α)

[
1

g∗1 (Y0, Y1;α)

]
Y0

)
w∗1 (Y0;α)

c∗2 (Y1) = E∗
(

R2Y2

π∗(Y0, Y1, Y2;α)

[
exp{αr(Y2)}
g∗2 (Y1, Y2;α)

]
R1 = 1, Y1

)

− E∗
(

R2Y2

π∗(Y0, Y1, Y2;α)

[
1

g∗2 (Y1, Y2;α)

]
R1 = 1, Y1

)
w∗2 (Y1;α)
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Inference - Uncertainty

Wald-based confidence intervals don’t always have
adequate coverage properties is finite samples.

In equal-tailed studentized bootstrap, the confidence
interval takes the form [µ̂− t0.975ŝe(µ̂), µ̂− t0.025ŝe(µ̂)],

where tq is the qth quantile of
{
µ̂(b)−µ̂
ŝe(µ̂(b))

: b = 1, . . . ,B
}

In symmetric studentized bootstrap, the confidence
interval takes the form [µ̂− t∗0.95ŝe(µ̂), µ̂ + t∗0.95ŝe(µ̂)],
where t∗0.95 is selected so that 95% of the distribution of{
µ̂(b)−µ̂
ŝe(µ̂(b))

: b = 1, . . . ,B
}

falls between −t∗0.95 and t∗0.95.

Useful to replace influence-function based standard error
estimator with jackknife standard error estimator.

In simulation studies, symmetric studentized-t bootstrap
with jackknife standard errors performs best.
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Bootstrap

Non-parametric bootstrap is that it does not require a
model for the distribution of the observed data.

Since our analysis depends on correct specification and on
estimation of such a model, it makes sense to use this
model to bootstrap observed datasets.
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Bootstrap

Using F̂0(y0), F̂1(y1|y0; σ̂F ), F̂2(y2|y1; σ̂F ) and Ĥ1(y0; σ̂H)and

Ĥ2(y1; σ̂H), simulate observed data for an individual using the
following procedure:

1 Draw Y0 from F̂0(·)
2 Draw R1 from Ĥ1(Y0; λ̂H). If R1 = 0, stop.

3 Draw Y1 from F̂1(· | Y0; λ̂F ).

4 Draw R2 from Ĥ2(Y1; λ̂H). If R2 = 0, stop.

5 Draw Y2 from F̂2(· | Y1; λ̂F ).

We use this procedure to simulate observed datasets, each
comprised of n individuals.
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Goodness of Fit

Simulate, using the parametric bootstrap procedure, a
dataset with a large number, say N , individuals.

Compare summary statistics of the simulated dataset to
the comparable summary statistics on the actual dataset.
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Comparison of Treatment Groups

To compare treatment groups, we draw inference about
∆∗ = µ(1)∗ − µ(2)∗. Assuming treatment-specific sensitivity
analysis parameters α(1) and α(2), we estimate ∆∗ by

∆̃α(1),α(2) = µ̃
(1)

α(1) − µ̃(2)

α(2)

Using the fact that the treatment groups are independent, we
can form a confidence interval for ∆∗ using the same ideas
discussed above.
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Comparison of Treatment Groups

Specifically, we can draw B bootstrap samples within each
treatment group and compute cutpoints based on the
distribution:∆̃

(b)

α(1),α(2) − ∆̃α(1),α(2)

s̃e
(

∆̃
(b)

α(1),α(2)

) : b = 1, 2, . . . ,B

 , (13)

where

s̃e
(

∆̃
(b)

α(1),α(2)

)
=

√{
s̃e
(
µ̃
(b,1)
α

)}2

+
{
s̃e
(
µ̃
(b,2)
α

)}2

is an estimator of the standard error of ∆̃
(b)

α(1),α(2) . Equal-tailed

and symmetric confidence intervals can then be formed.
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Plausibility of α

For each α, the estimated mean among non-completers can be
back-calculated from the estimated overall mean (µ̃α):

µ̃α − 1
n

∑
i RK ,iYK ,i

1
n

∑
i(1− RK ,i)

(14)

As a plausibility check, this mean can be contrasted with the
mean among completers. If the differences are scientifically
implausible, then the choice of α can be ruled out.
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Quetiapine Bipolar Trial - Fit

Estimated smoothing parameters for the drop-out model
are 11.54 and 9.82 for the placebo and 600 mg arms.

Estimated smoothing parameters for the outcome model
are 6.34 and 8.05 for the placebo and 600 mg arms.

In the placebo arm, the observed percentages of last
being seen at visits 0 and 1 among those at risk at these
visits are 8.62% and 38.68%. Model-based estimates are
7.99% and 38.19%.

For the 600 mg arm, the observed percentages are
11.02% and 35.24% and the model-based estimates are
11.70% and 35.08%.
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Quetiapine Bipolar Trial - Fit

In the placebo arm, the Kolmogorov-Smirnov distances
between the empirical distribution of the observed
outcomes and the model-based estimates of the
distribution of outcomes among those on-study at visits 1
and 2 are 0.013 and 0.033.

In the 600 mg arm, these distances are 0.013 and 0.022.

These results suggest that our model for the observed
data fits the observed data well.
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Quetiapine Bipolar Trial - MAR

Under MAR, the estimated values of µ∗ are 46.45 (95%
CI: 42.35,50.54) and 62.87 (95% CI: 58.60,67.14) for the
placebo and 600 mg arms.

The estimated difference between 600 mg and placebo is
16.42 (95% 10.34, 22.51)

Statistically and clinically significant improvement in
quality of life in favor of Quetiapine.
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Quetiapine Bipolar Trial - Sensitivity Analysis

We set r(y) = y and ranged the sensitivity analysis
parameter from -10 and 10 in each treatment arm.

According to experts, there is no evidence to suggest that
there is a differential effect of a unit change in QLESSF
on the hazard of drop-out based on its location on the
scale.
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Quetiapine Bipolar Trial - Sensitivity Analysis

Figure: Treatment-specific (left: placebo; right: 600 mg/day
Quetiapine) estimates (along with 95% pointwise confidence
intervals) of µ∗ as a function of α.
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Quetiapine Bipolar Trial - Sensitivity Analysis

Figure: Treatment-specific differences between the estimated mean
QLESSF at Visit 2 among non-completers and the estimated mean
among completers, as a function of α.
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Quetiapine Bipolar Trial - Sensitivity Analysis

Figure: Contour plot of the estimated differences between mean
QLESSF at Visit 2 for Quetiapine vs. placebo for various
treatment-specific combinations of the sensitivity analysis
parameters.
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Quetiapine Bipolar Trial - Sensitivity Analysis

Only when the sensitivity analysis are highly differential
(e.g., α(placebo) = 8 and α(Quetiapine) = −8) are the
differences no longer statistically significant.

Conclusions under MAR are highly robust.
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Simulation Study

Generated 2500 placebo and Quetiapine datasets using
the estimated distributions of the observed data from the
Quentiapine study as the true data generating
mechanisms.

For given treatment-specific α, these true data generating
mechanisms can be mapped to a true value of µ∗.

