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Missing Data Matters

I Missing outcome data are a widespread problem in
randomized trials, including those used as the basis of
regulatory approval of drugs and devices.
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Neuronetics TMS Study

I Randomized trial of TMS System vs. sham control.

I One week no treatment phase, six week acute treatment
phase, three week taper phase.

I Primary outcome: MADRS; scheduled to be measured at
baseline, weeks 2, 4 and 6 of acute phase and weeks 1, 2
and 3 of taper phase.

I Primary treatment comparison: MADRS at week 4 of
acute phase.

I Secondary treatment comparison: MADRS at week 6 of
acute phase.

I TMS: n = 155; sham: n = 146
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Neuronetics Study

Table: On-Study

Acute Taper
Wk 2 Wk 4 Wk 6 Wk 1 Wk 2 Wk 3

TMS 97% 92% 55% 41% 38% 35%
Sham 98% 92% 40% 27% 26% 24%

I After week 4 of the acute phase, treatment
discontinuation was primarily due to lack of efficacy.

I Primary analysis of acute phase used LOCF.

I FDA requested alternative analyses: completers-only
analysis and multiple imputation analysis

Scharfstein Introduction



What are the Estimands?

What are the differences in the mean MADRS scores
at weeks 4 and 6 of the acute phase between TMS
vs. sham in the counterfactual world in which there
are no missing data at these visits?
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Missing Data Matters

I While unbiased estimates of treatment effects can be
obtained from trials with no missing data, this is no
longer true when data are missing on some patients.

I The essential problem is that inference about treatment
effects relies on unverifiable assumptions about the nature
of the mechanism that generates the missing data.
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Missing Data Matters

I While we usually know the reasons for missing data, we
do not know the distribution of outcomes for patients
with missing data, how it compares to that of patients
with observed data and whether differences in these
distributions can be explained by the observed data.
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Robert Temple and Bob O’Neil (FDA)

I ”During almost 30 years of review experience, the issue of
missing data in ... clinical trials has been a major concern
because of the potential impact on the inferences that
can be drawn .... when data are missing .... the analysis
and interpretation of the study pose a challenge and the
conclusions become more tenuous as the extent of
’missingness’ increases.”
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NRC Report and Sensitivity Analysis

I In 2010, the National Research Council (NRC) issued a
reported entitled ”The Prevention and Treatment of
Missing Data in Clinical Trials.”

I This report, commissioned by the FDA, provides 18
recommendations targeted at (1) trial design and conduct,
(2) analysis and (3) directions for future research.

I Recommendation 15 states
I Sensitivity analyses should be part of the primary

reporting of findings from clinical trials. Examining
sensitivity to the assumptions about the missing data
mechanism should be a mandatory component of
reporting.
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ICH, EMEA and Sensitivity Analysis

I 1998 International Conference of Harmonization (ICH)
Guidance document (E9) entitled ”Statistical Principles in
Clinical Trials” states: ”it is important to evaluate the
robustness of the results to various limitations of the data,
assumptions, and analytic approaches to data analysis”

I European Medicines Agency 2009 draft ”Guideline on
Missing Data in Confirmatory Clinical Trials” states ”[i]n
all submissions with non-negligible amounts of missing
data sensitivity analyses should be presented as support
to the main analysis.”
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Sensitivity Analysis

The set of possible assumptions about the missing data
mechanism is very large and cannot be fully explored. There
are different approaches to sensitivity analysis:

I Ad-hoc

I Local

I Global
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Ad-hoc Sensitivity Analysis

I Analyzing data using a few different analytic methods,
such as last or baseline observation carried forward,
complete or available-case analysis, mixed models or
multiple imputation, and evaluate whether the resulting
inferences are consistent.

I The problem with this approach is that the assumptions
that underlie these methods are very strong and for many
of these methods unreasonable.

I More importantly, just because the inferences are
consistent does not mean that there are no other
reasonable assumptions under which the inference about
the treatment effect is different.
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Neuronetics Study

I LOCF: Valid if patients outcomes don’t change after
dropout.

I Completers: Valid under Missing Completely at Random;
Distribution of outcomes for patients off study at week k
is the same as the distribution of outcome for patients on
study at week k .

I Multiple Imputation: Valid under Missing at Random; For
patients on-study at week k − 1 and who share the same
history of observed outcomes through week k − 1, the
distribution of outcomes after week k − 1 is the same for
those who are last seen at week k − 1 and those who
remain on-study at week k .
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Local Sensitivity Analysis

I Specify a reasonable benchmark assumption (e.g., missing
at random) and evaluate the robustness of the results
within a small neighborhood of this assumption.

I What if there are assumptions outside the local
neighborhood which are plausible?
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Global Sensitivity Analysis

I Evaluate robustness of results across a much broader
range of assumptions that include a reasonable benchmark
assumption and a collection of additional assumptions
that trend toward best and worst case assumptions.

I Emphasized in Chapter 5 of the NRC report.

I This approach is substantially more informative because it
operates like ”stress testing” in reliability engineering,
where a product is systematically subjected to
increasingly exaggerated forces/conditions in order to
determine its breaking point.
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Global Sensitivity Analysis

I In the missing data setting, global sensitivity analysis
allows one to see how far one needs to deviate from the
benchmark assumption in order for inferences to change.

I ”Tipping point” analysis (Yan, Lee and Li, 2009;
Campbell, Pennello and Yue, 2011)

I If the assumptions under which the inferences change are
judged to be sufficiently far from the benchmark
assumption, then greater credibility is lent to the
benchmark analysis; if not, the benchmark analysis can be
considered to be fragile.
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Case Study 1: Chronic Schizophrenia

I Major breakthroughs have been made in the treatment of
patients with psychotic symptoms.

