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Summary: In this paper, we present a method for conducting global sensitivity analysis of randomized trials in

which binary outcomes are scheduled to be collected on participants at fixed in time after randomization and these

outcomes may be missing in a non-monotone fashion. We introduce a class of missing data assumptions, indexed

by sensitivity parameters, that are anchored around the missing not at random assumption introduced by Robins

(Statistics in Medicine, 1997). For each assumption in the class, we establish that the joint distribution of the outcomes

are identifiable from the distribution of the observed data. Our estimation procedure uses the plug-in principle, where

the distribution of the observed data is estimated using random forests. We establish
√
n asymptotic properties for

our estimation procedure. We illustrate our methodology in the context of a randomized trial designed to evaluate

a new approach to reducing substance use, assessed by testing urine samples twice weekly, among patients entering

outpatient addiction treatment. We evaluate the finite sample properties of our method in a realistic simulation study.

Our methods have been implemented in an R package entitled slabm.
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1. Introduction

Missing outcome data threaten the validity of randomized clinical trials because inference

about treatment effects must then rely on untestable assumptions. As a result, the National

Research Council (NRC) in its report entitled “The Prevention Treatment of Missing Data in

Clinical Trials” recommended that evaluating the sensitivity of trial results to assumptions

about the missing data mechanism should be a mandatory component of reporting (Little

et al., 2010). There does not appear to be concensus, however, about what constitutes an

adequate sensitivity analysis. Chapter 5 of the NRC Report presents an approach whereby

one posits a broad class of untestable missing data assumptions that are: (1) indexed by

sensitivity analysis parameters, (2) anchored around a plausible benchmark assumption

(sensitivity parameters equal to a reference value), and (3) sensitivity analysis parameters

further from the reference value represent larger deviations from the benchmark assumption

(Little et al., 2010). The goal of this “global” sensitivity analysis approach is to determine

how much deviation from a benchmark assumption is required in order for inferences to

change. If the deviation is judged to be sufficiently far from the benchmark assumption,

then greater credibility is lent to the benchmark analysis; if not, the benchmark analysis can

be considered to be fragile.

Randomized trials are frequently designed so participants are scheduled to have assess-

ments at fixed points in time after randomization. For participants who miss one or more

assessments, their missing data pattern can be classified as either “monotone” or “non-

monotone”: if all assessments are missing after the first missing visit then the pattern is

monotone, otherwise it is non-monotone (i.e., missing visits interspersed about completed

visits). Positing plausible assumptions and specifying flexible models for studies with non-

monotone missing data is challenging because of the potentially large number of missingness

patterns (as many as 2K − 1 patterns, where K is the number of post-baseline assessments).
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Ibrahim and Molenberghs (2009) indicate that “[s]uch data present a considerable modeling

challenge for the statistician”. The NRC report highlighted the need for development and

application of “novel, appropriate methods of model specification and sensitivity analyses to

handle non-monotone missing data patterns” (Little et al., 2010).

1.1 Identification Assumptions for Non-Monotone Missing Data

One of the most common assumptions used to identify treatment effects in longitudinal

studies is the missing at random (MAR) assumption. This untestable assumption states

that, for each possible missingness pattern, the probability of observing the pattern does

not depend on the unobserved outcomes conditional on the outcomes that are observed. A

convenient feature of this assumption is that if one adopts a likelihood or Bayesian inferential

perspective, one just needs to specify a fully parametric model for the joint distribution of the

outcomes; the conditional probability of the missingness pattern given the outcomes factors

out of the likelihood and can be ignored. This is why many studies are analyzed using mixed

models.

While MAR has been considered a reasonable benchmark assumption for studies that

have monotone missing data patterns, Robins (1997) and Little and Rubin (2014) have

argued that MAR is implausible for studies that have non-monotone missing data patterns.

Minini and Chavance (2004) and Fitzmaurice et al. (2018) developed likelihood-based global

sensitivity analysis procedures for non-monotone missing binary outcomes anchored at MAR.

Alternative assumptions have been proposed:

A1: Little (1993) introduced the complete case missing value (CCMV) assumption. CCMV

posits that, for each possible pattern with missing observations, the conditional distri-

bution of the missing outcomes given the observed outcomes is equal to corresponding

distribution for the pattern with no missing observations. Tchetgen-Tchetgen et al.

(2017) developed a global sensitivity analysis procedure anchored at CCMV.
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A2: Vansteelandt et al. (2007) assumed that, for individuals who have the same observed

data prior to a scheduled visit, the distribution of the outcome for those missing the

visit is the same as the distribution of the outcome for those who attend the visit. They

developed a global sensitivity analysis procedure anchored at this assumption. Linero

and Daniels (2018) built a Bayesian synthesis procedure.

A3: Zhou et al. (2010) assumed that, for individuals who share the same outcomes (observed

or not) and same missingness pattern prior to a scheduled visit, the distribution of the

outcome for those missing the visit is the same as the distribution of the outcome for

those who attend the visit. No global sensitivity analysis procedure was developed.

A5: Sadinle and Reiter (2017) and Shpitser (2016) assumed that, for individuals who have

the same outcomes (observed or not) and same missingness pattern prior to and after a

scheduled visit, the distribution of the outcome for those missing the visit is the same as

the distribution of the outcome for those who attend the visit. Sadinle and Reiter (2017)

developed a Bayesian global sensitivity analysis procedure anchored at this assumption.

A6: Robins (1997) and Sadinle and Reiter (2018) assumed that, for individuals who share the

same outcomes (observed or not) prior to a scheduled visit and the same observed data

after the visit, the distribution of the outcome for those missing the visit is the same

as the distribution of the outcome for those attending the visit. No global sensitivity

analysis procedure was developed.

As noted by Little (1993), A1 is not a plausible benchmark assumption. For example, it

unrealistically assumes that the joint distribution of outcomes for individuals who miss all

their assessments is equal to the joint distribution of outcomes for individuals who complete

all their assessments. A2, A3 and A4 are not satisfactory as they do not allow the distribution

of the missing outcome at a visit to depend on all the observable factors (e.g., outcomes that

are observed after the missing visit). The problem with A5 is that it cannot be represented
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in terms of a directed acyclic graph (DAG), which is fundamental for describing a data

generating process. Rather A5 can be represented as chain graph, which can be very difficult

to interpret (Lauritzen and Richardson, 2002). A7 can be represented as a DAG and does

allow the distribution of the missing outcome at a visit to depend on outcomes that are

observed after the missing visit. The statistical innovation of this paper is to develop, for

binary outcomes, a flexible global sensitivity analysis procedure anchored at A6.

