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Abstract

We present a global sensitivity analysis methodology for drawing inference about the mean

at the final scheduled visit in a repeated measures study with informative drop-out. We review

and critique the sensitivity frameworks developed by Rotnitzky et al. (1998, 2001) and Daniels

and Hogan (2008). We identify strengths and weaknesses of these approaches and propose an

alternative. We illustrate our approach via a comprehensive analysis of the RIS-INT-3 trial.

Keywords: Curse of Dimensionality; Explainable drop-out; Exponential Tilting; G-computation;

Identification; Missing at Random; Pattern-Mixture Model; Selection Model
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1. INTRODUCTION

In 2010, the National Research Council (NRC) issued a reported entitled ”The Prevention and

Treatment of Missing Data in Clinical Trials.” This report, commissioned by the United States

Food and Drug Administration, provides 18 recommendations targeted at (1) trial design and

conduct, (2) analysis and (3) directions for future research. As inference in the presence of missing

data ultimately requires untestable assumptions, Recommendation 15 of the NRC report states

Sensitivity analyses should be part of the primary reporting of findings from clinical

trials. Examining sensitivity to the assumptions about the missing data mechanism

should be a mandatory component of reporting.

Broadly speaking, there are three main types of sensitivity analysis: ad-hoc, local and global.

Ad-hoc sensitivity analysis involves analyzing the data using a few different methods (e.g., last

observation carried forward, complete-case analysis, mixed models, multiple imputation) and eval-

uating whether the inferences are consistent. Local sensitivity analysis evaluates how inferences

vary in a small neighborhood of a benchmark identification assumption, such as missing at ran-

dom. It is usually carried out through the computation of partial derivatives. In contrast, global

sensitivity analysis considers how inferences vary over a much larger neighborhood of identification

assumptions. Chapter 5 of the NRC report emphasizes the global approach.

1.1 Ad-Hoc Sensitivity Analysis

The problem with ad-hoc sensitivity analysis is that the assumptions that underlie these methods

can be very strong and for many of these methods unreasonable. More importantly, just because

the inferences are consistent does not mean that there are no other reasonable assumptions under

which the inference about the treatment effect is different.

1.2 Local Sensitivity Analysis

Ma, Troxel and Heitjan (2005), building on the work of Troxel, Ma and Heitjan (2004), developed

an index of local sensitivity to non-ignorable drop-out in longitudinal studies. In their approach,

they specify fully parametric models for the outcome process and the drop-out mechanism. In a

hazard model for drop-out, the risk of last being seen at a specific visit depends on the (potentially

unobserved) outcome scheduled to be collected at the next visit and a perturbation parameter ω
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(ω = 0 implies missing at random). This is the so-called Diggle and Kenward (1994) model. The

index of local sensitivity to non-ignorability is the value of the derivative of the estimator for the

parameter of interest from the outcome model with respect to ω, evaluated at ω = 0.

Verbeke et al. (2001) use the same models as Ma, Troxel and Heitjan (2005), with the exception

that the perturbation parameter is specific to subject i, i.e., ωi. Using the work of Cook (1986), they

develop a method of evaluating the local influence of subject i on inference about the parameters

of interest. Specifically, the local influence of subject i is defined as the local change in the profile

likelihood displacement curve if drop-out for subject i is not missing at random and drop-out for

all other subjects is missing at random.

Copas and Eguchi (2001) create a small expanded neighborhood model around the missing

at random model. The neighborhood is created using the Kullback-Leibler divergence metric.

They then determine a first-order approximation to the largest asymptotic bias that results from

analyzing the data under missing at random as opposed to the expanded model.

1.3 Global Sensitivity Analysis

Rotnitzky, Robins and Scharfstein (1998), Robins, Rotnitzky and Scharfstein (2000), Rotnitzky

et al. (2001), and Scharfstein, Rotnitzky and Robins (1999) developed semi-parametric global

sensitivity analysis strategies for longitudinal studies with monotone missing data. In these papers,

hereafter referred to as RRS, the hazard of drop-out at a given time is modeled as an estimable

function of the observable history of outcomes and auxiliary covariates through that time as well

as a non-identifiable, selection bias function of the outcome scheduled to be measured at the end of

the study. For each specified selection bias function, they proposed a class of unbiased estimating

functions for estimating the mean outcome at the final visit. Sensitivity analysis is conducted by

parameterizing the selection bias function and varying these parameters over ranges considered

plausible by subject matter experts. The approach is semi-parametric because no distributional

assumptions are placed on the outcomes or auxiliary covariates.

