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Agenda

9-10:30: Methods for Studies with Monotone Missing
Data (DS)

10:30-11: Break

11-12: Software for Studies with Monotone Missing Data
(AM)

12-1: Lunch

1-2:30: Methods and Software for Studies with Death
and Intermittent Missing Data (CW)

2:30-3 Break

3-4 Open Discussion
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Case Study: Chronic Schizophrenia

Major breakthroughs have been made in the treatment of
patients with psychotic symptoms.

However, side effects associated with typical and atypical
neuroleptics have limited their usefulness.

RIS-INT-3 (Marder and Meibach, 1994, Chouinard et al.,
1993) was a multi-center study designed to assess the
effectiveness and adverse experiences of four fixed doses
of risperidone compared to haliperidol and placebo in the
treatment of chronic schizophrenia.
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RIS-INT-3

At selection, patients were required to have a PANSS
(Positive and Negative Syndrome Scale) score between 60
and 120.

Prior to randomization, there was a single-blind, one-week
washout phase during which all anti-psychotic
medications were to be discontinued.

If acute psychotic symptoms occurred, patients were
randomized to a double-blind treatment phase, scheduled
to last 8 weeks.

Patients were randomized to one of 6 treatment groups:
risperidone 2, 6, 10 or 16 mg, haliperidol 20 mg, or
placebo.

Dose titration occurred during the first week of the
double-blind phase.
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RIS-INT-3

Patients scheduled for 5 post-baseline assessements at
weeks 1,2,4,6, and 8 of the double-blind phase.

Primary efficiacy variable: PANSS score

521 patients randomized to receive placebo (n = 88),
haliperidol 20 mg (n = 87), risperidone 2mg (n = 87),
risperidone 6mg (n = 86), risperidone 10 mg (n = 86), or
risperidone 16 mg (n = 87).
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Premature Withdrawal

Only 49% of patients completed the 8 week treatment
period.

The most common reason for discontinuation was
“insufficient response.”

Other main reasons included: adverse events,
uncooperativeness, and withdrawal of consent.
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Premature Withdrawal

Placebo Haliperidol Risp 2mg Risp 6mg Risp 10mg Risp 16 mg
(n = 88) (n = 87) (n = 87) (n = 86) (n = 86) (n = 87)

Completed 27 31% 36 41% 36 41% 53 62% 48 56% 54 62%
Withdrawn 61 69% 51 59% 51 59% 33 38% 38 44% 33 38%

Lack of Efficacy 51 58% 36 41% 41 47% 12 14% 25 29% 18 21%
Other 10 11% 15 17% 10 11% 21 24% 13 15% 15 17%
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Observed Data
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Observed Data
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Central Question

What is the difference in the mean PANSS scores at
week 8 between 6mg. risperidone at a specified dose
level vs. placebo in the counterfactual world in which
all patients were followed to that week?
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Missing Data Matters

While unbiased estimates of treatment effects can be
obtained from trials with no missing data, this is no
longer true when data are missing on some patients.

The essential problem is that inference about treatment
effects relies on unverifiable assumptions about the nature
of the mechanism that generates the missing data.

While we usually know the reasons for missing data, we
do not know the distribution of outcomes for patients
with missing data, how it compares to that of patients
with observed data and whether differences in these
distributions can be explained by the observed data.
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Robert Temple and Bob O’Neil (FDA)

”During almost 30 years of review experience, the issue of
missing data in ... clinical trials has been a major concern
because of the potential impact on the inferences that
can be drawn .... when data are missing .... the analysis
and interpretation of the study pose a challenge and the
conclusions become more tenuous as the extent of
’missingness’ increases.”
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NRC Report and Sensitivity Analysis

In 2010, the National Research Council (NRC) issued a
reported entitled ”The Prevention and Treatment of
Missing Data in Clinical Trials.”

This report, commissioned by the FDA, provides 18
recommendations targeted at (1) trial design and conduct,
(2) analysis and (3) directions for future research.