1.2 Substance Use Disorder Studies

Our methods are motivated by randomized trials that evaluate treatments for substance use

disorders. Trials of individuals with such disorders are well known to suffer from high rates

of missing outcome data (Yang and Shoptaw, 2005; McPherson et al., 2012). In substance

use disorder trials, there can be high rates of non-monotone missing data.

Consider CTN-0044, a randomized trial designed to evaluate a new approach to reducing

substance use among patients entering outpatient addiction treatment (Campbell et al.,

2014). In this study, patients were randomized to 12 weeks of either treatment-as-usual

(TAU, n = 252) or treatment-as-usual plus a computerized therapeutic education system

and contingent incentives (TAU+, n = 255). Urine samples were scheduled to be collected

twice weekly. Focusing on the first 6 weeks, 67.9% and 60.0% of individuals randomized to

the TAU and TAU+ arms had non-monotone missing data patterns, respectively.

1.3 Outline of Paper

The paper is organized as follows. In Section 2, we introduce the data structure and notation.

In Section 3, we introduce our class of missing data assumptions, indexed by sensitivity

analysis. We present a theorem that shows that the joint distribution of the outcomes in

a world without missing data is identified for each member of the class of missing data

assumptions. In Section 4, we consider how to draw inference in finite samples. We propose

to model the distribution of the observed data using random forests and estimate functionals
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of the distribution of interest using the plug-in principle. Section 5 presents a re-analysis of

CTN-0044. The last section is devoted to a discussion.

2. Data Structure and Notation

We consider a trial in which a binary outcome (e.g., substance use) is scheduled to be

measured at K post-baseline clinic visits. Let Y
(1)
k denote the binary outcome at visit k

(k = 1, . . . , K). Let Rk be the binary indicator that Y
(1)
k is observed. Let Yk = Y

(1)
k if Rk = 1

and Yk =? if Rk = 0. Let Ok be the observed data at visit k; it can be represented by

(Rk, Yk) or by the two-dimensional vector Ok = (I(Rk = 1, Yk = 1), I(Rk = 1, Yk = 0)). For

a time varying quantity Zk, let
←−
Z k = (Z1, . . . , Zk) and

−→
Z k = (Zk+1, . . . , ZK). Assume that

we observe n independent and identically distributed copies for
←−
OK . The goal is to use the

observed data to draw inference about a feature of the distribution of
←−
Y

(1)
K . This feature is

the target parameter of interest.

Below, we define P1(o1) = P (O1 = o1) and, for k = 2, . . . , K, Pk(←−o k) = Pk(
←−
O k = ←−o k)

and Pk(ok|←−o k−1) = P (Ok = ok|
←−
O k−1 =←−o k−1). We use P̂1(o1), P̂k(←−o k) and P̂k(ok|←−o k−1) to

denote the corresponding estimators.

3. Assumptions and Identification

We build a novel class of missing data assumptions using the exponential tilting device (Cox

and Barndorff-Nielsen, 1994). Imagine a stratum of individuals who share the same substance

use history prior to visit k and same observed data after visit k. Now, imagine splitting the

stratum into two sets: those who provide outcome data at visit k (stratum A) and those who

do not (stratum B). We assume

P (Y
(1)
k = 1|Rk = 0,

←−
Y

(1)
k−1,
−→
O k︸ ︷︷ ︸

Stratum B

) ∝ P (Y
(1)
k = 1|Rk = 1,

←−
Y

(1)
k−1,
−→
O k︸ ︷︷ ︸

Stratum A

) exp(αk) (1)
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where αk is the sensitivity analysis parameter. When αk > 0 (< 0), it is assumed that

stratum B individuals are more (less) likely to have Y
(1)
k = 1 than stratum A individuals.

As αk →∞ (−∞), it is assumed that all individuals in stratum B have Y
(1)
k = 1 (Y

(1)
k = 0).

Notice that when αk = 0 for all k, the benchmark assumption A6 is obtained.

Figure 1 presents a directed acyclic graph (DAG) representation of our assumptions for

the case when K = 4. In this DAG, there are arrows into Yk from Y
(1)
k and Rk since Yk is a

deterministic function of these latter variables. The red arrow from Y
(1)
k into Rk represents

the dependence implied by the sensitivity analysis parameter αk. The red arrows will be

absent when αk = 0 for all k.

[Figure 1 about here.]

Theorem 1: The distribution of
←−
Y

(1)
K is identified under Assumption (1) for specified

←−α K.

Proof. By mathematical induction, we can show that

P (
←−
Y

(1)
k =←−y (1)

k ,
−→
O k = −→o k) (2)

is identifiable for all k, ←−y (1)
k and −→o k. For k = 0, identification is trivial since (2) is equal to

P (O1 = o1, . . . , OK = oK). Suppose that (2) is identified for k = s − 1 (s > 1) - induction

hypothesis. We need to prove that it is identfied for k = s. By the law of total probability,

P (
←−
Y (1)

s =←−y (1)
s ,
−→
O s = −→o s) =

1∑
j=0

P (
←−
Y

(1)
s−1 =←−y (1)

s−1, Ys = ys, Rs = j,
−→
O s = −→o s)

Now, P (
←−
Y

(1)
s−1 = ←−y (1)

s−1, Y
(1)
s = y

(1)
s , Rs = 1,

−→
O s = −→o s) is equal to P (

←−
Y

(1)
s−1 = ←−y (1)

s−1,
−→
O s−1 =

−→o s−1) with (Os = os) = (Rs = 1, Y
(1)
s = y

(1)
s ), which is identified by the induction hypothesis.