Daniels and Hogan (2008), hereafter DH, specify fully parametric models for the repeated mea-

sures within each drop-out pattern. They treat parameters of these models that are not identified

as sensitivity analysis parameters. They use fully Bayesian methods to draw inference about the

mean outcome at the final visit.
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1.4 Our Focus

In this paper, we focus on global sensitivity analysis. In our view, this approach is substantially

more informative than the local approach because it (1) allows exploration of the impact of plau-

sible assumptions outside the neighborhood of the benchmark assumption and (2) operates like

”stress testing” in reliability engineering, where a product is systematically subjected to increas-

ingly exaggerated forces/conditions in order to determine its breaking point. Global sensitivity

analysis allows one to see how far one needs to deviate from the benchmark assumption in order

for inferences to change. If the assumptions under which the inferences change are judged to be

sufficiently far from the benchmark assumption, then greater credibility is lent to the benchmark

analysis; if not, the benchmark analysis can be considered to be fragile. The approach considered

in this paper is similar in spirit to ”tipping-point” analysis (see, for example, Yan, Lee and Li,

2009).

1.5 Outline

In Section 2, we introduce the notation and data structure. We ignore auxiliary covariates in this

paper. In Section 3, we review and critique the aforementioned global approaches. In Section 4, we

introduce our new approach. In Section 5, we provide a full sensitivity analysis of the RIS-INT-3

trial, a randomized, placebo controlled trial comparing four fixed doses of risperidone, an atypical

antipsychotic, and one dose of haloperidol in schizophrenic patients. Section 6 is devoted to a

discussion, including how our approach can be extended to incorporate auxiliary covariates.

2. DATA STRUCTURE AND NOTATION

Let k = 0 (baseline), 1, . . . ,K be the scheduled assessment times. Let Yk denote the outcome

scheduled to be measured at assessment k. Define Rk to be the indicator that an individual is on-

study at assessment k. We assume that R0 = 1, and Rk = 0 implies Rk+1 = 0, for k = 1, . . . ,K− 1

(i.e., monotone drop-out). Let C = max{k : Rk = 1}, so C = K means that the individual

completed the study. We use the notational convention Y k = (Y0, . . . , Yk) and Y k = (Yk+1, . . . , YK).

The observed data for an individual is O = (C, Y C). We assume that we observe n i.i.d copies of

O, and we want to estimate µ = E[YK ].
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3. REVIEW AND CRITIQUE OF RRS AND DH

3.1 RRS

RRS showed that µ is non-parametrically identified under the following pattern-mixture modeling

assumption:

f(YK |C = k, Y k) =
f(YK |C ≥ k + 1, Y k) exp(qk(Y k, YK))

E[exp{qk(Y k, YK)} C ≥ k + 1, Y k]
for k = 0, . . . ,K − 1,

where qk(Y k, YK) is a specified function of YK and Y k, which is non-identifiable and varied, using

subject-matter guidance, in a sensitivity analysis. At each time k, this assumption relates, condi-

tional on past history Y k, the distribution of YK for those who are last seen at assessment k to

those who are on study at k+1. When qk is constant in YK for all k, then the model indicates that,

conditional on past history Y k, individuals who drop-out between assessments k and k+1 have the

same distribution of YK as those who are on study at k+ 1. In this case, RRS refer to drop-out as

explainable (or missing at random). If qk is an increasing (decreasing) function of YK for some k,

then the model indicates that individuals who drop-out between assessments k and k + 1 tend to

have higher (lower) values of YK than those who are on study at k + 1. In this case, RRS refer to

drop-out as non-explainable (or non-ignorable). RRS showed that the above modeling assumption

can be expressed in a selection model format as follows:

logit{P [C = k C ≥ k, Y k, YK ]} = hk(Y k) + qk(Y k, YK)

where

hk(Y k) = logit{P [C = k C ≥ k, Y k]} − log{E[exp{qk(Y k, YK)} C ≥ k + 1, Y k]}

In this form, qk quantifies the influence of YK on the risk of dropping out between assessments k

and k + 1, after controlling for the past history Y k.