I However, side effects associated with typical and atypical
neuroleptics have limited their usefulness.

I RIS-INT-3 (Marder and Meibach, 1994, Chouinard et al.,
1993) was a multi-center study designed to assess the
effectiveness and adverse experiences of four fixed doses
of risperidone compared to haliperidol and placebo in the
treatment of chronic schizophrenia.
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RIS-INT-3

I At selection, patients were required to have a PANSS
(Positive and Negative Syndrome Scale) score between 60
and 120.

I Prior to randomization, there was a single-blind, one-week
washout phase during which all anti-psychotic
medications were to be discontinued.

I If acute psychotic symptoms occurred, patients were
randomized to a double-blind treatment phase, scheduled
to last 8 weeks.

I Patients were randomized to one of 6 treatment groups:
risperidone 2, 6, 10 or 16 mg, haliperidol 20 mg, or
placebo.

I Dose titration occurred during the first week of the
double-blind phase.

Scharfstein Introduction



RSIP-INT-3

I Patients scheduled for 5 post-baseline assessements at
weeks 1,2,4,6, and 8 of the double-blind phase.

I Primary efficiacy variable: PANSS score

I 521 patients randomized to receive placebo (n = 88),
haliperidol 20 mg (n = 87), risperidone 2mg (n = 87),
risperidone 6mg (n = 86), risperidone 10 mg (n = 86), or
risperidone 16 mg (n = 87).
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Premature Withdrawal

I Only 49% of patients completed the 8 week treatment
period.

I The most common reason for discontinuation was
“insufficient response.”

I Other main reasons included: adverse events,
uncooperativeness, and withdrawal of consent.
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Premature Withdrawal

Placebo Haliperidol Risp 2mg Risp 6mg Risp 10mg Risp 16 mg
(n = 88) (n = 87) (n = 87) (n = 86) (n = 86) (n = 87)

Completed 27 31% 36 41% 36 41% 53 62% 48 56% 54 62%
Withdrawn 61 69% 51 59% 51 59% 33 38% 38 44% 33 38%

Lack of Efficacy 51 58% 36 41% 41 47% 12 14% 25 29% 18 21%
Other 10 11% 15 17% 10 11% 21 24% 13 15% 15 17%
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Observed Data
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Observed Data

Scharfstein Introduction



Central Question

What is the difference in the mean PANSS scores at
week 8 between risperidone at a specified dose level
vs. placebo in the counterfactual world in which all
patients were followed to that week?
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Global Sensitivity Analysis

I Restrict consideration to follow-up randomized study
designs that prescribe that measurements of an outcome
of interest are to be taken on each study participant at
fixed time-points.

I Consider the case where interest is focused on a
comparison of treatment arm means at the last scheduled
visit.
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Global Sensitivity Analysis

I The missingness mechanism is typically not under the
control of the investigator

I Inference about the treatment arm means requires two
types of assumptions:

(i) unverifiable assumptions about the distribution of
outcomes among those with missing data and

(ii) additional testable assumptions that serve to increase
the efficiency of estimation.
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Global Sensitivity Analysis

I Type (i) assumptions are necessary to identify the
treatment-specific means.

I By identification, we mean that we can write it as a
function that depends only on the distribution of the
observed data.

I When a parameter is identified we can hope to estimate it
as precisely as we desire with a sufficiently large sample
size,

I In the absence of identification, statistical inference is
fruitless as we would be unable to learn about the true
parameter value even if the sample size were infinite.
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Global Sensitivity Analysis

I To address the identifiability issue, it is essential to
conduct a sensitivity analysis, whereby the data analysis is
repeated under different type (i) assumptions, so as to
investigate the extent to which the conclusions of the trial
are dependent on these subjective, unverifiable
assumptions.

I The usefulness of a sensitivity analysis ultimately depends
on the plausibility of the unverifiable assumptions.

I It is key that any sensitivity analysis methodology allow
the formulation of these assumptions in a transparent and
easy to communicate manner.
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Global Sensitivity Analysis

I There are an infinite number of ways of positing type (i)
assumptions.

I Ultimately, however, these assumptions prescribe how
missing outcomes should be ”imputed.”

I A reasonable way to posit these assumptions is to
I stratify individuals with missing outcomes according to

the data that we were able to collect on them and the
occasions at which the data were collected

I separately for each stratum, hypothesize a connection
(or link) between the distribution of the missing outcome
with the distribution of the outcome among those with
the observed outcome and who share the same recorded
data.
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Global Sensitivity Analysis

I Type (i) assumptions will not suffice when the repeated
outcomes are continuous or categorical with many levels.
This is because of data sparsity.

I For example, the stratum of people who share the same
recorded data will typically be small. As a result, it is
necessary to draw strength across strata by ”smoothing.”

I Without smoothing, the data analysis will rarely be
informative because the uncertainty concerning the
treatment arm means will often be too large to be of
substantive use.

I As a result, it is necessary to impose type (ii) smoothing
assumptions.