To complete the proof, it is sufficient to establish identification of P (
←−
Y

(1)
s−1 = ←−y (1)

s−1, Y
(1)
s =

y
(1)
s , Rs = 0,

−→
O s = −→o s), which can be written as

P (Y (1)
s = y(1)s |Rs = 0,

←−
Y

(1)
s−1 =←−y (1)

s−1,
−→
O s = −→o s)︸ ︷︷ ︸

Term 1

P (
←−
Y

(1)
s−1 =←−y (1)

s−1, Rs = 0,
−→
O s = −→o s)︸ ︷︷ ︸

Term 2
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Term 2 is equal to P (
←−
Y

(1)
s−1 = ←−y (1)

s−1,
−→
O s−1 = −→o s−1) with (Os = os) = (Rs = 0), which is

identified by the induction hypothesis. Term 1 is identified since it can be determined by

right hand side of (1), which is itself identified by the induction hypothesis. By setting k = K

in (2), we obtain identification of P (
←−
Y

(1)
K =←−y (1)

K ).

4. Inference

To estimate the P (
←−
Y

(1)
K =←−y (1)

K ) for specified ←−α K , we estimate the distribution of
←−
OK and

use it as a plug-in into the identification procedure described in the proof of Theorem 1. To

proceed, note that

PK(←−o K) = P1(o1)
K∏
k=2

Pk(ok|←−o k−1) (3)

To estimate the joint distribution of
←−
OK , we form the product of separate estimates of each

distribution on the right hand side of (3). Specifically, we estimate the distribution O1 by

its empirical distribution and then estimate Ok given
←−
O k−1, for k = 2, . . . , K using random

forests. Briefly, the random forest algorithm is built on top of the classification and regression

tree (CART) algorithm, which creates a risk prediction model by recursively partitioning

the covariate space
←−
O k−1 using binary splits (Breiman et al., 1984). With ternary outcomes

(Ok), the decision to split is made by minimizing a measure of impurity (e.g., Gini impurity).

For fully grown CART trees splitting is continued until each terminal node has at most D

observations, for a pre-determined integer D.

With the aim of improving prediction accuracy, Breiman (1996) proposed an ensemble

algorithm, referred to as bagging, that averages fully grown CART trees built using different

bootstrap samples. To de-correlate the individual trees in the ensemble, the random forest

algorithm (Breiman, 2001) modifies bagging by only considering a subset of the covariates

at each splitting decision.

Let P̂K(←−o K) = P̂1(o1)
∏K

k=2 P̂k(ok|←−o k−1) denote the estimated distribution of
←−
OK derived
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using the above procedure. The random forest algorithm for estimating Pk(ok|←−o k−1) involves

the following steps:

(1) Create B sets of bootstrap weights W
(b)
k =

{
W

(b)
k,1 , . . . ,W

(b)
k,n

}
, b = 1, . . . , B. Each set

is independently drawn from a multinomial distribution with n “trials” and n “event

probabilities”, all equal to 1/n. The bth set of weights will be used to grow the bth tree.

In words, W
(b)
k,i is the bootstrap weight corresponding to observation i (i = 1, . . . , n)

in tree b (b = 1, . . . , B) used in the random forest algorithm associated with the kth

(k = 2, . . . , K) conditional distribution.

(2) For each set of bootstrap weights, build a fully grown CART tree, where at each splitting

decision only mtry (mtry < k − 1) randomly selected covariates are considered for

splitting. From these trees, we create B estimated conditional probabilities of Ok = ok

given
←−
O k−1 =←−o k−1, which we denote by φ̂

(b)
k (ok;←−o k−1), b = 1, . . . , B. The aggregated es-

timated conditional distribution, P̂k(ok|←−o k−1) = 1
B

∑B
b=1 φ̂

(b)
k (ok;←−o k−1), is our estimator

of Pk(ok|←−o k−1).

The sample space of Ok is ternary. It follows that the cardinality of the sample space of
←−
O k

is finite. We refer to the distinct values of the sample space of
←−
O k that occur with a positive

probability as “histories” and denote them by ←−o (1)
k , . . . ,←−o (Lk)

k , where Lk 6 3k. Using the

finite cardinality of the sample space of
←−
O k−1 and that K, B and D are fixed, the probability

that each bootstrap sample has at least D ←−o (l)
k−1, for all l = 1, . . . , Lk−1, converges to one as

n→∞. As the random forest algorithm uses fully grown trees, it follows that asymptotically

all trees in random forest algorithm k will have the same terminal nodes (with probability

one) and each terminal node will correspond to a specific history ←−o (l)
k−1.

Hence, the random forest estimator of Pk(ok|←−o k−1) is only defined for ←−o k−1 =←−o (l)
k−1 and

(P̂k((1, 0)|←−o (l)
k−1), P̂k((0, 1)|←−o (l)

k−1)) (l = 1, . . . , Lk−1) is asymptotically equivalent to

(ψ̂k((1, 0)|←−o (l)
k−1), ψ̂k((0, 1)|←−o (l)

k−1)),
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where, for ok = (1, 0), (0, 1), ψ̂k(ok|←−o (l)
k−1) = 1

B

∑B
b=1 ψ̂

(b)
k (ok|←−o (l)

k−1) and

ψ̂
(b)
k (ok|←−o (l)

k−1) =

∑n
i=1W

(b)
k,i I(
←−
O k−1,i =←−o (l)

k−1, Ok,i = ok)∑n
i=1W

(b)
k,i I(
←−
O k−1,i =←−o (l)

k−1)
for ok = (1, 0), (0, 1).

Note that ψ̂
(b)
k (ok|←−o (l)

k−1) is the bth bootstrap weighted proportion of outcomes Ok that equal

ok among those with
←−
O k−1 equal to ←−o (l)

k−1. Using this asymptotic equivalence, we can prove

(see Appendix) that the joint distribution of
←−
OK (with support in the set {←−o (l)

K : l =

1, . . . , LK}) is
√
n consistent and asymptotic normal.

Theorem 2: P̂K(·) is
√
n consistent and asymptotically normal.

This theorem implies that our plug-in estimator of P (
←−
Y

(1)
K = ←−y (1)

K ) (and functionals

thereof), for specified ←−α K , will be
√
n consistent and asymptotically normal. The asymp-

totic normality implies asymptotic consistency of the empirical bootstrap estimator (Van

Der Vaart and Wellner, 1996, Chapter 3.6 and 3.9.3). This provides theoretical justification

for using the non-parametric bootstrap for confidence interval constructions.