RRS argued that, due to the curse of dimensionality, additional modeling restrictions were

required in order to obtain estimates of µ that converge at rates fast enough (i.e.,
√
n) to be of

practical use. They further argued that the most flexible way to introduce these restrictions was

to parametrically impose modeling assumptions on hk(Y k). Ultimately, the model they propose

places semi-parametric restrictions on the distribution of the observed data.

RRS derived the class of all estimating functions, which involve two pieces. The first piece is the

typical inverse weighted estimating function, where individuals with complete data are re-weighted
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by their probability of completing the study. The second piece is called the augmentation term,

which brings in information on those who do not complete the study. Both pieces involve user-

specified functions that affect the efficiency of the resulting estimator. The most efficient choice

of these functions is very complicated to compute and RRS provide some guidance about how to

derive reasonably efficient estimators.

Although the RRS approach has great utility and offers the robustness associated with semi-

parametric modeling, there are several aspects of their approach that are dissatisfying. First,

we have found that subject matter experts who have been exposed to the RRS technology have

difficulty quantifying how the distal outcome scheduled to be measured at the end of the study

affects the risk of dropping out at intermediate time points. Rather, we found that these experts

were more comfortable thinking about how the outcome scheduled to be measured at assessment

k + 1 affects the risk of dropping out between assessments k and k + 1. Second, the parametric

restrictions on hk(Y k) induce restrictions on the distribution of the observed data that allow one

to, in theory, rule out specific choices of qk. That is, qk becomes identifiable. To address this issue,

RRS recommend that one impose the weakest parametric restrictions on hk(Y k), so that (1) µ is

√
n-estimable and (2) the power of testing any specific choice of qk in finite samples is close to zero.

Third, their estimation approach for hk(Y k) and any associated model selection procedure will be

computationally intensive, as it must be performed for each choice of the functions qk.

3.2 DH

DH specify (a) fully parametric models for f(Y k|C = k), whose parameters are identifiable and (b)

fully parametric models for f(Y k|C = k, Y k), whose parameters are not identified. They express

the non-identified parameters in terms of identified parameters and sensitivity analysis parameters.

The parameter µ can then be expressed in terms of the identifiable parameters and the sensitivity

analysis parameters.

For example, in the case where K = 2 and the outcomes are continuous, DH (Chapter 10)

model f(Y k|C = k) in pieces as follows: Y0|C = k ∼ N(µ(k), σ(k)), Y1|Y0, C = 1 and Y1|Y0, C =

2 ∼ N(α
(≥1)
0 + α

(≥1)
1 Y0, τ

(≥1)
1 ) and Y2|Y0, Y1, C = 2 ∼ N(β

(2)
0 + β

(2)
1 Y0 + β

(2)
2 Y1, τ

(2)
2 ); they model

f(Y k|C = k, Y k) in pieces as follows: Y1|Y0, C = 0 ∼ N(α
(0)
0 + α

(0)
1 Y0, τ

(0)
1 ), Y2|Y0, Y1, C = 0 ∼

N(β
(0)
0 + β

(0)
1 Y0 + β

(0)
2 Y1, τ

(0)
2 ), Y2|Y0, Y1, C = 1 ∼ N(β

(1)
0 + β

(1)
1 Y0 + β

(1)
2 Y1, τ

(1)
2 ). Then they
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link the non-identified to the identified parameters as follows: α
(0)
s = α

(≥1)
s + ∆

(0:1)
αs for s = 0, 1,

β
(k)
s = β

(2)
s +∆

(k:2)
βs

for s = 0, 1, 2 and k = 0, 1, τ
(0)
1 = exp

(
∆

(0:1)
τ1

)
τ
(≥1)
1 , and τ

(k)
2 = exp

(
∆

(k:2)
τ2

)
τ
(2)
2

for k = 0, 1, where the ∆’s are sensitivity analysis parameters. When the ∆’s are all zero, then

missing at random holds. Since the number of sensitivity analysis parameters is large, DH set all

parameters equal to zero except ∆
(0:1)
α0 , ∆

(0:2)
β0

and ∆
(1:2)
β0

.