Recommendation 15 states

Sensitivity analyses should be part of the primary
reporting of findings from clinical trials. Examining
sensitivity to the assumptions about the missing data
mechanism should be a mandatory component of
reporting.
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ICH, EMEA and Sensitivity Analysis

1998 International Conference of Harmonization (ICH)
Guidance document (E9) entitled ”Statistical Principles in
Clinical Trials” states: ”it is important to evaluate the
robustness of the results to various limitations of the data,
assumptions, and analytic approaches to data analysis”

European Medicines Agency 2009 draft ”Guideline on
Missing Data in Confirmatory Clinical Trials” states ”[i]n
all submissions with non-negligible amounts of missing
data sensitivity analyses should be presented as support
to the main analysis.”
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PCORI and Sensitivity Analysis

In 2012, Li et al. issued the report ”Minimal Standards in
the Prevention and Handling of Missing Data in
Observational and Experimental Patient Centered
Outcomes Research”

This report, commissioned by PCORI, provides 10
standards targeted at (1) design, (2) conduct, (3) analysis
and (4) reporting.

Standard 8 echoes the NRC report, stating

Examining sensitivity to the assumptions about the
missing data mechanism (i.e., sensitivity analysis) should
be a mandatory component of the study protocol,
analysis, and reporting.
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Sensitivity Analysis

The set of possible assumptions about the missing data
mechanism is very large and cannot be fully explored. There
are different approaches to sensitivity analysis:

Ad-hoc

Local

Global
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Ad-hoc Sensitivity Analysis

Analyzing data using a few different analytic methods,
such as last or baseline observation carried forward,
complete or available-case analysis, mixed models or
multiple imputation, and evaluate whether the resulting
inferences are consistent.

The problem with this approach is that the assumptions
that underlie these methods are very strong and for many
of these methods unreasonable.

More importantly, just because the inferences are
consistent does not mean that there are no other
reasonable assumptions under which the inference about
the treatment effect is different.
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Local Sensitivity Analysis

Specify a reasonable benchmark assumption (e.g., missing
at random) and evaluate the robustness of the results
within a small neighborhood of this assumption.

What if there are assumptions outside the local
neighborhood which are plausible?
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Global Sensitivity Analysis

Evaluate robustness of results across a much broader
range of assumptions that include a reasonable benchmark
assumption and a collection of additional assumptions
that trend toward best and worst case assumptions.

Emphasized in Chapter 5 of the NRC report.

This approach is substantially more informative because it
operates like ”stress testing” in reliability engineering,
where a product is systematically subjected to
increasingly exaggerated forces/conditions in order to
determine its breaking point.
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Global Sensitivity Analysis

In the missing data setting, global sensitivity analysis
allows one to see how far one needs to deviate from the
benchmark assumption in order for inferences to change.

”Tipping point” analysis (Yan, Lee and Li, 2009;
Campbell, Pennello and Yue, 2011)

If the assumptions under which the inferences change are
judged to be sufficiently far from the benchmark
assumption, then greater credibility is lent to the
benchmark analysis; if not, the benchmark analysis can be
considered to be fragile.
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Global Sensitivity Analysis

Restrict consideration to follow-up randomized study
designs that prescribe that measurements of an outcome
of interest are to be taken on each study participant at
fixed time-points.

Focus on monotone missing data pattern

Consider the case where interest is focused on a
comparison of treatment arm means at the last scheduled
visit.
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Global Sensitivity Analysis

The missingness mechanism is typically not under the
control of the investigator

Inference about the treatment arm means requires two
types of assumptions:

(i) unverifiable assumptions about the distribution of
outcomes among those with missing data and

(ii) additional testable assumptions that serve to increase
the efficiency of estimation.
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Global Sensitivity Analysis

Type (i) assumptions are necessary to identify the
treatment-specific means.

By identification, we mean that we can write it as a
function that depends only on the distribution of the
observed data.