5. Re-Analysis of CTN-0044

In the primary analysis of CTN-0044, individuals were defined, at each half-week, as abstinent

if their urine screen (for ten drugs) was negative and their self-report indicated no drug

use/heavy drinking days and not abstinent if their urine screen was positive even if their

self-report was missing; otherwise abstinence status was treated as missing. The 24 half-weeks

were analyzed using a logistic regression model, with site and primary substance (stimulant

vs. non-stimulant) as main effects, a linear time-by-treatment interaction during the first 16

half-weeks and a constant treatment effect during the last 8 half-weeks (primary estimand)

. Generalized estimating equations were used to account for correlation of outcomes within

individuals. The validity of the inference about the primary estimand is based on the missing

completely at random (MCAR) assumption (i.e., missingness is independent of outcomes,
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conditional on site, primary substance and treatment group). The estimated odds ratio of

abstinence during the last 8 half-weeks (TAU+ vs. TAU) was 1.62 (95% CI: 1.12 to 2.35).

For illustrative purposes, our analysis focuses on the first 6 weeks of urine data (i.e.,

K = 12). We let Y
(1)
k be the indicator of a negative urine sample at visit k. For each

treatment group, we are interested in drawing inference about the mean number of negative

urine samples, i.e., E[
∑12

k=1 Y
(1)
k ] =

∑12
k=1E[Y

(1)
k ]. Table 1 summarizes missingness patterns

by treatment group. The table shows lower rates of missing data for the TAU+ arm.

[Table 1 about here.]

We first used the random forest algorithm to estimate the distribution of the observed

data. We used 1000 trees. To evaluate the model fit, we compared empirical and model-

based estimates of the joint distribution of the observed data at all 66 pairs of time points.

For each pair, the joint distribution is represented by the cell probabilities of a three by three

table. For each table, we computed the maximum of the absolute differences between the

empirical and model-based estimates of the cell probabilities. The largest of these maximums

over the 66 tables was 1.82%. In contrast, the largest of the maximums based on a first-order

Markov model was 12.98%. This exercise demonstrates the outstanding modeling capability

of the random forest algorithm.

For each treatment group, we estimated the average number of negative urine samples

during the first 6 weeks under the following assumptions: missing completely at random

(MCAR), missing equals positive, missing equals negative and under the benchmark as-

sumption (i.e., (1) with αk = 0). Table 2 displays the treatment-specific estimates and

difference in estimates, along with 95% symmetric percentile bootstrap confidence intervals

(parametric bootstrap for benchmark analysis; non-parametric bootstrap for other analyses;

5000 samples). With the exception of the missing equals abstinent analysis, all analyses are

consistent with treatment effects favoring TAU+, with an estimated difference in the number
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abstinent days on the order of 1 day. Relative to MCAR, the treatment-specific estimates of

the mean number of negative samples is lower under the benchmark assumption, indicating

that the missing urine samples are more likely (under the benchmark assumption) to be

positive than those observed.

[Table 2 about here.]

In our analysis, we assumed αk = α over all k. For each treatment group and each α

(ranging from -10 to 10), we estimated the mean number of negative samples. The results

(along with 95% symmetric percentile bootstrap confidence intervals - parametric bootstrap;

5000 samples) are presented in Figure 2. Notice that as α→∞ and α→ −∞, the estimates

trend toward the missing=positive and missing=negative assumptions, respectively. Figure

3 is a contour plot which shows that inferences are highly sensitive, as one deviates away

from the benchmark assumption. For example, when the sensitivity analysis parameters in

the TAU and TAU+ groups are 0.0 and -1.0, respectively, the estimated difference is 0.47

(95% CI: -0.39 to 1.32), indicating more equivocal evidence of a treatment relative to the

benchmark analysis.

[Figure 2 about here.]

[Figure 3 about here.]

To better understand the choice of sensitivity analysis parameters, consider Figure 4. For

each treatment group, we display as a function of α, the percent difference between the

estimated probability of a negative urine sample at visit k (k = 1, . . . , 12) for those who do

not provide a sample and the observed proportion of negative urine samples among those who

provide a sample. At α = 0, the percent difference ranges across visits from -41% and -14%

for TAU and from -42% and -19% for TAU+. At α = 10 (α = −10) these ranges are 36% to

77% (-100% to -79%) and 24% to 48% (-100% to -94%) for TAU and TAU+, respectively.
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While it is impossible to determine the true value of α, substance abuse researchers can use

their scientific and clinical judgment to rule out specific choices. Clinical experience suggests

that when patients with a substance use disorder avoid appointments, they are likely not

doing well and using substances. It is therefore reasonable to assume that, ceteris paribus,

individuals in treatment for substance use disorders, who miss a visit and do not provide

urine samples, have a lower chance of testing negative than individuals who provide a urine

sample. Thus, α > 0 can be ruled out. By focusing on the lower left quadrant of Figure 3,

we see there is great sensitivity of inferences.

[Figure 4 about here.]

6. Simulation Study

We used the treatment-specific estimates of the distribution of the observed data computed

using the random forest algorithm as the true observed data generating mechanism. We

evaluate the performance of our procedures for various αk = α values ranging from -5 to 5.

For each α, the true treatment-specific mean number of negative visits was computed using

Theorem 1. In the simulation, the sample size for each dataset was 250 and the number of

datasets generated was set to 500. For the computation of symmetric, percentile parametric

bootstrap confidence intervals, 1000 samples were generated. The random forest algorithm

applied to the generated datasets used 500 trees. The results of the simulation are shown in

Table 3. The table shows low bias and coverage close to the nominal level.

[Table 3 about here.]
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7. Software and Implementation

The methods have been implemented in the R package salbm. The package can be installed

in R from Github by install github("olssol/salbm"). A web-application for the method

has also been developed using R Shiny and is included in salbm.

8. Discussion

In this paper, we developed a novel global sensitivity analysis procedure for the analysis

randomized trials in which (1) participants are scheduled to have binary outcomes assessed

at fixed points in time after randomization and (2) some of the outcomes may be missing

in a non-monotone or intermittent fashion. Our procedure was built using random forests

to model the distribution of the observed data. We established
√
n asymptotic theory for

the random forest estimator of the distribution of the observed data and, using the plug-in

principle, established
√
n asymptotics for smooth functionals.