In contrast to RRS, an advantage of the modeling approach of DH is that it does not induce

identifiable restrictions on non-identified sensitivity analysis parameters. It is also a likelihood-

based procedure. Standard goodness of fit procedures can be used to check the adequacy of the

models for f(Y k|C = k). The main disadvantage of their approach is that they specify fully

parametric models for f(Y k|C = k, Y k) which are not required for identification of µ.

4. PROPOSED METHODOLOGY

Our proposed methodology will address the above concerns about the RRS and DH approaches.

In so doing, we introduce alternative assumptions/restrictions that are stronger than those of RRS

but weaker than DH. Like DH, we will rely on fully parametric models for the distribution of the

observed data.

4.1 Assumptions

Assumption 1. For k = 0, . . . ,K − 2,

f(YK |C = k, Y k, Yk+1) = f(YK |C ≥ k + 1, Y k, Yk+1) (1)

This assumption states that, for the cohort patients who are on study at assessment k, share

the same history of outcomes through that visit and have the same outcome at assessment k + 1,

the distribution of YK is the same for those who are last seen at assessment k and those who are

on-study at k + 1.

Assumption 2. For k = 0, . . . ,K − 1,

f(Yk+1|C = k, Y k) =
f(Yk+1|C ≥ k + 1, Y k) exp{rk(Y k, Yk+1)}
E[exp{rk(Y k, Yk+1)} C ≥ k + 1, Y k]

(2)

where rk(Y k, Yk+1) is a specified function of Y k and Yk+1.

This assumption relates, conditional on past history Y k, the distribution of Yk+1 for those who

drop-out between assessments k and k+ 1 to those who are on study at k+ 1. When rk is constant
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in Yk+1 for all k, then the model indicates that, conditional on past history Y k, individuals who

drop-out between assessments k and k + 1 have the same distribution of Yk+1 as those on-study

at k + 1. If rk is an increasing (decreasing) function of Yk+1 for some k, then the model indicates

that individuals who drop-out between assessments k and k+ 1 tend to have higher (lower) values

of Yk+1 than those who are on-study at k + 1.

It can be shown that the above modeling assumptions can be expressed in a selection model

format as follows:

logit{P [C = k C ≥ k, Y k+1, YK ]} = lk(Y k) + rk(Y k, Yk+1)

where

lk(Y k) = logit{P [C = k C ≥ k, Y k]} − log{E[exp{rk(Y k, Yk+1)} C ≥ k + 1, Y k]} (3)

Notice that lk(Y k) is identifiable since (1) P [C = k C ≥ k, Y k] and (2) f(Yk+1|C ≥ k + 1, Y k) are

identified from the distribution of the observed data. In this selection model format, rk quantifies

the influence of Yk+1 on the risk of dropping out between assessments k and k+ 1, after controlling

for the past history Y k and says that YK does not additionally influence this risk. When rk does

not depend on Yk+1 the drop-out mechanism is explainable (or missing at random). For specified

rk, Assumptions 1 and 2 place no restrictions on the distribution of observed data. Thus, rk is not

empirically verifiable.

Here, it is important to note that, unlike DH, we do not model f(YK−1, . . . , Yk+2|C = k, Y k).

It is the imposition of Assumption 1, which allows us to avoid such modeling.

4.2 Identifiability

Given rk, µ is identifiable. In establishing identifiability, we assume that the distribution of the

observed data is known and show that µ can be written as a functional of this distribution. This

follows immediately by noting (using repeated application of the law of iterated expectations) that

µ

µ = E

[
I(C = K)YK∏K−1

k=0 (1 + exp(lk(Y k) + rk(Y k, Yk+1)))−1

]
, (4)
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where the expectation is of an observed data random variable. Now, the right hand side of (4) can

be re-expressed so that

µ =

∫
y0

· · ·
∫
yK

yK∏K−1
k=0 (1 + exp(lk(yk) + rk(yk, yk+1)))−1

K−1∏
k=0

{
dF (yk+1|C ≥ k + 1, Y k = yk)P [C ≥ k + 1|C ≥ k, Y k = yk]

}
dF (y0)

=

∫
y0

· · ·
∫
yK

yK

K−1∏
k=0

{
dF (yk+1|C ≥ k + 1, Y k = yk)P [C ≥ k + 1|C ≥ k, Y k = yk]+

dF (yk+1|C ≥ k + 1, Y k = yk) exp(rk(yk, yk+1))

E[rk(Y k, Yk+1)|C ≥ k + 1, Y k = yk]
)P [C = k|C ≥ k, Y k = yk]

}
dF (y0),

(5)

where all distributions within the integrals are identifiable.