When a parameter is identified we can hope to estimate it
as precisely as we desire with a sufficiently large sample
size,

In the absence of identification, statistical inference is
fruitless as we would be unable to learn about the true
parameter value even if the sample size were infinite.
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Global Sensitivity Analysis

To address the identifiability issue, it is essential to
conduct a sensitivity analysis, whereby the data analysis is
repeated under different type (i) assumptions, so as to
investigate the extent to which the conclusions of the trial
are dependent on these subjective, unverifiable
assumptions.

The usefulness of a sensitivity analysis ultimately depends
on the plausibility of the unverifiable assumptions.

It is key that any sensitivity analysis methodology allow
the formulation of these assumptions in a transparent and
easy to communicate manner.
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Global Sensitivity Analysis

There are an infinite number of ways of positing type (i)
assumptions.

Ultimately, however, these assumptions prescribe how
missing outcomes should be ”imputed.”

A reasonable way to posit these assumptions is to

stratify individuals with missing outcomes according to
the data that we were able to collect on them and the
occasions at which the data were collected
separately for each stratum, hypothesize a connection
(or link) between the distribution of the missing outcome
with the distribution of the outcome among those with
the observed outcome and who share the same recorded
data.
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Global Sensitivity Analysis

Type (i) assumptions will not suffice when the repeated
outcomes are continuous or categorical with many levels.
This is because of data sparsity.

For example, the stratum of people who share the same
recorded data will typically be small. As a result, it is
necessary to draw strength across strata by ”smoothing.”

Without smoothing, the data analysis will rarely be
informative because the uncertainty concerning the
treatment arm means will often be too large to be of
substantive use.

As a result, it is necessary to impose type (ii) smoothing
assumptions.

Type (ii) assumptions should be scrutinized with standard
model checking techniques.
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Global Sensitivity Analysis
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Notation

K scheduled post-baseline assessments.

There are (K + 1) patterns representing each of the visits
an individual might last be seen, i.e., 0, . . . ,K .

The (K + 1)st pattern represents individuals who
complete the study.

Let Yk be the outcome scheduled to be measured at visit
k , with visit 0 denoting the baseline measure (assumed to
be observed).

Let Y −
k = (Y0, . . . ,Yk) and Y +

k = (Yk+1, . . . ,YK ).
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Notation

Let Rk be the indicator of being on study at visit k

R0 = 1; Rk = 1 implies that Rk−1 = 1.

Let C be the last visit that the patient is on-study.

We focus inference separately for each treatment arm.

The observed data for an individual is O = (C ,Y −
C ).

We want to estimate µ∗ = E [YK ].
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Example: K = 2

Full Data: (Y0,Y1,Y2)

Observed Data: O = (C ,Y −
C )

Estimate µ∗ = E [Y2]
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Missing at Random (MAR)

In this setting, MAR postulates

f (Y1,Y2|R1 = 0,Y0) = f (Y1,Y2|R1 = 1,Y0)

f (Y2|R2 = 0,R1 = 1,Y −
1 ) = f (Y2|R2 = 1,Y −

1 )

or

P[R1 = 0|Y −
2 ] = P[R1 = 0|Y0]

P[R2 = 0|R1 = 1,Y −
2 ] = P[R2 = 0|R1 = 1,Y −

1 ]
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Missing at Random (MAR)

MAR is a type (i) assumption. It is ”unverifiable.”

For patients last seen at visit k , we cannot learn from the
observed data about the conditional (on observed history)
distribution of outcomes after visit k .

For patients last seen at visit k , any assumption that we
would make about the conditional (on observed history)
distribution of the outcomes after visit k will be
unverifiable from the data available to us.