I Type (ii) assumptions should be scrutinized with standard
model checking techniques.
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Global Sensitivity Analysis

Restric(ons	  on	  Distribu(on	  of	  Observed	  Data	  

None	  

Type	  (ii)	  

Treatment-‐Specific	  Mean	  

Type	  (i)	  Assump(ons	  
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Example
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Example

M
e
a
n
 o

f 
s
im

u
la

te
d
 P

A
N

S
S

 s
c
o
re

60

70

80

90

100

Mean of observed PANSS score

60 70 80 90 100

●
●

●
●
●

●

■

■

■
■

■■

● Placebo
■ Risperidone 6mg

0

1

2

3
4

5

0

1

2

3
4

5

V
a
ri
a
n
c
e
 o

f 
s
im

u
la

te
d
 P

A
N

S
S

 s
c
o
re

250

350

450

550

Variance of observed PANSS score

250 350 450 550

●

●
●

●

●●

■
■

■

■

■

■

● Placebo
■ Risperidone 6mg

0

1

2
3

45

0
1

2

3

4

5

Scharfstein Introduction



Example
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Example
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Example
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Results
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Example
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Siddiqui, Hung and O’Neil

I Compared MMRM (Mixed-Effect Model Repeated
Measure) to LOCF using simulation and data from 25
NDAs.

I Concluded: ”MMRM analysis appears to be a superior
approach in controlling Type I error rates and minimizing
biases, as compared to LOCF ANCOVA analysis. In the
exploratory analyses of the datasets, no clear evidence of
the presence of MNAR missingness is found.”

I This is NOT evidence that one should rely on MMRM.
How well does MMRM fit the observed data? How does
one conduct global sensitivity analysis?
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Later

I will show how to

I draw inference under MAR (actually a weaker version)

I evaluate the sensitivity of inferences to deviations from
MAR.

I incorporate auxiliary variables into the analysis
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Discussion

I How can sensitivity analysis be integrated into the
regulatory decision process?

I How can companies be encouraged to minimize missing
data? Will requiring the reporting of global sensitivity
analyses be useful in this regard?

I What is your perspective on intention-to-treat?
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A Sensitivity Analysis Paradigm for

Randomized Studies with Missing Data

Daniel Scharfstein
Johns Hopkins University

dscharf@jhsph.edu

October 1, 2013
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Sensitivity Analysis

I Restrict consideration to follow-up randomized study
designs that prescribe that measurements of an outcome
of interest are to be taken on each study participant at
fixed time-points.

I Focus on monotone missing data pattern

I Consider the case where interest is focused on a
comparison of treatment arm means at the last scheduled
visit.
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Notation

I K scheduled post-baseline assessments.

I There are (K + 1) patterns representing each of the visits
an individual might last be seen, i.e., 0, . . . ,K .

I The (K + 1)st pattern represents individuals who
complete the study.

I Let Yk be the outcome scheduled to be measured at visit
k , with visit 0 denoting the baseline measure (always
observed).

I Let Y −
k = (Y0, . . . ,Yk) and Y +

k = (Yk+1, . . . ,YK ).
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Notation

I Let Rk be the indicator of being on study at visit k .

I R0 = 1; Rk = 1 implies Rk−1 = 1.

I Let C be the last visit that the patient is on-study:
C = max{k : Rk = 1}.

I We focus inference separately for each treatment arm.

I The observed data for an individual is O = (C ,Y −
C ).

I We want to estimate µ = E [YK ].
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Sensitivity Analysis

I Inference about the treatment arm means requires two
types of assumptions:

(i) unverifiable assumptions about the distribution of
outcomes among those with missing data and

(ii) additional testable assumptions that serve to increase
the efficiency of estimation.
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Sensitivity Analysis

I Type (i) assumptions are necessary to identify the
treatment-specific means.

I By identification, we mean that we can write it as a
function that depends only on the distribution of the
observed data.

I When a parameter is identified we can hope to estimate it
as precisely as we desire with a sufficiently large sample
size,

I In the absence of identification, statistical inference is
fruitless as we would be unable to learn about the true
parameter value even if the sample size were infinite.
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Sensitivity Analysis

I To address the identifiability issue, it is essential to
conduct a sensitivity analysis, whereby the data analysis is
repeated under different type (i) assumptions, so as to
investigate the extent to which the conclusions of the trial
are dependent on these subjective, unverifiable
assumptions.

I The usefulness of a sensitivity analysis ultimately depends
on the plausibility of the unverifiable assumptions.

I It is key that any sensitivity analysis methodology allow
the formulation of these assumptions in a transparent and
easy to communicate manner.
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Sensitivity Analysis

I There are an infinite number of ways of positing type (i)
assumptions.

I Ultimately, however, these assumptions prescribe how
missing outcomes should be ”imputed.”

I A reasonable way to posit these assumptions is to
I stratify individuals with missing outcomes according to

the data that we were able to collect on them and the
occasions at which the data were collected

I separately for each stratum, hypothesize a connection
(or link) between the distribution of the missing outcome
with the distribution of the outcome among those with
the observed outcome and who share the same recorded
data.
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Sensitivity Analysis

I Type (i) assumptions will not suffice when the repeated
outcomes are continuous or categorical with many levels.
This is because of data sparsity.

I For example, the stratum of people who share the same
recorded data will typically be small. As a result, it is
necessary to draw strength across strata by ”smoothing.”

I Without smoothing, the data analysis will rarely be
informative because the uncertainty concerning the
treatment arm means will often be too large to be of
substantive use.

I As a result, it is necessary to impose type (ii) smoothing
assumptions.