For each dataset, the sample size was to set to 116 and
118 in the placebo and Quetiapine arms, respectively.
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Simulation Study - Bias/MSE

Placebo Quetiapine
α Estimator µ∗ Bias MSE µ∗ Bias MSE

-10 Plug-in 40.85 0.02 4.43 56.07 0.40 4.69
Corrected 0.43 4.56 0.42 4.72

-5 Plug-in 43.45 0.05 4.29 59.29 0.34 4.55
Corrected 0.27 4.26 0.24 4.35

-1 Plug-in 46.02 0.28 4.34 62.58 0.50 4.39
Corrected 0.18 4.22 0.14 4.00

0 Plug-in 46.73 0.36 4.44 63.42 0.55 4.36
Corrected 0.17 4.27 0.14 3.95

1 Plug-in 47.45 0.43 4.57 64.25 0.59 4.32
Corrected 0.16 4.36 0.15 3.92

5 Plug-in 50.48 0.66 5.33 67.34 0.59 4.20
Corrected 0.14 5.11 0.19 4.15

10 Plug-in 54.07 0.51 5.78 70.51 0.07 4.02
Corrected 0.04 6.30 -0.05 4.66
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Simulation Study - Coverage

Placebo Quetiapine
α Procedure Coverage Coverage
-10 Wald-IF 91.5% 90.5%

Wald-JK 95.0% 94.6%
Bootstrap-IF-ET 94.3% 93.8%
Bootstap-JK-ET 94.4% 93.4%
Bootstap-IF-S 95.2% 94.6%
Bootstap-JK-S 95.0% 94.6%

-5 Wald-IF 93.5% 92.9%
Wald-JK 95.0% 94.8%
Bootstrap-IF-ET 95.2% 94.6%
Bootstap-JK-ET 94.8% 94.6%
Bootstap-IF-S 95.4% 95.2%
Bootstap-JK-S 95.1% 95.2%

-1 Wald-IF 93.9% 94.2%
Wald-JK 94.9% 95.4%
Bootstrap-IF-ET 95.1% 94.8%
Bootstap-JK-ET 95.1% 94.6%
Bootstap-IF-S 95.3% 96.4%
Bootstap-JK-S 95.1% 96.3%

0 Wald-IF 93.8% 94.0%
Wald-JK 95.0% 95.4%
Bootstrap-IF-ET 94.6% 94.5%
Bootstap-JK-ET 94.6% 94.6%
Bootstap-IF-S 95.5% 96.6%
Bootstap-JK-S 95.2% 96.7%

71 / 149



Simulation Study - Coverage

Placebo Quetiapine
α Procedure Coverage Coverage
1 Wald-IF 93.3% 93.7%

Wald-JK 95.1% 95.5%
Bootstrap-IF-ET 94.6% 94.6%
Bootstap-JK-ET 94.6% 94.6%
Bootstap-IF-S 95.5% 96.5%
Bootstap-JK-S 95.2% 96.5%

5 Wald-IF 90.8% 91.3%
Wald-JK 95.3% 95.7%
Bootstrap-IF-ET 93.2% 91.6%
Bootstap-JK-ET 93.8% 93.0%
Bootstap-IF-S 95.5% 95.4%
Bootstap-JK-S 95.8% 96.4%

10 Wald-IF 85.4% 87.8%
Wald-JK 94.9% 94.5%
Bootstrap-IF-ET 88.2% 87.0%
Bootstap-JK-ET 92.2% 89.7%
Bootstap-IF-S 94.6% 93.9%
Bootstap-JK-S 95.5% 95.1%
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Generalization

Yk : outcome scheduled to be measured at assessment k .

Rk : indicator that individual is on-study at assessment k .

All individuals are present at baseline, i.e., R0 = 1.

Monotone missing data: Rk+1 = 1 implies Rk = 1.

C = max{k : Rk = 1}, C = K implies that the individual
completed the study.

For any given vector z = (z1, z2, . . . , zK ),

zk = (z0, z1, . . . , zk)
zk = (zk+1, zk+2, . . . , zK ).

For each individual, the data unit O = (C ,Y C ) is drawn
from some distribution P∗ contained in the
non-parametric model M of distributions.

The observed data consist of n independent draws
O1,O2, . . . ,On from P∗.
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Generalization

By factorizing the distribution of O in terms of chronologically
ordered conditional distributions, any distribution P ∈M can
be represented by

F0(y0) := P (Y0 ≤ y0);

Fk+1(yk+1 | y k) :=
P
(
Yk+1 ≤ yk+1 | Rk+1 = 1,Y k = y k

)
,

k = 0, 1, . . . ,K − 1;

Hk+1(ȳk) := P
(
Rk+1 = 0 | Rk = 1,Y k = y k

)
,

k = 0, 1, . . . ,K − 1.

The main objective is to draw inference about µ∗ := E ∗(YK ),
the true mean outcome at visit K in a hypothetical world in
which all patients are followed to that visit.
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Missing at Random

For every y k , define the following strata:

Ak(y k): patients last seen at visit k (i.e.,
Rk = 1,Rk+1 = 0) with Y k = y k .

Bk+1(y k): patients on-study at visit k + 1 (i.e.,
Rk+1 = 1) with Y k = y k .
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Missing at Random

For all y k , the distribution of Y k for patients in
stratum Ak(y k) is the same as the distribution of Y k

for patients in stratum Bk+1(y k)

Mathematically, we can express these assumptions as follows:

f ∗(Y k |Ak(y k)) = f ∗(Y k |Bk(y k)) for all y k (15)
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Missing at Random

Using Bayes’ rule, we can re-write these expressions as:

P∗(Rk+1 = 0|Rk = 1,Y K = yK )

= P∗(Rk+1 = 0|Rk = 1,Y k = y k) for all yK

Written in this way, missing at random implies that the
drop-out process is stochastic with the following interpretation:

Among those on study at visit k , the decision to
discontinue the study before the next visit is like the
flip of a coin with probability depending only on the
observable history of outcomes through visit k (i.e.,
no outcomes after visit k).
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Missing at Random

Under missing at random, µ∗ is identified. That is, it can be
expressed as a functional of the distribution of the observed
data. Specifically, µ∗ = µ(P∗) is∫

y0

· · ·
∫
yK

yK

{
K−1∏
k=0

dF ∗k+1(yk+1|y k)

}
dF ∗0 (y0)
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Missing Not at Random

Equation (13) is equivalent to the following two assumptions:

f ∗(Y k+1|Ak(y k),Yk+1 = yk+1)

= f ∗(Y k+1|Bk+1(y k),Yk+1 = yk+1) for all y k+1

(16)

and

f ∗(Yk+1|Ak(y k)) = f ∗(Yk+1|Bk+1(y k)) for all y k (17)

Equation (16) posits the following ”linking” assumption:

For all y k+1, the distribution of Y k+1 for patients in
stratum Ak(y k) with Yk+1 = yk+1 is the same as the
distribution of Y k+1 for patients in stratum Bk+1(y k)
with Yk+1 = yk+1.
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Missing Not at Random

Using Bayes’ rule, this assumption can be re-written as:

P∗(Rk+1 = 0|Rk = 1,Y K = yK )

= P∗(Rk+1 = 0|Rk = 1,Y k+1 = y k+1) for all yK

(18)

This assumption has been referred to as the ”non-future”
dependence assumption (Diggle and Kenward, 1994) because
it has the following interpretation:

Among those on study at visit k , the decision to
discontinue the study before the next visit is like the
flip of a coin with probability depending only on the
observable history of outcomes through visit k and
the potentially unobserved outcome at visit k + 1
(i.e., no outcomes after visit k + 1).