There is a key computational limitation to our approach. It requires storage and operation

on a 3K vector of probabilities. This starts to become computationally infeasible when K >

15. To address this problem, we plan, in a follow-up manuscript, to reduce the dimension of

our model by introducing Markovian-type conditional independence restrictions.

Another next step is to develop an extension to handle continuous outcomes. Unfortunately,

the asymptotic theory for the random forest estimator is substantially more complex for

continuous outcomes. Previous work establishing asymptotic normality of predictions from

the random forest algorithm in the continuous case has deviated substantially from the

traditional random forest algorithm, e.g., simplifying the theoretical developments by using

subsampling instead of bootstrapping. Furthermore, either no rate of convergence results are

provided (Mentch and Hooker, 2016) or strict assumptions are imposed on the trees that

serve as building blocks of the forests (Wager and Athey, 2018). Thus, the continuous case
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will likely require a different strategy, e.g., using an influence function-based approach as in

Scharfstein et al. (2018).

Appendix

Lemma 3: For a fixed L, let An, Bn,1, . . . , Bn,L be p0 × 1, . . . , pL × 1 random vectors

and constants tl ∈ Rpl , l = 0, . . . , L be given. Let Rn be a sequence of random quantities.

Denote ψn(t0) = E[exp{itT0An}] and γn,l(tl|Rn) = E[exp{itTl Bn,l}|Rn], l = 1, . . . , L, as the

characteristic functions associated with the marginal distribution of An and the conditional

distributions of Bn,l given Rn, respectively. Let A and Bl, l = 1, . . . , L, be random vectors

with characteristic functions ψ(t0) = E[exp{itT0A}] and γl(tl) = E[exp{itTl Bl}], respectively.

Assume the following:

A.1 The random variable An is a deterministic function of Rn.

A.2 For l 6= l′, Bn,l and Bn,l′ are independent conditioned on Rn.

A.3 The sequence of characteristic functions ψn(t0) → ψ(t0) and ψ(t0) is a deterministic

function of t0.

A.4 For l = 1, . . . , L, the sequence of characteristic functions γl(tl|Rn)→ γl(tl) in probability

and γl(tl) is a deterministic function of tl.

Under Assumptions A.1− A.4,

(AT
n , B

T
n,1, . . . , B

T
n,L)T converges in distribution to (AT , BT

1 , . . . , B
T
L )T

and the components of the limiting vector are independent.

Proof. For l ∈ {1, . . . , L}, let tl = (tT0 , . . . , t
T
l )T and define

αn,l(tl) = E[exp{i(tl)T (AT
n , B

T
n,1 . . . , B

T
n,l)

T}]

as the characteristic function of (AT
n , B

T
n,1, . . . , B

T
n,l)

T , and

αl(tl) = E[exp{i(tl)T (AT , BT
1 . . . , B

T
l )T}]
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as the characteristic function of (AT , BT
1 , . . . , B

T
l )T .

The proof uses induction. Start by proving the result when L = 1. Using Assumption A.1

and the tower rule for conditional expectations,

αn,1(t1) = E
[
exp{itT0An} exp{itT1Bn,1}

]
= E

[
exp{itT0An}E[exp{itT1Bn,1}|Rn]

]
= E

[
exp{itT0An}γn,1(t1|Rn)

]
= E

[
exp{itT0An} {γn,1(t1|Rn)− γ1(t1)}

]
+ {ψn(t0)− ψ(t0)} γ1(t1) + ψ(t0)γ1(t1)

Hence,

|αn,1(t1)− ψ(t0)γ1(t1)| 6 |ψn(t0)− ψ(t0)||γ1(t1)|+ E[| exp{itT0An}||γn,1(t1|Rn)− γ1(t1)|]

As |γ1(t1)| = |E[exp{itT1B1}]| 6 1 and | exp{itT0An}| 6 1, it follows from Assumptions A.3

and A.4 that

|αn,1(t1)− ψ(t0)γ1(t1)| → 0

The result for L = 1 follows from Levy’s continuity theorem as ψ(t0)γ1(t1) is the characteristic

function of (AT , BT
1 )T with A and B1 independent.

Now assume that (AT
n , B

T
n,1, . . . , B

T
n,L−1) converges in distribution to (AT , BT

1 , . . . , B
T
L−1)

and the components of the limiting vector are independent. We want to show that (AT
n , B

T
n,1, . . . , B

T
n,L)

converges in distribution to (AT , BT
1 , . . . , B

T
L ) and the components of the limiting vector are

independent.

By the induction assumption

αn,L−1(tL−1)→ αL−1(tL−1) = ψ(t0)
L−1∏
l=1

γl(tl).
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Using the tower rule for conditional expectations and Assumptions A.1− A.4 gives

αn,L(tL)

= E
[
E
[
exp{i(tT0 , . . . , tTL)(An, B

T
n,1, . . . , B

T
n,L)T}|Rn

]]
= E

[
exp{itT0An}E

[
exp{i(tT1 , . . . , tTL)(BT

n,1, . . . , B
T
n,L)T}|Rn

]]
= E

[
exp{itT0An}E[exp{itTLBn,L}|Rn]E

[
exp{i(tT1 , . . . , tTL−1)(BT

n,1, . . . , B
T
n,L−1)

T}|Rn

]]
= E

[
E
[
exp{i(tT0 , tT1 , . . . , tTL−1)(AT

n , B
T
n,1, . . . , B

T
n,L−1)

T}E[exp{itTLBn,L}|Rn]|Rn

]]
= E

[
exp{i(tT0 , tT1 , . . . , tTL−1)(AT

n , B
T
n,1, . . . , B

T
n,L−1)

T}E[exp{itTLBn,L}|Rn]
]

= E
[
exp{i(tT0 , tT1 , . . . , tTL−1)(AT

n , B
T
n,1, . . . , B

T
n,L−1)

T}γn,L(tL|Rn)
]

= E
[
exp{i(tT0 , tT1 , . . . , tTL−1)(AT

n , B
T
n,1, . . . , B

T
n,L−1)