For patients last seen at visit k , the assumption that the
conditional (on observed history) distribution of outcomes
after visit k is the same as those who remain on-study
after visit k and have the same observed history is
unverifiable.
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Missing at Random (MAR)

µ
∗ =

∫
y0

∫
y1

∫
y2

y2dF (y2|R2 = 1, Y1 = y1, Y0 = y0)dF (y1|R1 = 1, Y0 = y0)dF (y0)

µ∗ = E

[
R2Y2∏2

k=1 P[Rk = 1|Rk−1 = 1,Y −
k−1]

]

µ∗ is written as a function of the distribution of the
observed data.
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Missing Not at Random (MNAR)

The MAR assumption is not the only one that is (1)
unverifiable and (2) admits identification of µ∗.
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Missing Not at Random (MNAR)

Non-future Dependence

f (Y2|R1 = 0,Y −
1 ) = f (Y2|R1 = 1,Y −

1 )

R1 ⊥ Y2 | Y1,Y0

Exponential Tilting

f (Y1|R1 = 0,Y0) ∝ f (Y1|R1 = 1,Y0)︸ ︷︷ ︸
Reference Distribution

exp{αr(Y1)}

f (Y2|R2 = 0,R1 = 1,Y−
1 ) ∝ f (Y2|R2 = 1,Y−

1 )︸ ︷︷ ︸
Reference Distribution

exp{αr(Y2)}

r(y) is a specified function; α is a sensitivity analysis
parameter.

α = 0 is MAR.
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Missing Not at Random (MNAR)

logit P[R1 = 0|Y −
2 ] = h1(Y0) + αr(Y1)

logit P[R2 = 0|R1 = 1,Y −
2 ] = h2(Y −

1 ) + αr(Y2)

where

h1(Y0) = logit P[R1 = 0|Y0]−
log{E [exp{αr(Y1)}|R1 = 1,Y0]}

h2(Y −
1 ) = logit P[R2 = 0|R1 = 1,Y −

1 ]−
log{E [exp{αr(Y2)}|R2 = 1,Y −

1 ]}
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Exponential Tilting Explained

f (Y |R = 0) ∝ f (Y |R = 1) exp{αr(Y )}

If [Y |R = 1] ∼ N(µ, σ2) and r(Y ) = Y ,
[Y |R = 0] ∼ N(µ + ασ2, σ2)

If [Y |R = 1] ∼ Beta(a, b) and r(Y ) = log(Y ),
[Y |R = 0] ∼ Beta(a + α, b), α > −a.

If [Y |R = 1] ∼ Gamma(a, b) and r(Y ) = log(Y ),
[Y |R = 0] ∼ Gamma(a + α, b), α > −a.

If [Y |R = 1] ∼ Gamma(a, b) and r(Y ) = Y ,
[Y |R = 0] ∼ Gamma(a, b − α), α < b.

If [Y |R = 1] ∼ Bernoulli(p) and r(Y ) = Y ,

[Y |R = 0] ∼ Bernoulli
(

p exp(α)
p exp(α)+1−p

)
.
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Beta
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Gamma
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Missing Not at Random (MNAR)

µ
∗ =

∫
y0

∫
y1

∫
y2

y2

{
dF (y2|R2 = 1, Y1 = y1, Y0 = y0)

1

1 + exp{h2(y1) + αr(y2)}
+

exp(αr(y2))dF (y2|R2 = 1, Y1 = y1, Y0 = y0)

E [exp(αr(Y2))|R2 = 1, Y1 = y1, Y0 = y0]

exp{h2(y1) + αr(y2)}
1 + exp{h2(y1) + αr(y2)}

}
×

{
dF (y1|R1 = 1, Y0 = y0)

1

1 + exp{h1(Y0) + αr(Y1)}
+

exp(αr(y1))dF (y1|R1 = 1, Y0 = y0)

E [exp(αr(Y1))|R1 = 1, Y0 = y0]

exp{h1(y0) + αr(y1)}
1 + exp{h1(y0) + αr(y1)}

}
dF (y0)

µ∗ = E

[
R2Y2∏2

k=1(1 + exp{hk(Y −
k−1) + αr(Yk)})−1

]

µ∗ is written as a function of the distribution of the
observed data (depending on α).
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Missing Not at Random (MNAR) - In General

Non-future Dependence

f (Y +
k |Rk = 0,Rk−1 = 1,Y −

k ) = f (Y +
k |Rk = 1,Y −

k )

Rk ⊥ Y +
k | Rk−1 = 1,Y −

k

Exponential Tilting

f (Yk |Rk = 0,Rk−1 = 1,Y−
k−1) ∝ f (Yk |Rk = 1,Y−

k−1) exp{αr(Yk)}

r(y) is a specified function; α is a sensitivity analysis
parameter.