I Type (ii) assumptions should be scrutinized with standard
model checking techniques.
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Sensitivity Analysis

Restric(ons	  on	  Distribu(on	  of	  Observed	  Data	  

None	  

Type	  (ii)	  

Treatment-‐Specific	  Mean	  

Type	  (i)	  Assump(ons	  
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Example: K = 2

I Full Data: (Y0,Y1,Y2)

I Observed Data: (C ,Y −
C )

I Estimate µ = E [Y2].
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Missing at random (MAR)

I In this setting, MAR postulates

f (Y +
0 |C = 0,Y0) = f (Y +

0 |C ≥ 1,Y0)

f (Y +
1 |C = 1,Y −

1 ) = f (Y +
1 |C = 2,Y −

1 )

or

P[C = 0|C ≥ 0,Y −
2 ] = P[C = 0|C ≥ 0,Y0]

P[C = 1|C ≥ 1,Y −
2 ] = P[C = 1|C ≥ 1,Y −

1 ]
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Missing at random (MAR)

I MAR is a type (i) assumption. It is ”unverifiable.”

I For patients with C = c , we cannot learn from the
observed data about the conditional (on observed history)
distribution of outcomes after visit c .

I For patients with C = c , any assumption that we would
make about the conditional (on observed history)
distribution of the outcomes after visit c will be
unverifiable from the data available to us.

I For patients with C = c , the assumption that the
conditional (on observed history) distribution of outcomes
after visit c is the same as those who remain on-study
after visit c and have the same observed history is
unverifiable.

Scharfstein Paradigm



Aside: Math Review

Suppose X and Y are random variables.

f (y) =

∫
f (y |x)dF (x)

E [Y ] = E [E [Y |X ]] =

∫
E [Y |X = x ]dF (x)

In the special where X is an indicator variable,

f (y) = f (y |X = 1)P[X = 1] + f (y |X = 0)P[X = 0]

E [Y ] = E [Y |X = 1]P[X = 1] + E [Y |X = 0]P[X = 0]

I If Y is independent of X , then f (y |X ) = f (y) and
E [Y |X ] = E [Y ]

Scharfstein Paradigm



Aside: Math Review

Suppose there is a third variable W

f (y |x) =

∫
f (y |w , x)dF (w |x)

E [Y |X = x ] = E [E [Y |W ,X = x ]|X = x ]

=

∫
w

E [Y |W = w ,X = x ]dF (w |x)

I If Y is independent of X given W , then
f (y |X ,W ) = f (y |W ) and E [Y |X ,W ] = E [Y |W ]
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Missing at random (MAR)

I Under MAR, µ is identified

µ =

∫
y0

E [Y2|Y0 = y0]dF (y0)

=

∫
y0

{E [Y2|C = 0,Y0 = y0]P[C = 0|Y0 = y0]+

E [Y2|C ≥ 1,Y0 = y0]P[C ≥ 1|Y0 = y0]} dF (y0)

=

∫
y0

{E [Y2|C ≥ 1,Y0 = y0]P[C = 0|Y0 = y0]+

E [Y2|C ≥ 1,Y0 = y0]P[C ≥ 1|Y0 = y0]} dF (y0)

=

∫
y0

E [Y2|C ≥ 1,Y0 = y0]dF (y0)
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Missing at random (MAR)

=

∫
y0

∫
y1

E [Y2|C ≥ 1, Y1 = y1, Y0 = y0]dF (y1|C ≥ 1, Y0 = y0)dF (y0)

=

∫
y0

∫
y1

{E [Y2|C = 1, Y1 = y1, Y0 = y0]P[C = 1|C ≥ 1, Y1 = y1, Y0 = y0]+

E [Y2|C = 2, Y1 = y1, Y0 = y0]P[C = 2|C ≥ 1, Y1 = y1, Y0 = y0]}
dF (y1|C ≥ 1, Y0 = y0)dF (y0)

=

∫
y0

∫
y1

{E [Y2|C = 2, Y1 = y1, Y0 = y0]P[C = 1|C ≥ 1, Y1 = y1, Y0 = y0]+

E [Y2|C = 2, Y1 = y1, Y0 = y0]P[C = 2|C ≥ 1, Y1 = y1, Y0 = y0]}
dF (y1|C ≥ 1, Y0 = y0)dF (y0)

=

∫
y0

∫
y1

E [Y2|C = 2, Y1 = y1, Y0 = y0]dF (y1|C ≥ 1, Y0 = y0)dF (y0)

I µ is written as a function of the distribution of the
observed data.
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Missing at random (MAR)

This identification formula holds under the weaker assumption:

f (Y2|C = 0,Y0) = f (Y2|C ≥ 1,Y0)

f (Y2|C = 1,Y −
1 ) = f (Y2|C = 2,Y −

1 )

or

P[C = 0|C ≥ 0,Y2,Y0] = P[C = 0|C ≥ 0,Y0]

P[C = 1|C ≥ 1,Y −
2 ] = P[C = 1|C ≥ 1,Y −

1 ]

More generally,

f (YK |C = k ,Y −
k ) = f (YK |C ≥ k + 1,Y −

k )

P[C = k |C ≥ k ,YK ,Y
−
k ] = P[C = k |C ≥ k ,Y −

k ]
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Missing at random (MAR)

I Specify models for f (Yk |C ≥ k ,Y −
k−1) (parameters η).

I Estimate η using maximum likelihood.

I Estimate µ by repeating the following simulation
procedure:

1. Simulate Y0 from its empirical distribution. Set k = 1
2. Simulate Yk from f (Yk |C ≥ k,Y −

k−1; η̂), Set k = k + 1.
3. If k > K then stop; otherwise repeat step 2.

I Take an average of the simulated YK ’s

I G-computation algorithm.