T}{γn,L(tL|Rn)− γL(tL)}
]

+

{αn,L−1(tL−1)− αL−1(tL−1)}γL(tL) + αL−1(tL−1)γL(tL)

Using the calculation above and the induction hypothesis

|αn,L(tL)− ψ(t0)
L∏
l=1

γl(tl)| 6 |αn,L−1(tL−1)− αL−1(tL−1)||γL(tL)|+

E
[
| exp{i(tL−1)T (AT

n , B
T
n,1 . . . , B

T
n,L−1)

T}||γn,L(tL|Rn)− γL(tL)|
]

As |γL(tL)| 6 1 and | exp{i(tL−1)T (AT
n , B

T
n,1 . . . , B

T
n,L−1)

T}| 6 1, it follows by the induction

hypothesis and Assumption A.4 that

αn,L(tL)→ ψ(t0)
L∏
l=1

γl(tl).

The function ψ(t0)
∏L

l=1 γl(tl) is the characteristic function of (AT , BT
1 , . . . , B

T
L )T with all

components of the vector being independent. It follows from Levy’s continuity theorem that

(AT
n , B

T
n,1, . . . , B

T
n,L)T converges in distribution to (AT , BT

1 , . . . , B
T
L )T .

For a function fk : Ωk → Rqk , k = 1, . . . , K, where Ωk is the sample space for
←−
O k, and for

a given b ∈ {1, . . . , B}, define

P(b)
n,k(fk) =

1

n

n∑
i=1

W
(b)
k,i fk(

←−
O k,i)

T ,
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Pn,k(fk) =
1

n

n∑
i=1

fk(
←−
O k,i)

T ,

and

Pk(fk) = E[fk(
←−
O k)T ].

Lemma 4: If, for all k ∈ {1, . . . , K}, fk : Ωk → Rqk has finite covariance matrix, then

√
n

(
Pn,1(f1)− P1(f1),

1

B

B∑
b=1

P(b)
n,2(f2)− P2(f2), . . . ,

1

B

B∑
b=1

P(b)
n,K(fK)− PK(fK)

)T

is asymptotically normal.

Proof. For compactness of notation throughout the proof of the lemma we drop the

dependence on fk when writing P(b)
n,k(fk), Pn,k(fk), and Pk(fk).

We start by showing that the conditions of Lemma 3 hold when

An =
√
n((Pn,1 − P1)

T , . . . , (Pn,K − PK)T )T (A.1)

Bn,l =
√
n

(
P(b)
n,k − Pn,k

)
, l ∈ {(b, k) : k = 2, . . . , K, b = 1, . . . , B}, (A.2)

and Rn is the observed data On.

As
√
n((Pn,1−P1)

T , . . . , (Pn,K−PK)T )T is a deterministic function ofOn, Assumption A.1 in

Lemma 3 is satisfied. Assumption A.3 of Lemma 3 follows since
√
n((Pn,1−P1)

T , . . . , (Pn,K−

PK)T )T is asymptotically normal by the central limit theorem.

By the independence of the bootstrap weights, W
(b)
k,i is independent of W

(b′)
k′,i′ for (b, k) 6=

(b′, k′), b ∈ {1, . . . , B}, k ∈ {2, . . . , K}, i, i′ ∈ {1, . . . , n}. Hence for (b, k) 6= (b′, k′),
√
n

(
P(b)
n,k−

Pn,k

)
is independent of

√
n

(
P(b′)
n,k′−Pn,k′

)
conditioned on the observed data On. This implies

that Assumption A.2 from Lemma 3 is satisfied.

Example 3.6.10 in Van Der Vaart and Wellner (1996) shows that the multinomial boot-

strap weights satisfy the conditions required for Theorem 3.6.13 in Van Der Vaart and

Wellner (1996) to hold. This theorem combined with the Portmanteau Theorem imply that,

√
n

(
P(b)
n,k−Pn,k

)
is asymptotically normal conditioned on the observed data On for all pairs
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(b, k), k ∈ {2, . . . , K}, b ∈ {1, . . . , B} and the limit is the same for almost all sequences of

data. It follows that Assumption A.4 of Lemma 3 is satisfied.

Lemma 3 gives that when An and Bn,l are defined as in (A.1) and (A.2),

√
n

(
(Pn,1 − P1)

T , . . . ,(Pn,K − PK)T ,

(
P(1)
n,2 − Pn,2

)T

, . . . ,

(
P(B)
n,2 − Pn,2

)T

,

. . . ,

(
P(1)
n,K − Pn,K

)T

, . . . ,

(
P(B)
n,K − Pn,K

)T
)T

has a limiting distribution which is normally distributed.

We can write

√
n

((
Pn,1 − P1

)T

,

(
1

B

B∑
b=1

P(b)
n,2 − P2

)T

, . . . ,

(
1

B

B∑
b=1

P(b)
n,K − PK

)T
)T

=
√
n

((
Pn,1 − P1

)T

, . . . ,

(
Pn,K − PK

)T
)T

+
√
n

(
0,

(
1

B

B∑
b=1

P(b)
n,2 − Pn,2

)T

, . . . ,

(
1

B

B∑
b=1

P(b)
n,K − Pn,K

)T
)T

.

Using the decomposition above,

√
n

((
Pn,1 − P1

)T

,

(
1

B

B∑
b=1

P(b)
n,2 − P2

)T

, . . . ,

(
1

B

B∑
b=1

P(b)
n,K − PK

)T
)T

is a linear function of

√
n

(
(Pn,1 − P1)

T , . . . ,(Pn,K − PK)T ,

(
P(1)
n,2 − Pn,2

)T

, . . . ,

(
P(B)
n,2 − Pn,2

)T

,

. . . ,

(
P(1)
n,K − Pn,K

)T

, . . . ,

(
P(B)
n,K − Pn,K

)T
)T

It follows that,

√
n

((
Pn,1 − P1

)T

,

(
1

B

B∑
b=1

P(b)
n,2 − P2

)T

, . . . ,

(
1

B

B∑
b=1

P(b)
n,K − PK

)T
)T

is asymptotically normal.