α = 0 is MAR.
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Missing Not at Random (MNAR) - In General

logit P[Rk = 0|Rk−1 = 1,Y −
K ] = hk(Y −

k−1) + αr(Yk)

where

hk(Y −
k−1) = logit P[Rk = 0|Rk−1 = 1,Y −

k−1]−
log{E [exp{αr(Yk)}|Rk = 1,Y −

k−1]}

43 / 64



Missing Not at Random (MNAR) - In General

µ
∗ =

∫
y0

. . .

∫
yK

yK

1∏
k=K

dF (yk |Rk = 1, Y−k−1 = y−k−1)
1

1 + exp{hk (y−
k−1

) + αr(yk )}
+

exp(αr(yk ))dF (yk |Rk = 1, Y−
k−1

= y−
k−1

)

E [exp(αr(Yk ))|Rk = 1, Y−
k−1

= y−
k−1

]

exp{hk (y−
k−1

) + αr(yk )}

1 + exp{hk (y−
k−1

) + αr(yk )}

 dF (y0)

µ∗ = E

[
RKYK∏K

k=1(1 + exp{hk(Y −
k−1) + αr(Yk)}−1

]

µ∗ is written as a function of the distribution of the
observed data (depending on α).
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Inference

Need to estimate:
dF (Y0)

dF (Yk |Rk = 1,Y −
k−1)

P[Rk = 0|Rk−1 = 1,Y −
k−1]

Estimate dF (Y0) by its empirical distribution

Can’t estimate dF (Yk |Rk = 1,Y −
k−1) and

P[Rk = 0|Rk−1 = 1,Y −
k−1] non-parametrically due to

curse of dimensionality. Need Type (ii) assumptions.
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Type (ii) Assumptions

First-order Markov

dF (Yk |Rk = 1,Y −
k−1) = dF (Yk |Rk = 1,Yk−1) ≡ dFk(Yk |Yk−1)

P[Rk = 0|Rk−1 = 1,Y −
k−1] = P[Rk = 0|Rk−1 = 1,Yk−1] ≡ Hk(Yk−1)
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Global Sensitivity Analysis

Restric(ons	
  on	
  Distribu(on	
  of	
  Observed	
  Data	
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  (ii)	
  

Treatment-­‐Specific	
  Mean	
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  (i)	
  Assump(ons	
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Smoothing

F̂k(yk |yk−1;σF ) =

∑n
i=1 Rk,i I (Yk,i ≤ yk)φ

(
Yk−1,i−yk−1

σF

)
∑n

i=1 Rk,iφ
(

Yk−1,i−yk−1

σF

)
Ĥk(yk−1;σH) =

∑n
i=1 Rk−1,i (1− Rk,i )φ

(
Yk−1,i−yk−1

σH

)
∑n

i=1 Rk−1,iφ
(

Yk−1,i−yk−1

σH

)
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Estimating of Smoothing Parameters

J-fold Cross-Validation

L̂cv
F (σF ) =

1

J

J∑
j=1

1

nj

∑
i∈Vj

K∑
k=1

Rk,i

∑
` Rk,`{I (Yk,i ≤ Yk,`)− F̂

(j)
k

(Yk,` | Yk−1,i ;σF )}2∑
` Rk,`



L̂cv
H (σH ) =

1

J

J∑
j=1

1

nj

∑
i∈Vj

K∑
k=1

Rk−1,i [1− Rk,i − Ĥ
(j)
k

(Yk−1,i ;σH )]2
∑

` Rk−1,`(1− Rk,`)∑
` Rk−1,`

Minimize these weighted loss functions to find optimal σF
and σH , denoted by σ̂F and σ̂H
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Estimation

Estimate Fk(Yk |Yk−1) and Hk(Yk−1) by F̂k(yk |yk−1; σ̂F )

and Ĥk(yk−1; σ̂H); these estimators will not converge at√
n rates.