I Standard errors using non-parametric bootstrap.
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Missing at random (MAR)

I Under MAR,

µ = E

[
I (C = K )YK∏K−1

k=0 P[C > k |C ≥ k ,Y −
k ]

]
I So, rather than modeling f (Yk |C ≥ k ,Y −

k−1), one can
model P[C = k |C ≥ k ,Y −

k ]
I Suppose we assume

logit{P[C = k |C ≥ k ,Y −
k ]} = hk(Y −

k ; γ)

I Estimate γ by maximum likelihood
I Estimate µ by the inverse-weighted estimator

µ̃ = En

[
I (C = K )YK∏K−1

k=0 P[C > k |C ≥ k ,Y −
k ; γ̂]

]
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Missing not at random (MNAR)

I The MAR assumption is not the only one that is (1)
unverifiable and (2) admits identification of µ.
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Missing not at random (MNAR)

I Non-future dependence:

f (Y2|C = 0,Y −
1 ) = f (Y2|C ≥ 1,Y −

1 ) (1)

and

f (Y1|C = 0,Y0) =
f (Y1|C ≥ 1,Y0) exp{αr(Y1)}

E [exp{αr(Y1)}|C ≥ 1,Y0]

f (Y2|C = 1,Y −
1 ) =

f (Y2|C = 2,Y −
1 ) exp{αr(Y2)}

E [exp{αr(Y2)}|C = 2,Y −
1 ]

(2)

I r(y) is a specified function of y

I α is a sensitivity analysis parameter that governs
departures from the MAR assumption

I α = 0 is MAR, α 6= 0 is MNAR.
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Exponential Tilting

I If [Y1|C ≥ 1,Y0] ∼ N(µ1(Y0), σ2
1) and r(Y1) = Y1, then

[Y1|C = 0,Y0] ∼ N(µ1(Y0) + ασ2
1, σ

2
1)

I If [Y1|C ≥ 1,Y0] ∼ Beta(a1(Y0), b1(Y0)) and
r(Y1) = log(Y1), then

[Y1|C = 0,Y0] ∼ Beta(a1(Y0) + α, b1(Y0))

α > −a1(Y0)
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Exponential Tilting

I If [Y1|C ≥ 1,Y0] ∼ Gamma(a1(Y0), b1(Y0)) and
r(Y1) = log(Y1), then

[Y1|C = 0,Y0] ∼ Gamma(a1(Y0) + α, b1(Y0)),

α > −a1Y0).

I If [Y1|C ≥ 1,Y0]] ∼ Gamma(a1(Y0), b1(Y0)) and
r(Y1) = Y1, then

[Y1|C = 0,Y0] ∼ Gamma(a1(Y0), b1(Y0)− α),

α < b1(Y0).
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Exponential Tilting

I If [Y1|C ≥ 1,Y0] ∼ Bernoulli(p1(Y0)) and r(Y1) = Y1,
then

[Y1|C = 0,Y0] ∼ Bernoulli

(
p1(Y0) exp(α)

p1(Y0) exp(α) + 1− p1(Y0)

)
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Identification

I f (Y2|C = 2,Y −
1 ) is identified

I By (2), f (Y2|C = 1,Y −
1 ) is identified

f (Y2|C = 0,Y0)

=

∫
y1

f (Y2|C = 0,Y1 = y1,Y0)dF (y1|C = 0,Y0)

(1,2)
=

∫
y1

f (Y2|C ≥ 1,Y1 = y1,Y0)
dF (y1|C ≥ 1,Y0) exp{αr(y1)}

E [exp{αr(y1)}|C ≥ 1,Y0]

f (Y2|C ≥ 1,Y1 = y1,Y0)

= f (Y2|C = 1,Y1 = y1,Y0)P[C = 1|C ≥ 1,Y1 = y1,Y0]+

f (Y2|C = 2,Y1 = y1,Y0)P[C = 2|C ≥ 1,Y1 = y1,Y0]

I f (Y2|C = 0,Y0) is identified
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Identification

µ

=

∫
y0

E [Y2|Y0 = y0]dF (y0)

=

∫
y0

{E [Y2|C = 0, Y0 = y0]P[C = 0|Y0 = y0]+

E [Y2|C ≥ 1, Y0 = y0]P[C ≥ 1|Y0 = y0]} dF (y0)

=

∫
y0

{E [Y2|C = 0, Y0 = y0]P[C = 0|Y0 = y0]+{∫
y1

E [Y2|C ≥ 1, Y1 = y1, Y0 = y0]dF (y1|C ≥ 1, Y0 = y0)

}
P[C ≥ 1|Y0 = y0]

}
dF (y0)
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Estimation

I Specify models for f (Yk |C ≥ k ,Y −
k−1) (params η).

I Specify models for P[C = k |C ≥ k ,Y −
k ] (params γ).

I Estimate η and γ using maximum likelihood.

I Estimate µ by repeating the following simulation
procedure:

1. Simulate Y0 from its empirical distribution.
2. Draw from P[C = 0|C ≥ 0,Y0; γ̂].
3. If C = 0, then draw from f (Y2|C = 0,Y0; γ̂, η̂;α) and

stop.
4. If C 6= 0, the draw Y1 from f (Y1|C ≥ 1,Y0; η̂).
5. Draw from P[C = 1|C ≥ 1,Y −

1 ; γ̂]
6. If C = 1, then draw from f (Y2|C = 1,Y −

1 ; η̂;α) and
stop

7. If C = 2 then draw from f (Y2|C = 2,Y −
1 ; η̂).
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Estimation

I Take an average of the simulated Y2’s

I Generalization of G-computation algorithm.