4.3 Estimation and Inference

For given rk, the identification results above suggest two approaches for estimation of µ. In both

approaches, we proceed by specifying fully parametric models for f(Yk+1|C ≥ k+1, Y k) (parameters

η) and P [C = k|C ≥ k, Y k] (parameters γ). The parameters of these models can be estimated

using maximum likelihood. Denote these parameter estimates by η̂ and γ̂, respectively.

Inverse Probability Weighted Estimator (IPW): Following (4), µ can be estimated by

En

[
I(C = K)YK∏K−1

k=0 (1 + exp(lk(Y k; η̂, γ̂) + rk(Y k, Yk+1)))−1

]
where

lk(Y k; η, γ) = logit{P [C = k|C ≥ k, Y k; γ]} − log

{∫
rk(Y k, yk+1)dF (yk+1|C ≥ k + 1, Y k; η)

}
and En[·] is the empirical expectation operator. This estimator can also be normalized, without

affecting its large sample distribution, by dividing by

En

[
I(C = K)∏K−1

k=0 (1 + exp(lk(Y k; η̂, γ̂) + rk(Y k, Yk+1)))−1

]
Normalization serves to insure that, if YK is a bounded random variable, the resulting estimator

will respect these bounds. We will refer to the normalized estimator as the IPW estimator.

The IPW estimator is not the maximum likelihood (ML) estimator of µ. This is because

it utilizes the empirical expectation operator rather than the expectation operator based on our
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model for the distribution of the observed data. The G-computation estimator discussed next is

the ML estimator of µ.

It is important to notice that in our IPW estimator, we estimated lk(Y k) indirectly via a model

for the distribution of the observed data. In contrast, one could have, like RRS, directly specified a

parametric model for lk(Y k). By adopting this latter approach, one can, in theory, rule out specific

choices of rk, which we know, by construction, is not identifiable. To see why, suppose the model

for lk(Y k) is specified to be linear in Yk and suppose that for given rk, there is statistical evidence

to suggest that the right hand side of (3) is non-linear in Yk; then we can reject that choice of rk.

To address this issue, one can, as suggested by RRS, increase the flexibility of the model for lk(Y k)

so that there will be no statistical evidence to reject any choice of rk. In our view, this is a very

cumbersome, as it must be carried out for each specification of rk.

G-computation Estimator: Following (5), estimation of µ proceeds by repeatedly applying, say

10,000 times, the following simulation procedure and averaging the resulting simulated YK ’s.

1. Simulate Y0 from its empirical distribution. Set k = 0

2. Simulate Rk+1 from P [C ≥ k + 1|C ≥ k, Y k; γ̂].

3. If Rk+1 = 1,, simulate Yk+1 from f(Yk+1|C ≥ k + 1, Y k; η̂).

4. If Rk+1 = 0, simulate Yk+1 from the right hand side of (2)

5. Set k = k + 1. If k = K then stop; otherwise go to Step 2.

This algorithm is an extension of the G-computation approach developed by Robins (1986) to

non-ignorable missing data. Robins, Rotnitzky and Scharfstein (2000) presented a G-computation

algorithm for non-ignorable missing data under a stronger set of assumptions.

In the above procedure, one needs to be able to draw from the right hand side of (2). In our

data analysis below, we used inverse cumulative distribution function (cdf) sampling. Specifically,

we generated a Uniform(0, 1) random variable and the computed, using numerical integration

(adaptive Gauss Kronrod procedure) and bisection search (Brent-Dekker algorithm), the associated

inverse of the cdf.

Both the IPW and G-computation estimators can be shown to be asymptotically normal. The
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standard error of these estimators and associated confidence intervals can be obtained via non-

parametric bootstrap. Treatment effects can be estimated by applying the above procedure sepa-

rately to each treatment arm.