We will retain this assumption.
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Missing Not at Random

Next, we generalize (17) and impose the following exponential
tilting ”linking” assumptions:

f ∗(Yk+1|Ak(y k)) ∝ f ∗(Yk+1|Bk+1(y k)) exp(αr(Yk+1)) for all y k

(19)
where r(·) is a specified function which we will assume to be
an increasing function of its argument and α is a sensitivity
analysis parameter.
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Missing Not at Random

The missing not at random class of assumptions that we
propose involves Equations (16) and (19), where r(·) is
considered fixed and α is a sensitivity analysis parameter
that serves as the class index.

(19) reduces to (17) when α = 0. Thus, when α = 0, the
missing at random assumption is obtained.

When α > 0 (< 0), (19) implies:

For all y k , the distribution of Yk+1 for patients
in stratum Ak(y k) is weighted more heavily (i.e.,
tilted) to higher (lower) values than the
distribution of Yk+1 for patients in stratum
Bk+1(y k).

The amount of ”tilting” increases with magnitude of α.
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Inference

1 Assume

F ∗k+1(yk+1 | yk) = F ∗k+1(yk+1 | yk)
H∗k+1(ȳk) = H∗k+1(yk)

2 Estimate F ∗k+1(yk+1 | yk) and H∗k+1(ȳk) = H∗k+1(yk) using
non-parametric smoothing with tuning parameters
selected by cross-validation.

3 Use plug-in + average of estimated influence functions.

4 Use bootstrap alternatives to Wald-based confidence
intervals.

5 Goodness-of-fit

6 Assess plausibility of α
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Case Study: SCA-3004

Randomized trial designed to evaluate the efficacy and
safety of once-monthly, injectable paliperidone palmitate
(PP1M) relative to placebo (PBO) in delaying the time
to relapse in subjects with schizoaffective disorder.

Open-label phase consisting of a flexible-dose, lead-in
period and a fixed-dose, stabilization period.

Stable subjects entered a 15-month relapse-prevention
phase and were randomized to receive PP1M or placebo
injections at baseline (Visit 0) and every 28 days (Visits
1-15).

Additional clinic visit (Visit 16) scheduled for 28 days
after the last scheduled injection.

170 and 164 subjects were randomized to the PBO and
PP1M arms.
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Case Study: SCA-3004

Research question: Are functional outcomes better in
patients with schizoaffective disorder better maintained if
they continue on treatment or are withdrawn from
treatment and given placebo instead?

An ideal study would follow all randomized subjects
through Visit 16 while maintaining them on their
randomized treatment and examine symptomatic and
functional outcomes at that time point.

Since clinical relapse can have a major negative impact,
the study design required that patients who had signs of
relapse were discontinued from the study.

In addition, some patients discontinued due to adverse
events, withdrew consent or were lost to follow-up.

38% and 60% of patients in the PBO and PP1M arms
were followed through Visit 16 (p=0.0001).
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Case Study: SCA-3004

0 5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Last Visit On Study

Cu
m

ula
tiv

e 
Pr

ob
ab

ilit
y

PP1M
Placebo

86 / 149



Case Study: SCA-3004

Focus: Patient function as measured by the Personal and
Social Performance (PSP) scale.

The PSP scale is scored from 1 to 100 with higher scores
indicating better functioning based on evaluation of 4
domains (socially useful activities, personal/social
relationships, self-care, and disturbing/aggressive
behaviors).

Estimate treatment-specific mean PSP at Visit 16 in the
counterfactual world in which all patients who are
followed to Visit 16.

The mean PSP score among completers was 76.05 and
76.96 in the PBO and PP1M arms; the estimated
difference is -0.91 (95%: -3.98:2.15).
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Case Study: SCA-3004 (PBO)
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Case Study: SCA-3004 (PP1M)
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Case Study: SCA-3004
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Case Study: SCA-3004

0.00 0.02 0.04 0.06 0.08 0.10 0.12

Conditional Probability of Dropout (actual data)

0.000

0.025

0.050

0.075

0.100

0.125

0.150

C
on

di
tio

na
l P

ro
ba

bi
lit

y 
of

 D
ro

po
ut

 (
si

m
ul

at
ed

 d
at

a)

Active arm
Placebo arm

0 5 10 15

Visit

0.00

0.05

0.10

0.15

0.20

K
ol

m
og

or
ov

-S
m

irn
ov

 S
ta

tis
tic

Active arm
Placebo arm

91 / 149



Case Study: SCA-3004
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Case Study: SCA-3004

Under MAR (i.e., α = 0), the estimated means of interest
are 69.60 and 74.37 for the PBO and PP1M arms.

The estimated treatment difference is −4.77 (95% CI:
-10.89 to 0.09).
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Case Study: SCA-3004
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Case Study: SCA-3004

yk+1 y ∗k+1 Log Odds Ratio
30 20 α× 0.01
40 30 α× 0.18
50 40 α× 0.40
60 50 α× 0.30
70 60 α× 0.09
80 700 α× 0.01
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Case Study: SCA-3004
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Case Study: SCA-3004
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Case Study: SCA-3004
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Simulation Study

PBO PP1M
α Estimator µ∗ Bias MSE µ∗ Bias MSE

-10 µ(P̂) 72.89 0.76 1.75 73.76 0.41 1.36
µ̂ 0.50 1.58 0.31 1.26

-5 µ(P̂) 73.38 0.52 1.42 74.25 0.26 1.14
µ̂ 0.31 1.32 0.16 1.05

-1 µ(P̂) 73.74 0.38 1.23 74.59 0.17 1.02
µ̂ 0.19 1.18 0.06 0.95

0 µ(P̂) 73.80 0.36 1.21 74.63 0.16 1.01
µ̂ 0.18 1.17 0.08 0.95

1 µ(P̂) 73.84 0.35 1.19 74.67 0.18 1.01
µ̂ 0.17 1.15 0.05 0.94

5 µ(P̂) 74.00 0.30 1.13 74.67 0.16 1.00
µ̂ 0.13 1.11 0.04 0.93

10 µ(P̂) 74.15 0.24 1.08 74.84 0.15 0.97
µ̂ 0.10 1.08 0.06 0.91
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Simulation Study

PBO PP1M
α Procedure Coverage Coverage
-10 Normal-IF 86.1% 88.6%

Normal-JK 92.1% 92.6%
Bootstrap-IF-ET 90.2% 91.9%
Bootstap-JK-ET 92.4% 93.7%
Bootstap-IF-S 92.3% 92.7%
Bootstap-JK-S 93.9% 94.3%

-5 Normal-IF 89.0% 91.7%
Normal-JK 94.1% 94.2%
Bootstrap-IF-ET 91.7% 92.6%
Bootstap-JK-ET 93.6% 94.9%
Bootstap-IF-S 94.1% 94.2%
Bootstap-JK-S 95.1% 95.1%