I Standard errors using non-parametric bootstrap.
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Estimation

To draw from f (Y2|C = 1,Y0; η̂;α) in Step 6, draw from

f (Y2|C = 2,Y −
1 ; η̂) exp{αr(Y2)}

E [exp{αr(Y2)}|C = 2,Y −
1 ; η̂]
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Estimation

To draw from f (Y2|C = 0,Y0; γ̂, η̂;α) in Step 3, draw from

1. Draw Y1 from

f (Y1|C ≥ 1,Y0; η̂) exp{αr(Y1)}
E [exp{αr(Y1)}|C ≥ 1,Y0; η̂]

2. Draw from P[C = 1|C ≥ 1,Y −
1 ; γ̂]

3. If C = 1, then draw from f (Y2|C = 1,Y −
1 ; η̂;α) (see

previous slide) and stop

4. If C = 2 then draw from f (Y2|C = 2,Y −
1 ; η̂).

Recursive algorithm.
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Missing not at random (MNAR)

Assumption (1) and (2) are equivalent to

logit{P[C = k |C ≥ k ,YK ,Y
−
k+1]} = hk(Y −

k ) + αr(Yk+1)

where

hk(Y −
k ) = logit{P[C = k |C ≥ k ,Y −

k ]} −
log{E [exp{αr(Yk+1)}|C ≥ k ,Y −

k ]}

I α is the conditional log odds ratio of last being seen at
visit k between patients who differ by one unit in r(Yk+1).

I Assuming that r(y) is monotonically increasing, α > 0
implies that patients with higher values of Yk+1 are more
likely to withdraw than those who remain on study.
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Missing not at random (MNAR)

µ = E

[
I (C = K )YK∏K−1

k=0 {1− expit(hk(Y −
k ) + αr(Yk+1))}

]

I (Indirectly) Estimate hk(Y −
k ) by

h(Y −
k ; γ̂, η̂;α)

= logit{P[C = k |C ≥ k ,Y −
k ; γ̂]}−

log{E [exp{αr(Yk+1)}|C ≥ k ,Y −
k ; η̂]}

I Estimate µ by the inverse-weighted estimator

µ̃ = En

[
I (C = K )YK∏K−1

k=0 {1− expit(hk(Y −
k ; γ̂, η̂;α) + αr(Yk+1))}

]
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Notes on G-Computation vs. Inverse-Weighted

Estimator

I Under correct model specification, G-computation
estimator is more efficient.

I Inverse-weighted estimator does not extrapolate.

I Can also directly model hk(Y −
k ). Model checking harder.
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Incorporating Auxiliary Variables

I LetVk denote auxiliary variables scheduled to be collected
at assessment k

I Let Wk = (Yk ,Vk)

I MAR

f (YK |C = k ,W −
k ) = f (YK |C ≥ k + 1,W −

k )

P[C = k |C ≥ k ,YK ,W
−
k ] = P[C = k |C ≥ k ,W −

k ]

I Non-Future Dependence

f (YK |C = k ,W −
k ,Yk+1) = f (YK |C ≥ k + 1,W −

k ,Yk+1)

P[C = k |C ≥ k ,YK ,Yk+1,W
−
k ] = P[C = k |C ≥ k ,Yk+1,W

−
k ]
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Incorporating Auxiliary Variables

I Sensitivity Analysis Models

f (Yk+1|C = k ,W −
k ) =

f (Yk+1|C ≥ k + 1,W −
k ) exp(αr(Yk+1))

E [exp(αr(Yk+1)|C ≥ k + 1,W −
k ]

logit{P[C = k |C ≥ k ,YK ,W
−
k ,Yk+1]} = h(W −

k )+αr(Yk+1)

where

h(W −
k ) = logit{P[C = k |C ≥ k ,W −

k ]} −
log{E [exp{αr(Yk+1)}|C ≥ k ,W −

k ]}
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Incorporating Auxiliary Variables

I Need a model for f (Vk |C ≥ k ,Yk ,W
−
k )

I Can extend G-computation and Inverse-weighted
estimation procedure
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Main Idea

I Link non-identifiable to identifiable distributions using
sensitivity analysis parameters

I Model the distribution of the observed data
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Discussion

I Methods made seem complicated, but so are those
underlying other statistical procedures such as multiple
imputation and MMRM.
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Case Study: Chronic Schizophrenia

I Major breakthroughs have been made in the treatment of
patients with psychotic symptoms.

I However, side effects associated with typical and atypical
neuroleptics have limited their usefulness.

I RIS-INT-3 (Marder and Meibach, 1994, Chouinard et al.,
1993) was a multi-center study designed to assess the
effectiveness and adverse experiences of four fixed doses
of risperidone compared to haliperidol and placebo in the
treatment of chronic schizophrenia.
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RIS-INT-3

I At selection, patients were required to have a PANSS
(Positive and Negative Syndrome Scale) score between 60
and 120.

I Prior to randomization, there was a single-blind, one-week
washout phase during which all anti-psychotic
medications were to be discontinued.

I If acute psychotic symptoms occurred, patients were
randomized to a double-blind treatment phase, scheduled
to last 8 weeks.

I Patients were randomized to one of 6 treatment groups:
risperidone 2, 6, 10 or 16 mg, haliperidol 20 mg, or
placebo.

I Dose titration occurred during the first week of the
double-blind phase.
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RSIP-INT-3

I Patients scheduled for 5 post-baseline assessements at
weeks 1,2,4,6, and 8 of the double-blind phase.

I Primary efficiacy variable: PANSS score

I 521 patients randomized to receive placebo (n = 88),
haliperidol 20 mg (n = 87), risperidone 2mg (n = 87),
risperidone 6mg (n = 86), risperidone 10 mg (n = 86), or
risperidone 16 mg (n = 87).
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Premature Withdrawal

I Only 49% of patients completed the 8 week treatment
period.