4.4 Parameterization of rk(Y k, Yk+1)

It is not possible to explore all possible choices of rk(Y k, Yk+1). Thus, it is recommended that

one consider a low-dimensional parameterization that reflects expert’s beliefs about the drop-out

process. In the next section, we will choose rk(Y k, Yk+1) = αr(Yk+1), where r(·) is a specified

function that serves to quantity the experts’ belief that there is a non-linear effect (on the logistic

scale) of Yk+1 on the risk of dropping out between assessments k and k + 1 (more later). The

parameter α is varied in a sensitivity analysis. To understand the impact of various choices of

α, we recommend that one estimate the induced mean of YK among drop-outs and compare it to

the observed mean among completers. Such a comparison can be used to assess the plausibility of

specific choices of α.

5. RIS-INT-3

RIS-INT-3 was a randomized, placebo controlled trial comparing the effectiveness of four fixed doses

of risperidone and one dose of haloperidol in schizophrenic patients. 521 patients were randomized

in equal proportions to receive 8 weeks of therapy with either 2, 6, 10, 16 mg of risperidone, 20mg

haloperidol, or placebo (Marder and Meibach, 1994; Chouinard et al., 1993). The primary outcome

of interest was the total Positive and Negative Syndrome Scale score (PANSS score or simply

PANSS) after 8 weeks (day 56) of treatment. PANSS ranges from 30 to 210, with higher scores

representing greater mental illness.

During the first week of treatment, fixed titration was required to reach the maximal dose within

each treatment group. Patients were scheduled to have an assessment performed prior to random-

ization (k = 0). The patients were then assessed during 5 subsequent visits after randomization

at days 7 (k = 1), 14 (k = 2), 28 (k = 3), 42 (k = 4) and 56 (k = 5). The goal was to estimate

the mean PANSS at week 56 for each of the 6 arms and contrast the means in the active therapy

arms to the placebo arm. For purposes of this illustrative analysis, we focus on the 6mg risperidone

(n = 86) and placebo (n = 88) arms.
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There was substantial premature discontinuation of assigned therapy during the course of trial

and patients were not subsequently followed. Table 1 shows the treatment-specific cumulative

probability of premature withdrawal for the five post-baseline assessment times. Only 31% of

patients in the placebo arm completed the study; 58% of patients dropped out due to lack of

efficacy. In contrast, 62% of patients in the 6mg risperidone completed the study; 14% of patients

dropped out due to lack of efficacy. Other reasons for drop-out included adverse experiences,

withdrawal of consent and uncooperativeness. In our analysis, we do not distinguish among the

causes of drop-out.

[Table 1 about here.]

Figure 1 displays the treatment-specific trajectory of observed mean PANSS, stratified by last

assessment time. It is interesting to note that for patients who prematurely withdraw, the mean

PANSS at the last visit tends to be higher than at the previous visit. This is especially dramatic in

the placebo arm, consistent with lack of efficacy being the primary reason for premature withdrawal.

[Figure 1 about here.]

[Table 2 about here.]

In our analysis, K = 5 and Yk is PANSS at assessment k. All models were fit separately for

each treatment group. We fit the following model for drop-out:

logitP [C = k|C ≥ k, Y k] = γ0,k + γ1Yk (6)

For the observed PANSS at assessment k + 1, we fit a truncated (between 30 and 210) normal

regression model of the following form:

f(yk+1|C ≥ k + 1, Y k) =
φ
(
yk+1−η0,k+1−η1,k+1Yk

η2,k+1

)
Φ
(
210−η0,k+1−η1,k+1Yk

η2,k+1

)
− Φ

(
30−η0,k+1−η1,k+1Yk

η2,k+1

) 30 ≤ yk+1 ≤ 210 (7)

The treatment-specific parameter estimates (and associated 95% bootstrap confidence intervals)

from these models are displayed in Table 2. As the table shows, the PANSS among those on-study

at assessment k is positively associated with drop-out between assessments k and k + 1 in the

both treatment arms: the association is stronger in the placebo arm as compared to the 6 mg
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risperidone arm. Among those on-study at assessment k + 1, PANSS at assessment k is highly

positively predictive of PANSS at assessment k in both treatment arms.