Proof of Theorem 2

Proof. Consistency follows from the asymptotic equivalence of ψ̂k(·|←−o (l)
k−1) and P̂k(·|←−o (l)

k−1),

the bootstrap consistency results of Csörgo (1992) and the continuous mapping theorem.
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Set f
(1)
1 (
←−
O 1) = (I(O1 = (1, 0)), I(O1 = (0, 1)))T and, for k = 2, . . . , K,

f
(1)
k (
←−
O k|←−o (l)

k−1) =
I(
←−
O k−1 =←−o (l)

k−1) (I(Ok = (1, 0)), I(Ok = (0, 1)))T

Pk−1(
←−o (l)

k−1)
.

Note that

Pk(f
(1)
k (
←−
O k|←−o (l)

k−1)) = (Pk((1, 0)|←−o (l)
k−1), Pk((0, 1)|←−o (l)

k−1))
T

With this choice of f
(1)
k (
←−
O k|←−o (l)

k−1) (k = 2, . . . , K), notice that

P(b)
n,k(f

(1)
k ) =

∑n
i=1W

(b)
k,i I(
←−
O k−1,i =←−o (l)

k−1) (I(Ok,i = (1, 0)), I(Ok,i = (0, 1)))

nPk−1(
←−o (l)

k−1))

which is equivalent to (ψ̂
(b)
k ((1, 0)|←−o (l)

k−1), ψ̂
(b)
k ((0, 1)|←−o (l)

k−1)) except that
∑n

i=1W
(b)
k,i I(
←−
O k−1,i =

←−o (l)
k−1) is replaced by nPk−1(

←−o (l)
k−1).

Now,

((
ψ̂k

(
(1, 0)|←−o (l)

k−1

)
, ψ̂k

(
(0, 1)|←−o (l)

k−1

))
− Pk(f

(1)
k )
)

=

(
1

B

B∑
b=1

P(b)
n,k(f

(1)
k )− Pk(f

(1)
k )

)
−(

1

B

B∑
b=1

{
1
n

∑n
i=1W

(b)
k,i I(
←−
O k−1,i =←−o (l)

k−1) (I(Ok,i = (1, 0)), I(Ok,i = (0, 1)))

1
n

∑n
i=1W

(b)
k,i I(
←−
O k−1,i =←−o (l)

k−1)Pk−1(
←−o (l)

k−1)

}
×{

1

n

n∑
i=1

W
(b)
k,i I(
←−
O k−1,i =←−o (l)

k−1)− Pk−1(
←−o (l)

k−1)

})
(A.3)

By bootstrap consistency (Csörgo, 1992),

1
n

∑n
i=1W

(b)
k,i I(
←−
O k−1,i =←−o (l)

k−1) (I(Ok,i = (1, 0)), I(Ok,i = (0, 1)))

1
n

∑n
i=1W

(b)
k,i I(
←−
O k−1,i =←−o (l)

k−1)Pk−1(
←−o (l)

k−1)
−

E[(I(Ok = (1, 0)), I(Ok = (0, 1))) |
←−
O k−1 =←−o (l)

k−1]

Pk−1(
←−o (l)

k−1)
= oP (1). (A.4)

It follows from the proof of Lemma 4 that

√
n

(
1

n

n∑
i=1

W
(b)
k,i I(
←−
O k−1,i =←−o (l)

k−1)− Pk−1(
←−o (l)

k−1)

)
= OP (1). (A.5)

Combining equations (A.4) and (A.5) and Slutky’s theorem, we can write the second term
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on the right hand side of (A.3) as

(
1

B

B∑
b=1

{
1
n

∑n
i=1W

(b)
k,i I(
←−
O k−1,i =←−o (l)

k−1) (I(Ok,i = (1, 0)), I(Ok,i = (0, 1)))

1
n

∑n
i=1W

(b)
k,i I(
←−
O k−1,i =←−o (l)

k−1)Pk−1(
←−o (l)

k−1)

}
×{

1

n

n∑
i=1

W
(b)
k,i I(
←−
O k−1,i =←−o (l)

k−1)− Pk−1(
←−o (l)

k−1)

})

=

(
1

B

B∑
b=1

{
1
n

∑n
i=1W

(b)
k,i I(
←−
O k−1,i =←−o (l)

k−1) (I(Ok,i = (1, 0)), I(Ok,i = (0, 1)))

1
n

∑n
i=1W

(b)
k,i I(
←−
O k−1,i =←−o (l)

k−1)Pk−1(
←−o (l)

k−1)

−
E[(I(Ok = (1, 0)), I(Ok = (0, 1))) |

←−
O k−1 =←−o (l)

k−1]

Pk−1(
←−o (l)

k−1)

}
×{

1

n

n∑
i=1

W
(b)
k,i I(
←−
O k−1,i =←−o (l)

k−1)− Pk−1(
←−o (l)

k−1)

})
+(

1

B

B∑
b=1

E[(I(Ok = (1, 0)), I(Ok = (0, 1))) |
←−
O k−1 =←−o (l)

k−1]

Pk−1(
←−o (l)

k−1)
×{

1

n

n∑
i=1

W
(b)
k,i I(
←−
O k−1,i =←−o (l)

k−1)− Pk−1(
←−o (l)

k−1)

})

=

(
1

B

B∑
b=1

E[(I(Ok = (1, 0)), I(Ok = (0, 1))) |
←−
O k−1 =←−o (l)

k−1]

P (
←−
O k−1 =←−o (l)

k−1)
×{

1

n

n∑
i=1

W
(b)
k,i I(
←−
O k−1,i =←−o (l)

k−1)− Pk−1(
←−o (l)

k−1)

})
+ oP (1/

√
n).