I The most common reason for discontinuation was
“insufficient response.”

I Other main reasons included: adverse events,
uncooperativeness, and withdrawal of consent.
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Premature Withdrawal

Placebo Haliperidol Risp 2mg Risp 6mg Risp 10mg Risp 16 mg
(n = 88) (n = 87) (n = 87) (n = 86) (n = 86) (n = 87)

Completed 27 31% 36 41% 36 41% 53 62% 48 56% 54 62%
Withdrawn 61 69% 51 59% 51 59% 33 38% 38 44% 33 38%

Lack of Efficacy 51 58% 36 41% 41 47% 12 14% 25 29% 18 21%
Other 10 11% 15 17% 10 11% 21 24% 13 15% 15 17%
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Observed Data
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Observed Data
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Central Question

What is the difference in the mean PANSS scores at
week 8 between risperidone at a specified dose level
vs. placebo in the counterfactual world in which all
patients were followed to that week?

Scharfstein Case Study



Notation

I K = 5 scheduled post-baseline assessments.

I Yk is PANSS score

I Higher PANSS indicates greater mental illness.
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Missing At Random (Weaker Version)

f (YK |C = k ,Y −
k ) = f (YK |C ≥ k + 1,Y −

k )

P[C = k |C ≥ k ,YK ,Y
−
k ] = P[C = k |C ≥ k ,Y −

k ]
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Missing at random (MAR)

I Specify a model for f (Yk |C ≥ k ,Y −
k−1) (parameters η).

I Estimate η using maximum likelihood.

I Estimate µ by repeating the following simulation
procedure:

1. Simulate Y0 from its empirical distribution. Set k = 1
2. Simulate Yk from f (Yk |C ≥ k,Y−

k−1, η̂), Set k = k + 1.
3. If k > K then stop; otherwise repeat step 2.

I Take an average of the simulated YK ’s
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Missing at random (MAR)

Model f (Yk |C ≥ k ,Y −
k−1; η) as a truncated (between 30 and

120) normal regression model of the following form:

f (yk |C ≥ k ,Y k−1) =
φ
(

yk−η0,k−η1,kYk−1

η2,k

)
Φ
(

210−η0,k−η1,kYk−1

η2,k

)
− Φ

(
30−η0,k−η1,kYk−1

η2,k

)
where 30 ≤ yk ≤ 210.

Scharfstein Case Study



PANSS Model

Placebo Risperidone 6mg

Outcome Variable Estimate 95 % CI Estimate 95 % CI
PANSSt=1 Intercept (η0,1) 11.45 -10.68 30.43 21.47 4.38 39.83

PANSSt=0 (η1,1) 0.85 0.64 1.08 0.63 0.43 0.82
Std. Dev. (η2,1) 15.25 12.46 17.38 14.96 12.09 17.02

PANSSt=2 Intercept (η0,2) 16.80 -0.39 32.80 6.32 -4.17 17.92
PANSSt=1 (η1,2) 0.80 0.62 1.01 0.87 0.73 1.01
Std. Dev. (η2,2) 13.24 10.10 15.65 11.64 9.60 13.45

PANSSt=3 Intercept (η0,3) 14.33 -4.46 33.56 7.68 -5.99 20.20
PANSSt=2 (η1,3) 0.84 0.61 1.07 0.87 0.72 1.05
Std. Dev. (η2,3) 13.04 10.00 15.36 13.48 10.42 16.17

PANSSt=4 Intercept (η0,4) 23.57 2.75 53.53 -4.11 -17.99 10.10
PANSSt=3 (η1,4) 0.77 0.44 1.00 1.00 0.79 1.20
Std. Dev. (η2,4) 17.59 8.66 26.28 12.27 9.20 14.78

PANSSt=5 Intercept (η0,5) -2.73 -12.75 7.32 5.67 -0.88 14.07
PANSSt=4 (η1,5) 1.01 0.89 1.16 0.93 0.81 1.02
Std. Dev. (η2,5) 7.27 3.55 9.68 6.82 4.64 8.71
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PANSS Model
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MAR Analysis

Observed MAR
Mean Estimate 95% CI

Placebo 77.19 90.52 [83.82,97.43]
6mg Risperidone 68.36 72.30 [67.13,77.47]
Difference -18.22 [-26.50,-9.22]
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Non-Future Dependence

For k = 0, . . . ,K − 2,

f (YK |C = k ,Y −
k ,Yk+1) = f (YK |C ≥ k + 1,Y −

k ,Yk+1)

I This assumption states that, for the cohort patients who
are on study at assessment k , share the same history of
outcomes through that visit and have the same outcome
at assessment k + 1, the distribution of YK is the same
for those who are last seen at assessment k and those
who are on-study at k + 1.
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Exponential Tilting

For k = 0, . . . ,K − 1,

f (Yk+1|C = k ,Y −
k ) =

f (Yk+1|C ≥ k + 1,Y −
k ) exp{αr(Yk+1)}

E [exp{αr(Yk+1) C ≥ k + 1,Y −
k ]

where r(Yk+1) is a specified function of Yk+1 and α is a
sensitivity analysis parameter.