For each treatment group, we evaluated the goodness of fit of the drop-out and outcomes models

by computing, respectively, two statistics: S1 = En[
∑4

k=0 I(C ≥ k)(I(C ≥ k+1)−P [C ≥ k+1|C ≥

k, Y k; γ̂])2] and S2 = En[
∑4

k=0 I(C ≥ k + 1)(Yk+1 − E[Yk+1|C ≥ k + 1, Y k; η̂])2. For well fitting

models, these statistics should be ”small.” We estimated the ”null distribution” of these statistics by

parametric bootstrap. Specifically, we simulated 1,000 datasets under our model-based estimate of

the distribution of the observed data. For each simulated dataset, we re-estimated the distribution

of the observed data using models (6) and (7) and re-computed the statistics S1 and S2. We then

computed the p-value associated with each test statistic to be the proportion of the simulated

datasets that yielded test statistics greater than the one observed. The p-values for the drop-out

model are 0.37 and 0.50 for the placebo and risperidone arms, respectively; for the outcome model

the respective p-values are 0.34 and 0.38. For each treatment group, we also compared model-

based estimates of the conditional probability of last being seen at visit k given on-study at visit

k (P [C = k|C ≥ k]) to the observed conditional proportions as well as compared model-based

estimates of the conditional mean and variance of the outcome at visit k+ 1 given on-study at visit

k + 1 (E[Yk+1|C ≥ k + 1], V ar[Yk+1|C ≥ k + 1]) to the observed conditional means and variances.

The model-based and empirical estimates agreed quite well. These analyses suggest that models

(6) and (7) provide a reasonable characterization of the distribution of the observed data.

In our analysis, we let

rk(Y k, Yk+1) = αr

(
Yk+1 − 30

180

)
where α is a sensitivity analysis parameter and r(·) is the cumulative distribution of a Beta(4, 7)

random variable (see Figure 2). To understand this choice of selection bias function, consider two

patients who are on study through assessment k and have the same history of measured factors

through that assessment. Suppose that the first and second patients have PANSS at visit k + 1 of

yk+1 and y∗k+1, respectively (yk+1 < y∗k+1). Then, the logarithm of the odds ratio of last being seen

at assessment k as opposed to remaining on study for the second versus the first patient is equal

to α{r(y
∗
k+1−30

180 )− r(yk+1−30
180 )}. Table 3 below shows the logarithm of the odds ratio for choices of

yk+1 and y∗k+1 that differ by 20 points.
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When comparing patients on the very low end or high end of the PANSS scale there is rela-

tively less difference in the risk of drop-out than when comparing patients in the middle of the

PANSS scale. Clinical experts refer to this as the floor and ceiling effect of clinical measurement

scales. At the extremes of the assessment scale patients are either very well, or extremely sick.

The nominal difference in the total value of the disease items which spread across the multiple

evaluation domains does not account for a large measurable and clinical meaningful difference in

symptomatology on both ends of the scale spectrum. In other words, a very healthy patient does

not improve in a clinically meaningfully way if the total PANSS value improves by 20 points and

a patient with severe psychosis does not worsen much in the eyes of a clinician if the score in-

creases further. Clinical assessment scales have the tendency to loose discriminatory power at the

extremes. These psychometric properties of the scale explain the lack of influence on the odds ratio

for discontinuation.

[Figure 2 about here.]

[Table 3 about here.]

[Table 4 about here.]

In what follows, we utilized the G-computation estimation approach. Table 4 displays the

treatment-specific mean PANSS at the fifth assessment under the assumption of explainable drop-

out (α = 0 in each treatment arm). For comparison, we also display the mean PANSS at the fifth

assessment for completers. In the placebo group, notice the large difference between the observed

mean and the estimated mean under explainable drop-out. In contrast, the difference in the 6mg

risperidone arm is much smaller. This is because (1) there is more drop-out in the placebo arm and

(2) there is relatively more drop-out due to lack of efficacy in the placebo arm. Under explainable

drop-out, there is greater than 18 point difference in the PANSS at the fifth assessment in favor of

6mg risperidone. The result is statistically significant at the 0.05 level as reflected by the fact that

the 95% confidence interval for the difference does not contain zero.

For each treatment group, we ranged α from -10 to 25. In the first row of Figure 5, we display

the treatment-specific mean PANSS at the fifth assessment as a function of α, along with 95%

pointwise confidence intervals. In the bottom row of Figure 5, we display the treatment-specific
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difference between the mean PANSS at the fifth assessment and the mean PANSS at the fifth

assessment among completers, as a function of α, along with 95% pointwise confidence intervals.