-1 Normal-IF 90.8% 93.4%
Normal-JK 94.9% 94.8%
Bootstrap-IF-ET 91.0% 94.0%
Bootstap-JK-ET 92.8% 94.9%
Bootstap-IF-S 94.4% 94.7%
Bootstap-JK-S 95.0% 95.3%

0 Normal-IF 90.7% 93.5%
Normal-JK 95.0% 94.9%
Bootstrap-IF-ET 92.8% 93.9%
Bootstap-JK-ET 94.3% 95.0%
Bootstap-IF-S 95.3% 94.7%
Bootstap-JK-S 96.0% 95.1%
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Simulation Study

PBO PP1M
α Procedure Coverage Coverage
1 Normal-IF 90.9% 93.5%

Normal-JK 94.9% 94.8%
Bootstrap-IF-ET 92.8% 93.5%
Bootstap-JK-ET 94.2% 95.0%
Bootstap-IF-S 95.3% 94.6%
Bootstap-JK-S 96.0% 95.2%

5 Normal-IF 91.5% 93.7%
Normal-JK 94.6% 95.1%
Bootstrap-IF-ET 92.6% 93.8%
Bootstap-JK-ET 93.8% 94.7%
Bootstap-IF-S 94.9% 95.1%
Bootstap-JK-S 96.0% 95.5%

10 Normal-IF 92.1% 93.4%
Normal-JK 94.8% 95.0%
Bootstrap-IF-ET 92.9% 93.8%
Bootstap-JK-ET 93.9% 94.8%
Bootstap-IF-S 94.7% 95.0%
Bootstap-JK-S 95.6% 95.4%
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Intermittent Missing Data

Propose a method for multiply imputing missing data
prior to the last study visit in order to create a monotone
missing data structure.

Previous methods are applied to the monotonized
datasets.

Results are averaged across imputed datasets.

Confidence intervals computed using methods that
properly accounting for uncertainty due to imputation.
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Data Structure

Mk : indicator that Yk is unobserved at time k .

M0 = 0 and MC = 0.

Mk = 1 if Rk = 0.

Ok = (Mk ,Yk : Mk = 0).

Observed data for an individual are OK .

O0 = Y0 and C can be computed from OK as
max{k : Mk = 0}.
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Assumption

For 0 < k < C ,
Mk ⊥ Yk Y k−1,Ok (20)

While on-study, the probability of providing outcome data
at time k can depend on previous outcomes (observed or
not) and observed data after time k .

Imagine a stratum of individuals who share the same
history of outcomes prior to time k and same observed
data after time k .

Imagine splitting the stratum into two sets: those who
provide outcome data at time k (stratum B) and those
who do not (stratum A).

The distribution of the outcome at time k is the same for
these two strata.
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Assumption

For 0 < k < C ,

f ∗(Yk |Mk = 1,Y k−1,Ok︸ ︷︷ ︸
Stratum A

) = f ∗(Yk |Mk = 0,Y k−1,Ok︸ ︷︷ ︸
Stratum B

) (21)

Using Bayes’ rule, (21) can be written as follows:

P∗(Mk = 1 | Y k ,Ok) = P∗(Mk = 1 | Y k−1,Ok) : 0 < k < C .
(22)
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Assumption

In our imputation algorithm, we will use the following fact:

Mk ⊥ Yk | ρ∗k(Y k−1,Ok) : 0 < k < C (23)

where
ρ∗k(Y k−1,Ok) = P∗(Mk = 1 | Y k−1,Ok) (24)
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Assumption

Under assumption (20), the joint distribution of (C ,Y C ) (i.e.,
the monotonized data) is identified by a recursive algorithm.
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Illustration
1

I

HB !! Mar1 17

Y0 Y1 Y2 Y3 Y4

II

YH Mar6 17

Y0 Y1 Y2 Y3 Y4

Y0 Y1 Y2 Y3 Y4

Low High

III

Y0 Y1 Y2 Y3 Y4

Low High

IV

Y0 Y1 Y2 Y3 Y4

Low High

V

V I

Y0 Y1 Y2 Y3 Y4
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Illustration
1

V I

YH Mar6 17

Y0 Y1 Y2 Y3 Y4

Y0 Y1 Y2 Y3 Y4

Low High

V II

Y0 Y1 Y2 Y3 Y4

Low High

V III

IX

Y0 Y1 Y2 Y3 Y4
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Imputation

The number of individuals contributing to the histograms
that form of the basis of the imputation strategy may be
quite small.

Rather than matching on the past outcomes and future
observed data, we plan to use (23) and match on
estimates of ρ∗k(Y k−1,Ok).
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Smoothing Assumptions

logit{ρ∗k(Y k−1,Ok)} = wk(Y k−1,Ok ; ν∗k); k = 1, . . . ,K − 1
(25)

where wk(Y k−1,Ok ; νk) is a specified function of its arguments
and νk is a finite-dimensional parameter with true value ν∗k .
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Simultaneous Estimation/Imputation

The parameters ν∗k (k = 1, . . . ,K − 1) can be estimated and
the intermittent missingness can be imputed using the
following sequential procedure:

1 Set k = 1.
2 Estimate ν∗k by ν̂k as the solution to:

n∑
i=1

Rk,idk(Y k−1,i ,Ok,i ; νk)
(
Mk,i − expit{wk(Y k−1,i ,Ok,i ; νk)}

)
= 0,

where

dk(Y k−1,Ok ; ν∗k) =
∂wk(Y k−1,Ok ; νk)

∂νk
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Simultaneous Estimation/Imputation

3 For each individual i with Rk,i = 1, compute

ρ̂k(Y k−1,i ,Ok,i) = expit{wk(Y k−1,i ,Ok,i ; ν̂k)}.

Let
Jk = {i : Rk,i = 1,Mk,i = 0}
J ′k = {i : Rk,i = 1,Mk,i = 1}.

For each individual i ∈ J ′k , impute Yk,i by randomly
selecting an element from the set{
Yk,l : l ∈ Jk , ρ̂k(Y k−1,l ,Ok,l) is ”near” ρ̂k(Y k−1,i ,Ok,i)

}
4 Set k = k + 1. If k = K then stop. Otherwise, return to

Step 2.
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Inference

Use algorithm to create to M monotone missing datasets.

Apply monotone missing data methods to each of these
datasets.

Overall point estimates are obtained by averaging across
imputed datasets.

µ̃α =
1

M

M∑
m=1

µ̃α,m,

where µ̃α,m is the corrrected estimator of µ∗ based on the
mth imputed dataset.
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Confidence Intervals

When M > 1, we can replace σ̃2
α with Rubin’s (1987) multiple

imputation variance estimator, i.e.,

σ̃2
α =

1

M

M∑
m=1

σ̃2
α,m +

(
1 +

1

M

)
1

M − 1

M∑
m=1

(µ̃α,m − µ̃α)2 (26)

In simulations, we have found success using (26) coupled
with symmteric bootstrap to form confidence intervals.
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Bootstrap

Let D be the observed dataset. To create a bootstrap dataset
D(b), use the following procedure:

1 Use D to estimate the ν̂k ’s and impute a monotonized
dataset D†.

2 Using D†, estimate of F ∗0 (y0), F ∗k+1(yk+1|yk) and
H∗k+1(yk) and simulate a new monotonized dataset D‡.

3 Use D‡ and the ν̂k ’s from Step 1 to create a
non-monotone dataset D(b).
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Bootstrap

In Step 3, we create a non-monotone dataset by applying the
following procedure to each patient i with Ci > 1:

1 Set k = Ci − 1.

2 Generate U ∼ Uniform(0, 1). If U < ρ̂k(Y k−1,i ,Ok,i), set
Mk,i = 1 and delete Yk,i ; otherwise set Mk,i = 0 and
retain Yk,i .