Plug in these estimators into the µ∗ formula

This plug-in estimator can suffer from non-standard
asymptotics.

To correct this problem, we use a one-step estimator:

plug-in + average of estimated influence functions

The influence function for a patient by ψ(O;F ,H). The

estimated influence function is ψ(O; F̂ , Ĥ).
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Uncertainty

An influence function-based 95% confidence interval takes
the form µ̂± 1.96ŝe(µ̂), where

ŝe(µ̂) =

√
En[ψ(O; F̂ , Ĥ)2]/n

In equal-tailed studentized bootstrap, the confidence
interval takes the form [µ̂− t0.975ŝe(µ̂), µ̂− t0.025ŝe(µ̂)],

where tq is the qth quantile of
{
µ̂(b)−µ̂
ŝe(µ̂(b))

: b = 1, . . . ,B
}

In symmetric studentized bootstrap, the confidence
interval takes the form [µ̂− t∗0.95ŝe(µ̂), µ̂ + t∗0.95ŝe(µ̂)],
where t∗0.95 is selected so that 95% of the distribution of{
µ̂(b)−µ̂
ŝe(µ̂(b))

: b = 1, . . . ,B
}

falls between −t∗0.95 and t∗0.95.

Useful to replace influence-function based standard error
estimator with jackknife standard error estimator.
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RIS-INT-3: Bias Function
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RIS-INT-3: Bias Function

Consider two patients who are on study through visit k and
have the same history of measured factors through that visit.
Suppose that the first and second patients have PANSS score
at visit k + 1 of yk+1 and y ∗

k+1, respectively (yk+1 < y ∗
k+1).

The logarithm of the ratio of the odds of last being seen at
visit k as opposed to remaining on study for the second versus
the first patient is equal to α{r(y ∗

k+1)− r(yk+1)}.
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RIS-INT-3: Bias Function

y∗k+1 yk+1 Log Odds Ratio

50 30 α0.02
60 40 α0.07
80 60 α0.22
100 80 α0.30
120 100 α0.24
140 120 α0.12
160 140 α0.04
180 160 α0.01
200 180 α0.00
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RIS-INT-3: Bias Function

We assumed that −20.0 ≤ α ≤ 20.0. Most reasonable that
α ≥ 0.

When α = 4, a patient with a PANSS score at visit k + 1 of
100 (120;80) vs. a patient with a PANSS score at visit k + 1
of 80 (100;60), has 3.3 (2.6;2.4) times the odds of last being
seen at visit k vs. remaining on study.
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Results

Placebo 6mg Risp Difference p-value
MCAR 78.26 68.63 -9.63 0.06
LOCF 89.42 75.91 -13.51 0.00
MAR 83.28 71.23 -12.05 <0.05
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6 mg Risp
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Difference
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Contour
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Understanding α
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RIS-INT-3: Discussion

The evaluation of robustness needs to be based on scientific
considerations.

Is it reasonable to believe that patients with higher
PANSS scores are more likely to be dropping out (i.e.,
α > 0)?

How much difference is reasonable between the mean
PANSS scores for completers are non-completers? 10, 20,
50?
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Next Steps

More simulations to evaluate finite sample performance

Faster algorithms

Non-monotone missing data

More case studies
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Missing Data Matters

No substitute for better trial design and procedures to
minimize missing data.

Global sensitivity analysis should be a mandatory
component of trial reporting.

Visit us at www.missingdatamatters.org or email me at
dscharf@jhu.edu
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