Hence,

((
ψ̂k

(
(1, 0)|←−o (l)

k−1

)
, ψ̂k

(
(0, 1)|←−o (l)

k−1

))
− Pk(f

(1)
k )
)

=

(
1

B

B∑
b=1

P(b)
n,k(f

(1)
k )− Pk(f

(1)
1 )

)
−(

1

B

B∑
b=1

E[(I(Ok = (1, 0)), I(Ok = (0, 1))) |
←−
O k−1 =←−o (l)

k−1]

Pk−1(
←−o (l)

k−1)
×{

1

n

n∑
i=1

W
(b)
k,i I(
←−
O k−1,i =←−o (l)

k−1)− Pk−1(
←−o (l)

k−1)

})
+ oP (1/

√
n)

=

(
1

B

B∑
b=1

P(b)
n,k(f

(2)
k )− Pk(f

(2)
k )

)
+ oP (1/

√
n), (A.6)
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where

f
(2)
k (
←−
O k|←−o (l)

k−1)

= f
(1)
k (
←−
O k|←−o (l)

k−1)− I(
←−
O k−1 =←−o (l)

k−1)
E[(I(Ok = (1, 0)), I(Ok = (0, 1))) |

←−
O k−1 =←−o (l)

k−1]

Pk−1(
←−o (l)

k−1)
.

In the second term of f
(2)
k (
←−
O k|←−o (l)

k−1), only I(
←−
O k−1 =←−o (l)

k−1) is summed over (indexed by i)

in the definition of P(b)
n,k(f

(2)
k ) and Pn,k(f

(2)
k ).

Hence, for k = 2, . . . , K and all←−o (l)
k−1, and using the asymptotic equivalence of ψ̂k(·|←−o (l)

k−1)

and P̂k(·|←−o (l)
k−1), gives

{(P̂k((1, 0)|←−o (l)
k−1), P̂k((0, 1)|←−o (l)

k−1))− (Pk((1, 0)|←−o (l)
k−1), Pk((0, 1)|←−o (l)

k−1))}
T

=

(
1

B

B∑
b=1

P(b)
n,k(f

(2)
k )− Pk(f

(2)
k )

)
+ oP (1/

√
n)

and

{(P̂1((1, 0)), P̂1((0, 1))− (P1((1, 0)), P1((0, 1))}T =
(
Pn(f

(1)
1 )− P1(f

(1)
1 )
)

As f
(1)
1 and f

(2)
k , k = 2, . . . , K, have a finite covariance matrix, Lemma 4 applies. It then

follows that

√
n

(
P̂1((1, 0))− P1((1, 0)), P̂1((0, 1))− P1((0, 1)),

P̂2((1, 0)|←−o (1)
1 )− P2((1, 0)|←−o (1)

1 ), P̂2((0, 1)|←−o (1)
1 )− P2((0, 1)|←−o (1)

1 )

. . .

P̂2((1, 0)|←−o (L1)
1 )− P2((1, 0)|←−o (L1)

1 ), P̂2((0, 1)|←−o (L1)
1 )− P2((0, 1)|←−o (L1)

1 )

. . .

P̂K((1, 0)|←−o (1)
K−1)− PK((1, 0)|←−o (1)

K−1), P̂K((0, 1)|←−o (1)
K−1)− PK((0, 1)|←−o (1)

K−1)

. . .

P̂K((1, 0)|←−o (LK−1)
K−1 )− PK((1, 0)|←−o (LK−1)

K−1 ), P̂K((0, 1)|←−o (LK−1)
K−1 )− PK((0, 1)|←−o (LK−1)

K−1 )

)
is asymptotically normal. Using the delta method, it then follows that

√
n(P̂K(←−o (1)

K )− PK(←−o (1)
K ), . . . , P̂K(←−o (LK)

K )− PK(←−o (LK)
K ))



22 Biometrics, 000 0000

is asymptotically normal.
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(1)
1 Y

(1)
2 Y

(1)
3 Y

(1)
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R1 R2 R3 R4

Y1 Y2 Y3 Y4

Figure 1: Directed acyclic graph representation (DAG) of (1) with K = 4. In this DAG,

there are arrows into Yk from Y
(1)
k and Rk since Yk is a deterministic function of these

latter variables. The red arrow from Y
(1)
k into Rk represents the dependence implied by the

sensitivity analysis parameter αk. The red arrows will be absent when αk = 0 for all k.



26 Biometrics, 000 0000

-10 -5 0 5 10

α

4

6

8

10

N
um

be
r 

ab
st

in
en

t a
cr

os
s 

12
 h

al
f-

w
ee

ks

(a) TAU

-10 -5 0 5 10

α

4

6

8

10
N

um
be

r 
ab

st
in

en
t a

cr
os

s 
12

 h
al

f-
w

ee
ks

(b) TAU+

Figure 2: Treatment-specific estimates of mean number of negative urine samples (along
with 95% confidence intervals) as a function of α.
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Figure 3: Contour plot of estimated treatment differences, as a function of treatment-specific
sensitivity analysis parameters. Combinations of treatment-specific sensitivity parameters
with a dot indicate that the associate 95% confidence interval excludes 0. Positive effects
favor TAU+ and negative effects favor TAU.
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Figure 4: Treatment- and visit- specific estimates of percent difference between the induced
probability of a negative urine sample for individuals who do not provide a sample and the
proportion negative among those who do provide a sample, as a function of α.
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Table 1: CTN-0044: Missingness Patterns

Missingness Pattern TAU (n = 252) TAU+ (n = 255)

Complete 42 (16.7%) 81 (31.8%)
Monotone

1− 11 Missing 28 (11.1%) 18 (7.1%)
All Missing 11 (4.4%) 3 (1.2%)

Non-monotone
1 Missing 35 (13.9%) 36 (14.1%)
2 Missing 32 (12.7%) 32 (12.5%)
> 3 Missing 104 (41.3%) 85 (33.3%)
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Table 2: Inference under missing completely at random (MCAR), missing equals positive and
missing equals negative as well as under the benchmark assumption (i.e., (1) with αk = 0)

Assumption TAU TAU+ Difference

MCAR 7.86 ( 7.25, 8.47 ) 8.83 ( 8.28, 9.38 ) 0.97 ( 0.17, 1.76 ).
Missing=Positive 5.14 ( 4.60, 5.69 ) 6.48 ( 5.90, 7.06 ) 1.34 ( 0.58, 2.10 )
Missing=Negative 9.27 ( 8.87, 9.67 ) 9.64 ( 9.24, 10.04 ) 0.37 ( -0.18, 0.92 )
Benchmark 7.17 ( 6.60, 7.75 ) 8.08 ( 7.61, 8.56 ) 0.91 ( 0.06, 1.76 )
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