3 Set k = k − 1. If k = 0 then stop; otherwise go to step 2.
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Diabetic Peripheral Polyneuropathy

Peripheral neuropathy is a common complication of
diabetes.

Diabetic peripheral polyneuropathy is characterized by
damage to small-diameter sensory fibers in distal areas of
the peripheral nervous system.

This condition commonly manifests itself by painful
tingling or burning sensations in the hands and feet.

This pain can be so severe that it compromises
day-to-day actitivities and quality of life.
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Topiramate

Topiramate is an approved medication for the treatment
of epileptic seizures.

It operates by dampening neuronal hyperexcitability in the
central nervous system.

It was hypothesized that topiramate might also dampen
the excitability of nerves in peripheral nervous system.

Small studies were conducted that showed that
topiramate reduced the pain associated with peripheral
neuropathies, including diabetic peripheral neuropathy.

Based on these data, three placebo-controlled randomized
trials to evaluate the efficacy of different doses of
topiramate in reducing pain in patients with diabetic
peripheral polyneuropathy (Thienel et al., 2004).
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NP 001 and 002

Two these studies had nearly identical designs and will
form the basis of our second case study.

In Studies NP 001 and 002, there were baseline and
double-blind phases.

Eligibility was determined during the baseline phase that
lasted up to 28 days.

At least 7 days before randomization, subjects must have
been tapered off all background medications being used
to treat neuropathic pain.

During the baseline phase, all subjects were to have their
diabetes controlled on a stable regimen of oral
hypoglycemics, insulin, or diet alone.

The double-blind phase included 2 periods: a 10 week
titration period and a 12 week maintenance peiod.
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NP 001 and 002

The primary efficacy variable was the pain score measured
on a 100-mm Visual Analog Scale (VAS), where higher
levels of VAS indicate worse pain.

VAS scores were scheduled on day 1 of the baseline
phase, every two weeks during titration, and then
monthly during the maintenance phase.

Treatment effects were based on the difference in the
mean VAS scores at the final scheduled follow-up visit.

Adverse events and use of rescue medications was also
scheduled to be monitored throughout the double-blind
phase.

The trials were not designed to follow patients after they
discontinued their assigned therapy.
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NP 001 and 002

In NP 001, 531 subjects were randomized to one of four
study arms: placebo (n = 137), 100 mg/day (n = 129),
200 mg/day (n = 132), and 400 mg/day (n = 133).

In NP 002, 370 subjects were randomized to one of three
study arms: placebo (n = 123), 200 mg/day (n = 118),
and 400 mg/day (n = 129).

Seven subjects in NP 001 and six subjects NP 002 did not
have at least one follow-up visit and were not considered
part of the intent-to-treat (ITT) population.
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NP 001 and 002

In our analysis, we merge the data from the two studies.

We focus our analysis on a comparison of the placebo
versus 400 mg/day arms.

One individual from the 400 mg/day arm was excluded
because of undue influence on the analysis.

The sample sizes are 255 and 256 in the placebo and 400
mg/day arms, respectively.
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Missing Data Patterns

Placebo

Monotone:

N %

*________ : 5 0.0196

**_______ : 5 0.0196

***______ : 10 0.0392

****_____ : 3 0.0118

*****____ : 19 0.0745

******___ : 12 0.0471

*******__ : 12 0.0471

********_ : 5 0.0196

********* : 81 0.3176

Intermittent:

N %

*_*_***** : 14 0.0549

*_******* : 13 0.0510

****_**** : 7 0.0275

***_***** : 6 0.0235

******_** : 5 0.0196

Other : 47 0.1843
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Missing Data Patterns

400 mg/day

Monotone:

N %

*________ : 4 0.0156

**_______ : 14 0.0547

***______ : 19 0.0742

****_____ : 7 0.0273

*****____ : 19 0.0742

******___ : 10 0.0391

*******__ : 9 0.0352

********_ : 2 0.0078

********* : 67 0.2617

Intermittent:

N %

*_*______ : 15 0.0586

*_*_***** : 9 0.0352

*_******* : 8 0.0312

***_***** : 7 0.0273

*_*_***__ : 5 0.0195

Other : 56 0.2188
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Central Question

What is the difference in the mean VAS scores at the
end of the double blind phase between topiramate at
a specified dose level vs. placebo in the
counterfactual world in which there is no missing
data at that visit?
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Observed Data

Placebo
Number

On- Last Obs. Std.
k Study Seen Value Mean Dev.
0 255 5 255 58.902 19.196
1 250 5 188 53.202 23.048
2 245 14 238 48.899 24.888
3 231 5 186 45.849 23.928
4 226 27 203 42.291 25.338
5 199 24 192 38.896 25.117
6 175 15 162 37.549 25.827
7 160 10 150 35.047 26.313
8 150 150 150 35.613 26.446

127 / 149



Observed Data

400 mg/day
Number

On- Last Obs. Std.
k Study Seen Value Mean Dev.
0 256 4 256 58.305 19.958
1 252 14 192 51.297 22.605
2 238 34 223 47.466 25.268
3 204 12 162 44.228 22.956
4 192 28 174 41.879 23.851
5 164 26 159 36.528 24.101
6 138 20 133 36.211 24.334
7 118 6 109 33.138 21.842
8 112 112 112 31.482 22.149
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Observed Data
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Observed Data
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Observed Data

In the placebo arm, 59.6% of individuals have a
monotone missing data pattern, with only 31.8% having
complete data.

In the 400 mg/day arm, these numbers are 59.0% and
26.2%.

There is a statistically significant difference in the
proportion of individuals who completed the study in the
placebo versus 400/day arms (58.8% vs. 42.8%;
p < 0.001).

The primary reason for premature discontinuation of the
study differed by treatment arm.

The most common reason for placebo patients was lack
of efficacy and, for 400/mg day patients, it was adverse
events.
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Observed Data

In both treatment arms, there is a decline in the average
observed VAS scores through time.

The mean of the observed VAS scores at time K = 8 is
35.6 and 31.48 in the placebo versus 400/day arms,
respectively.

A naive t-test based of the observed outcomes at time
K = 8 does not suggest a statistical difference between
the treatment arms (p = 0.17).

Patients who prematurely discontinue the study tend to
have higher VAS scores at their penultimate visit than
those who complete the study. This is true for both
treatment arms, although the differences appear
somewhat larger in the placebo group.
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Observed Data

Using last observation carried forward, the means at time
K = 8 are 43.8 and 40.6 in the placebo versus 400/day
arms, respectively. The estimated treatment difference
between 400 mg/day and placebo of -3.3.