I This assumption relates, conditional on past history Y −
k ,

the distribution of Yk+1 for those who drop-out between
assessments k and k + 1 to those who are on study at
k + 1.
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Non-Future Dependence/Exponential Tilting

logit{P[C = k C ≥ k ,Y −
k+1,YK ]} = hk(Y −

k ) + αr(Yk+1)

where

hk(Y −
k ) = logit {P[C = k C ≥ k ,Y −

k ]} −
log{E [exp{αr(Yk+1)} C ≥ k + 1,Y −

k ]}

I α is the log odds ratio of drop-out between assessments k
and k + 1 per unit change in r(Yk+1).
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Non-Future Dependence/Exponential Tilting

I Specify models for f (Yk |C ≥ k ,Y −
k−1) (params η).

I Specify models for P[C = k |C ≥ k ,Y −
k ] (params γ)

I Estimate η and γ using maximum likelihood.

I Estimate µ by repeating the following simulation
procedure:

1. Simulate Y0 from its empirical distribution. Set k = 0.
2. Simulate Rk+1 from P[C > k |C ≥ k ,Y k ; γ̂].
3. If Rk+1 = 1, set k = k + 1, simulate

f (Yk |C ≥ k,Y−
k−1; η̂). If k = K then stop; otherwise

and go to step 2.
4. If Rk+1 = 0, simulate YK from f (YK |C = k,Y−

k ; η̂, γ̂)
and stop.
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Non-Future Dependence/Exponential Tilting

To draw from f (YK |C = k ,Y −
k ) call the function s(k ,Y −

k ).

s = function(k ,Y −
k ) {

I If k = K − 1, draw YK from

f (YK |C = K ,Y −
K−1; η̂) exp{αr(YK )}

E [exp{αr(YK )}|C ≥ K ,Y −
K−1; η̂]

I If k < K − 1,
I Draw

f (Yk+1|C ≥ k + 1,Y−
k ; η̂) exp{αr(yk+1)}

E [exp{αr(Yk+1)}|C ≥ k + 1,Y−
k ; η̂]

I Draw f (YK |C ≥ k + 1,Yk+1,Y
−
k ), i.e., call the

function g(k + 1,Yk+1,Y
−
k )

}
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Non-Future Dependence/Exponential Tilting

To draw from f (YK |C ≥ k ,Yk ,Y
−
k−1) call the function

g(k ,Yk ,Y
−
k−1).

g = function(k ,Yk ,Y
−
k−1) {

I Draw Rk+1 from P[C > k |C ≥ k ,Y −
k ; γ̂]

I If Rk+1 = 0, draw YK from f (YK |C = k ,Y −
k ; η̂, γ̂),

i.e., call s(k ,Y −
k ).

I If Rk+1 = 1,
I Draw Yk+1 from f (Yk+1|C ≥ k + 1,Y−

k ; η̂)
I Draw YK from f (YK |C ≥ k + 1,Y−

k+1; η̂, γ̂), i,e.,

call g(k + 1,Y−
k+1).

}
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Drop-out Model

Placebo Risperidone 6mg

Variable Estimate 95% CI Estimate 95% CI
Visit 1 (γ0,1) -6.34 -8.94 -4.62 -5.14 -8.39 -2.93
Visit 2 (γ0,2) -5.72 -7.97 -4.22 -5.28 -17.88 -2.89
Visit 3 (γ0,3) -4.73 -6.80 -3.29 -3.73 -5.63 -2.15
Visit 4 (γ0,4) -4.82 -6.77 -3.44 -3.44 -5.42 -1.84
Visit 5 (γ0,5) -5.48 -7.62 -4.13 -4.62 -17.01 -2.98
PANSS (γ1) 0.044 0.029 0.066 0.024 0.003 0.045
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Dropout Model
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PANSS Model
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Bias Function
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Sensitivity Analysis

Consider two patients who are on study through visit k and
have the same history of measured factors through that visit.
Suppose that the first and second patients have PANSS score
at visit k + 1 of yk+1 and y ∗

k+1, respectively (yk+1 < y ∗
k+1).

The logarithm of the ratio of the odds of last being seen at
visit k as opposed to remaining on study for the second versus
the first patient is equal to α{r(y ∗

k+1)− r(yk+1)}.
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Sensitivity Analysis

y∗k+1 yk+1 Log Odds Ratio

50 30 α0.02
60 40 α0.07
80 60 α0.22
100 80 α0.30
120 100 α0.24
140 120 α0.12
160 140 α0.04
180 160 α0.01
200 180 α0.00
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Sensitivity Analysis

We assumed that −10.0 ≤ α ≤ 25.0

When α = 4, a patient with a PANSS score at visit k + 1 of
100 (120;80) vs. a patient with a PANSS score at visit k + 1
of 80 (100;60), has 3.3 (2.6;2.4) times the odds of last being
seen at visit k vs. remaining on study.
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Results
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Summary

I Inference is robust to deviations from MAR.

I 6mg risperidone is superior to placebo in reducing pain.
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Inverse Weighting

I Indirect modeling (Method 3)

I Direct modeling (Method 2)
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Results
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Results
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Method 1 vs. Method 2
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Method 1 vs. Method 3
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MMRM
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MMRM
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MMRM
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MMRM
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MMRM, LOCF

Difference 95% CI
AR(1) -13.62 [-20.81,-5.42]
ARH(1) -14.54 [-22.33,-5.49]
UN -14.76 [-23.54,-6.07]
LOCF -17.33 [-24.26,-10.40]
TN -18.22 [-26.50,-9.22]
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Discussion

I Can you envision regulatory applications that present
sensitivity analyses in this way?

I Pre-specification. Models for observed data can be
outsourced. Need they be specified in advance?

I What bells and whistles are needed? Non-monotone
missing data, multiple causes of dropout etc.
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