A t-test based on LOCF also does not suggest a statistical
difference between the treatment arms (p = 0.18).
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Estimation of Smoothing Parameters - Placebo
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Estimation of Smoothing Parameters - 400 mg
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Estimation of Smoothing Parameters - Placebo
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Estimation of Smoothing Parameters - 400 mg
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Goodness of Fit
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Goodness of Fit
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Goodness of Fit

2 4 6 8

Visit

0.00

0.01

0.02

0.03

0.04

K
ol

m
og

or
ov

-S
m

irn
ov

 S
ta

tis
tic

VAS Group 2
VAS Group 1

140 / 149



MAR Analysis

The estimates of µ∗ are 39.07 (95% CI: 34.19 to 43.95)
and 33.06 (95% CI: 28.33 to 37.78) in the placebo and
400 mg/day arms, respectively.

These estimates correct for the fact that individuals with
higher VAS scores appear to be dropping out of the study.

The correction is bigger for placebo versus 400 mg/day
arm.

The estimated difference in means between the arms is
-6.01 (95% CI: -11.70, -0.329), indicating a statistically
significant difference in favor of the 400 mg/day arm.
This is a different inference than the naive inferences
reported above.
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Sensitivity Analysis
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Sensitivity Analysis
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Sensitivity Analysis

Placebo
400 mg/day
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Simulation Study - Five Imputes

PBO 400 mg/day
α Estimator µ∗ Bias MSE µ∗ Bias MSE

-10 µ(P̂) 31.69 0.53 4.13 25.88 1.05 4.75
µ̂ 0.10 3.76 0.60 3.75

-5 µ(P̂) 33.60 0.03 4.03 28.20 0.37 3.89
µ̂ -0.02 3.93 0.26 3.55

-1 µ(P̂) 37.10 -0.70 4.93 31.40 -0.30 3.99
µ̂ -0.32 4.41 -0.08 3.66

0 µ(P̂) 38.12 -0.82 5.23 32.35 -0.45 4.17
µ̂ -0.36 4.53 -0.16 3.77

1 µ(P̂) 39.10 -0.89 5.47 33.32 -0.59 4.39
µ̂ -0.37 4.65 -0.22 3.92

5 µ(P̂) 42.75 -1.06 6.43 37.32 -1.32 6.26
µ̂ -0.49 5.35 -0.62 5.11

10 µ(P̂) 45.59 -1.43 8.10 41.07 -2.48 11.39
µ̂ -0.70 6.50 -1.38 8.11
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Simulation Study - Five Imputes

PBO 400 mg/day
α Procedure Coverage Coverage
-10 Normal-IF(Rubin) 94.6% 93.6%

Normal-BootstrapSE 94.4% 93.8%
Bootstrap-Percentile 92.6% 86.6%
Bootstap-IF(Rubin)-ET 93.8% 94.5%
Bootstap-IF(Rubin)-S 95.4% 95.5%

-5 Normal-IF(Rubin) 93.9% 94.5%
Normal-BootstrapSE 94.3% 94.6%
Bootstrap-Percentile 93.8% 93.3%
Bootstap-IF(Rubin)-ET 94.3% 95.8%
Bootstap-IF(Rubin)-S 94.7% 95.2%

-1 Normal-IF(Rubin) 92.8% 94.8%
Normal-BootstrapSE 92.8% 94.7%
Bootstrap-Percentile 92.0% 93.4%
Bootstap-IF(Rubin)-ET 94.0% 96.0%
Bootstap-IF(Rubin)-S 94.8% 95.2%

0 Normal-IF(Rubin) 92.7% 95.1%
Normal-BootstrapSE 92.9% 95.0%
Bootstrap-Percentile 91.3% 92.5%
Bootstap-IF(Rubin)-ET 93.8% 95.9%
Bootstap-IF(Rubin)-S 94.9% 96.1%
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Simulation Study - Five Imputes

PBO 400 mg/day
α Procedure Coverage Coverage
1 Normal-IF(Rubin) 93.1% 94.6%

Normal-BootstrapSE 92.9% 94.4%
Bootstrap-Percentile 90.7% 91.8%
Bootstap-IF(Rubin)-ET 94.3% 95.7%
Bootstap-IF(Rubin)-S 95.0% 96.2%

5 Normal-IF(Rubin) 93.3% 93.2%
Normal-BootstrapSE 93.4% 93.2%
Bootstrap-Percentile 89.8% 84.5%
Bootstap-IF(Rubin)-ET 94.3% 93.3%
Bootstap-IF(Rubin)-S 95.2% 96.0%

10 Normal-IF(Rubin) 94.0% 88.6%
Normal-BootstrapSE 93.5% 88.4%
Bootstrap-Percentile 86.8% 70.6%
Bootstap-IF(Rubin)-ET 93.6% 89.7%
Bootstap-IF(Rubin)-S 96.4% 94.8%
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Honey-do List

Develop data adaptive technique for handling outliers

Incorporate auxiliary covariates
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Missing Data Matters

No substitute for better trial design and procedures to
minimize missing data.

Global sensitivity analysis should be a mandatory
component of trial reporting.

Visit us at www.missingdatamatters.org or email me
at dscharf@jhu.edu
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Two Software choices

1 R
samon library
functions with pass to C code

2 SAS
procedures and macros

SAMON



Background

� Randomized study with outcome measurements
taken at fixed time-points

� Monotone missing data pattern
� Interest is in a comparison of treatment specific

means at the last scheduled time-point
� Rows indicate individuals and columns indicate

time-points
� Data at the first time-point (the baseline) is never

missing

SAMON



Missing Data

� Two patters of missing data are considered:
� Monotone missing data
� Intermittent missing data

SAMON



Background

time − point3

subjects
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Case Study: Chronic Schizophrenia

� Patients scheduled for 5 post-baseline assessements
at weeks 1,2,4,6, and 8.

� Primary efficiacy variable: PANSS score (positive and
negative syndrome scale)

� Two treatment groups: placebo (treatment 1) with
risperidone 6mg (treatment 2).

� Data are simulated from this trial but retain many of
the original freatures.

SAMON



PANSS Analysis (Monotone missing data)

� Descriptive stats for each treatment group and check
the monotone missing condition.

� Decide on a sensitivity function.
� Use the SAMON procedure to estimate means.
� Compare results.

SAMON



The PANSS Dataset
proc print data=PANSS1;
run;

Obs V1 V2 V3 V4 V5 V6

1 90 87 86 93 72 87
2 112 . . . . .
3 99 76 62 52 57 49
4 86 78 91 113 89 68
5 80 85 . . . .
6 72 64 78 113 . .
7 67 . . . . .
8 96 . . . . .
9 93 90 . . . .
10 78 70 53 85 . .
11 93 86 92 94 . .
12 111 112 95 . . .
13 107 79 90 . . .
14 132 113 114 . . .
15 97 78 60 55 73 72
16 121 . . . . .
17 92 84 100 . . .
18 81 64 . . . .
19 77 74 125 92 . .
20 77 57 64 84 . .
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The samonDataCheck macro

� The samonDataCheck macro can be used to check
data to ensure it is in samon canonical form.

%samonDataCheck
(
data = input dataset
vars = variable list (in time order)
out = output data
stats = output statistics dataset
mpattern = missing pattern counts dataset
);

SAMON



samonDataCheck

%samonDataCheck(
data = data.panss1,
vars = v1 - v6,
out = panss1,
stats = stats1,
mpattern = mpattern1
);

proc print data = stats1 label noobs;
run;

SAMON



samonDataCheck

Std.
Time N Nim Mean Dev. Min Max

1 88 0 91.443 18.013 56 132
2 80 0 87.188 19.488 44 153
3 70 0 85.171 17.771 53 125
4 45 0 83.556 19.484 52 120
5 30 0 83.933 21.571 52 144
6 23 0 78.261 19.495 47 111
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samonDataCheck

proc print data = mpattern1 label noobs;
run;

Missing
pattern Count Percent

****** 23 26.1364

*****_ 7 7.9545

****__ 15 17.0455

***___ 25 28.4091

**____ 10 11.3636

*_____ 8 9.0909

SAMON



samonDataCheck

%samonDataCheck(
data = data.panss2,
vars = v1 - v6,
out = panss2,
stats = stats2,
mpattern = mpattern2
);

proc print data = stats2 label noobs;
run;

SAMON



samonDataCheck

Std.
Time N Nim Mean Dev. Min Max

1 86 0 89.849 18.891 54 135
2 81 0 77.914 17.174 47 120
3 77 0 75.649 18.541 42 119
4 68 0 74.721 18.264 38 118
5 53 0 70.547 21.182 38 107
6 51 0 68.628 20.434 37 114

SAMON



samonDataCheck

proc print data = mpattern2 label noobs;
run;

Missing
pattern Count Percent

****** 51 59.3023

*****_ 2 2.3256

****__ 15 17.4419

***___ 9 10.4651

**____ 4 4.6512

*_____ 5 5.8140

SAMON
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notation

� Consider each treatment group separately.
� Let K denote the number of time-points after baseline

and n denote the number of individuals in a treatment
group.

� Rt ,j indicates if individual j is on study at time-point t ,
1 ≤ j ≤ n and 0 ≤ t ≤ K . That is Rt ,j = 1 if individual j
is on study at time t and Rt ,j = 0 otherwise.

� If Rt ,j = 1 then Yt ,j denotes individual j ’s outcome at
time t .

SAMON



notation

� We sometimes wish to refer to the condition of being
on-study without specifying which individual is
involved. In this case we drop the subscript j , so that,
for example, Prob(Rt = 1) refers to the probability of
being on study at time-point t .

� In a similar fashion Yt denotes an outcome value at
time t .

SAMON



Two natural questions

1. If an individual is on-study at time t − 1, what is the
probability of them staying on-study at time t? This
probability may depend on the value Yt−1. This leads
to our first model:
Prob[Rt = 1 | Rt−1 = 1,Yt−1 = y ] ∼ smooth(y ;σ)

The smooth function of y depends on a single
smoothing parameter σ.

SAMON



Two natural questions

2. If individuals are on-study at time t − 1 and remain
on-study at time t , what is the distribution of their y
values at time t? Again this distribution may depend
on the value Yt−1. This leads to our second model:
h[y ′ | Rt = 1,Yt−1 = y ] ∼ smooth(y ;σ)

The smooth function of y depends on a single
smoothing parameter σ.

SAMON



Estimating the smoothing parameters

In order to estimate the two smoothing parameters we do
the following:

a. Partition the data into Npart pieces.
b. Set aside a partition of the data and use the

remainder to “predict” a feature of the partition that
has been set aside. How badly this “prediction” goes
is given a numeric value – the loss associated with σ.

c. Repeat this dropping each partition in turn and
computing the total loss.

d. Choose the smoothing parameter that minimizes the
loss.

SAMON



Y Weight P
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Y Weight P
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samonev

The SAMONEV procedure computes the loss function for
a range of σ.

samonev
data = Input dataset
out = Output dataset
npart = Number of partitions

var varlist list of variables in time order
sigma sigmalist list of values

SAMON



The samon library

proc samonev
data=panss
out = ev1
Npart = 10;

var v1 - v6;
sigma 0.5 to 35 by 1;

run;
proc print data=ev1;
run;

SAMON
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samon

The samon procedure can be used to find the optimal
values of σH and σF . Aguments on the procedure
statement include:

data input dataset
out output dataset
Npart Number of partitions
HInit initial value for σH

HHigh upper bound for σH

FInit initial value for σF

FHigh upper bound for σF

SAMON



* Finding optimal Sigma_H and Sigma_F.;
* ----------------------------------------;
proc samon data = panss1

out = samon1
HOut = Hout1
FOut = Fout1
Npart = 10
Hinit = 10.0
Hhigh = 50.0
Finit = 8.0
Fhigh = 50;

var v1 - v6;
run;

SAMON



Treatment 1

proc print data = Hout1 noobs;
run;

rc Niter Sigma loss

2 4 15.4519 5.39857

proc print data = HOut1 noobs;
run;

rc Niter Sigma loss

2 3 8.39927 3.61805

SAMON



Treatment 2

proc print data = HOut1 noobs;
run;

rc Niter Sigma loss

2 4 17.5248 3.55231

proc print data = FOut1 noobs;
run;

rc Niter Sigma loss

2 2 7.70219 4.29539

SAMON



Sensitivity Analysis

� Within samon the sensitivity bias function is the
cumulative function of the beta distribution, a flexible
function with bounded support.

� This together with the sensitivity analysis parameter
α provides the mechanism by which we measure the
sensitivity of the results to informative drop-out.

� α = 0 is missing at random
� α quantifies the influence of Yt+1 on the decision to

drop-out between t and t + 1.

SAMON



Sensitivity Analysis

� The cumulative beta function is defined on the
interval (0,1) and in order to use it as the sensitivity
bias function we need to map the range of our data
into (0,1).

� In the case of PANSS data there are theoretical limits
in that PANSS scores range between 30 and 210.

� Clinical practice gives a range of values over which a
change in PANSS noticeable effect. This translates to
parameters for the cumulative beta function ζ1 and ζ2.

� Another strategy might be to fit a beta distribution to
the data (after suitible transformation) to determine ζ1

and ζ2.

SAMON
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The SAMON procedure
samon
data = Input dataset
out = Output dataset
npart = Number of partitions
Hinit = initial value for smoothing parameter sigma H
Hhigh = Highest value for smoothing parameter sigma H
Finit = initial value for smoothing parameter sigma F
Fhigh = Highest value for smoothing parameter sigma F
lb = lower bound of data
ub = upper bound of data
zeta1 = parameter for cumulative beta distribution
zeta2 = parameter for cumulative beta distribution
nsamples = Number of bootstrap samples
seed0 = Seed to pass to random number generator
sj compute jackknifes for each bootstrap sample
nomj suppress jackknife computation for the main dataset
var varlist list of variables in time order
sensp senslist list of sensitivity parameters

SAMON



models estimates 

M jackknife models estimates 

models estimates 

S jackknife models estimates 

IFM 

IFMjk 

IFS 

IFSjk 

nomj 

sj 

NSamples 
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proc samon data = panss1 out = samon1
Npart = 10
Hinit = 10.0 HHigh = 50.0
Finit = 8.0 FHigh = 50.0

lb = 30.0 ub = 210.0
zeta1 = 4.0 zeta2 = 7.0
nomj nsamples = 0 ;

var v1 - v6;
sensp -10 to 10 by 1;

run;
proc print data = samon noobs;
var alpha AEst AVar IFEst IFVar;

run;

SAMON



alpha AEst AVar IFEst IFVar
-10 73.8065 0.003674 74.4212 11.3807
-9 74.2520 0.004203 74.9302 11.1160
-8 74.7698 0.004849 75.5221 10.8707
-7 75.3714 0.005630 76.2017 10.6534
-6 76.0690 0.006564 76.9697 10.4688
-5 76.8755 0.007670 77.8240 10.3181
-4 77.8043 0.008965 78.7618 10.2052
-3 78.8690 0.010454 79.7807 10.1429
-2 80.0814 0.012104 80.8767 10.1537
-1 81.4478 0.013809 82.0441 10.2633
0 82.9634 0.015361 83.2792 10.4883
1 84.6038 0.016482 84.5839 10.8161
2 86.3140 0.016987 85.9578 11.1820
3 88.0077 0.016943 87.3798 11.5014
4 89.5939 0.016586 88.8076 11.7346
5 91.0111 0.016092 90.1890 11.8620
6 92.2343 0.015535 91.4724 11.8725
7 93.2629 0.014954 92.6186 11.7935
8 94.1108 0.014382 93.6080 11.6770
9 94.7996 0.013853 94.4388 11.5673
10 95.3532 0.013393 95.1220 11.4869SAMON
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� Use bootstrap with jackknife to compute confidence
intervals for IF estimates.

� The NSamples arugment controls the number of
bootstraps to make.

� The flags mj and sj control whether jackknifes are
performed on the main (input) data and the bootstrap
samples respectively.

� For a small dataset with 100 individuals, 1,000
bootstaps each with bootsrap estimates on 50
sensitivity parameters gives rise to 50 x 100 x 1000 =
5 million estimates.

SAMON



proc samon data = panss1 out = samon1
Npart = 10

Hinit = 10.0 HHigh = 50.0
FInit = 8.0 FHigh = 50.0
lb = 30 ub = 210
zeta1 = 4.0 zeta2 = 7.0
NSamples = 500 seed0 = 81881
sj;

var v1-v6;
sensp -20 to 20 by 1;

run;

SAMON



macro description
samonCombine Combines results from multiple runs of

proc samon
samonSummary Summarizes samon results. Combines

bootstrap and jackknife results to pro-
duce confidence intervals

samonDifferenceSummary Computes effect difference with confi-
dence interval from a pair of samonSum-
mary objects.

samonCrossSummary Computes the effect difference with con-
fidence interval for each pair of sensitivity
paramaters α.

samonECompleterStatus Computes the difference in the expected
value of non-completers and completers

SAMON



samonCombine macro
samonCombine combines samon results into one dataset
(
inlib = input libref
stem = results file name stem
connect = name connector
partfrom = 1 parts start at 1
partto = 100 to 100
partform = z5 format to use on partno
outlib = output libref

)

SAMON



samonSummary macro
samonSummary computes summary of samon object
(
data = input dataset to summarize
out = summary of main data
sampSummary = summary of parametric bootstrap sam-

ples
)

SAMON



samonDifferenceSummary macro
samonDifferenceSummary Difference in two trials
(
IFM1 = main results from samonSummary trt 1
sampIF1 = sample results from samonSummary trt 1
IFM2 = main results from samonSummary trt 2
sampIF2 = sample results from samonSummary trt 2
out = summary of difference

)

SAMON



samonCrossSummary macro
samonCrossSummary Difference in two trials for all pairs of sensi-

tivity parameter
(
IFM1 = main results from samonSummary trt 1
sampIF1 = sample results from samonSummary trt 1
IFM2 = main results from samonSummary trt 2
sampIF2 = sample results from samonSummary trt 2
out = summary of difference

)

SAMON



%samonSummary(
data = results.results1,
out = data.Summary1,
sampout = data.sampSummary1
);

proc print data=data.Summary1;
var alpha IFEst IFVar lb ub;

run;

SAMON



alpha IFEst IFVar lb ub

-10 74.4212 11.3807 66.4486 82.394
-9 74.9302 11.1160 67.0858 82.775
-8 75.5221 10.8707 68.0089 83.035
-7 76.2017 10.6534 68.7412 83.662
-6 76.9697 10.4688 69.5369 84.403
-5 77.8240 10.3181 70.4880 85.160
-4 78.7618 10.2052 71.6000 85.924
-3 79.7807 10.1429 72.5973 86.964
-2 80.8767 10.1537 73.7356 88.018
-1 82.0441 10.2633 74.9532 89.135
0 83.2792 10.4883 76.1091 90.449
1 84.5839 10.8161 77.3722 91.796
2 85.9578 11.1820 78.5012 93.414
3 87.3798 11.5014 79.2752 95.485
4 88.8076 11.7346 80.1181 97.497
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Estimated PANSS score at visit 5

Placebo Arm Active Arm
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Estimated PANSS score at visit 5

Difference (active - placebo)
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Another useful plot is a surface plot of the difference in the
estimated mean value in the two treatment groups given
as a function of the two alpha parameters. We use the
samonCrossSummary function to compute the difference
in estimates for each pair of alpha. The plotting is done
with the filled.contour function.
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%samonCrossSummary(
IFM1 = data.Summary1,
sampIF1 = data.sampSummary1,
IFM2 = data.Summary2,
sampIF2 = data.sampSummary2,
out = data.Cross
);

SAMON
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%samondatacheck(
data = data2.vas1,
vars = v1-v9,
out = chkv1,
stats = statsv1,
mpattern = mpatternv1

);
%samondatacheck(
data = data2.vas2,
vars = v1-v9,
out = chkv2,
stats = statsv2,
mpattern = mpatternv2

);
proc print data = statsv1 label noobs;
proc print data = statsv2 label noobs;
run;
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proc samoneim
data = data2.vas1
out = evalv1
npart = 10;

var v1-v9;
sigma 0.5 to 35 by 0.5;

run;
proc samoneim
data = data2.vas2
out = evalv2
npart = 10;

var v1-v9;
sigma 0.5 to 35 by 0.5;

run;
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proc samonIM
data = data2.vas1
out = samonv1

npart = 10
Hinit = 15 HHigh = 50
Finit = 8 FHigh = 50

nimpute = 5

lb = 0 ub = 102 zeta1 = 1 zeta2 = 1;

var v1-v9;
sigma 0.5 to 35 by 0.5;

run;
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proc samonIM
data = data2.vas2
out = samonv2

npart = 10
Hinit = 15 HHigh = 50
Finit = 8 FHigh = 50

nimpute = 5

lb = 0 ub = 102 zeta1 = 1 zeta2 = 1;

var v1-v9;
sigma 0.5 to 35 by 0.5;

run;
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