By viewing these latter figures, subject matter experts can judge the plausibility of various choices

of α.

[Figure 3 about here.]

Figure 6 displays a contour plot of the estimated differences between mean PANSS at the fifth

assessment for placebo vs. 6mg risperidone for various treatment-specific combinations of α. The

dots indicate whether the treatment difference would be statistically significant at the 0.05 level.

Over the majority of the plot, the results are statistically (and clinically) significant in favor of

6mg risperidone. Only if the treatment-specific values of the treatment-specific sensitivity analysis

parameters are highly differential will the results not be statistically significant. For example, α in

the placebo arm would have to be zero and α in the 6 mg risperidone arm would have to be 20. At

these values, the difference between the mean PANSS at the fifth assessment and the mean at the

fifth assessment among completers would be about 18 and 40 in the placebo and 6 mg risperidone

arms, respectively. These differences are not very reasonable, especially given that there is more

dropout due to lack of efficacy in the placebo arm. As a result, this sensitivity analysis indicates that

inference is robust to deviations from explainable drop-out. That is, 6mg risperidone is superior to

placebo in reducing the mean PANSS at the fifth assessment.

[Figure 4 about here.]

We also implemented the IPW estimation approach. In comparison to the G-computation

estimation approach, (1) the confidence intervals were noticeably wider and (2) the estimated means

as a function of α were non-monotone in the placebo arm. The IPW estimator has the advantage of

not extrapolating outside the range of the observed data. In contrast, the G-computation estimation

approach does allow for extrapolation. We noticed that when α was largely positive in the placebo

arm, the distribution of simulated values of PANSS at the final visit had substantial probability

mass placed at values higher than the observed maximum at that visit. This is due, in part, to the

small number of patients who complete the study in the placebo arm.
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6. DISCUSSION

Our proposed methodology addresses concerns about the RRS sensitivity analysis methodology

through imposition of stronger modeling assumptions, both testable and untestable. Our proposal

is similar in spirit to that of DH, except that we require weaker modeling assumptions. The

advantages of our proposed procedures are four-fold:

1. rk remains non-identifiable

2. the parameters that govern the model for the observed data can be estimated, via maximum

likelihood, independent of rk

3. the models for the observed data can be developed by an independent data analyst

4. inference for µ is fully efficient, under correct model specification

The disadvantage of the proposed procedure is that it is fully parametric and can therefore be

sensitive to model misspecification. This concern is mitigated by the fact the models can be built

using relatively standard goodness of fit procedures.

The proposed methodology can be extended to incorporate time-dependent auxiliary variables.

The importance of including these auxiliaries is to make the benchmark explainable dropout as-

sumption more tenable. If we let Vk denote the auxiliary variables scheduled to be collected at

assessment k and Wk = (Yk, Vk), then Y k on the right hand side of Equations (1)-(3) would be

replaced by W k = (W0, . . . ,Wk). In these new expressions, when rk does not depend on Yk+1, one is

assuming that for the cohort patients who are on study at assessment k and share the same history

of outcomes and auxiliaries through that visit, the risk of dropping out before next assessment does

not depend on either Yk+1 or YK . In adapting our likelihood-based approach to incorporate auxil-

iaries, the distribution of the observed data would require more modeling. Specifically, we would

need to model f(Vk+1|C ≥ k+1, Yk+1,W k). In future work, we will focus on relaxing distributional

assumptions on the law of the observed data, while preserving the advantages described above.

The first two authors have been funded by the Food and Drug Administration as well as the

Patient-Centered Outcomes Research Institute to develop software for conducting global sensitiv-

ity analysis of randomized trials with missing outcome data. The software will be available at

www.missingdatamatters.org.
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Figure 1: Treatment-specific trajectory of observed mean PANSS, stratified by last assessment time
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Figure 2: Kernel of selection bias function

50 100 150 200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

PANSS Score

S
el

ec
tio

n 
B

ia
s 

Fu
nc

tio
n 

(r
)

22



Figure 3: First row: Treatment-specific mean PANSS at the fifth assessment as a function of α,
along with 95% pointwise confidence intervals. Second Row: Treatment-specific difference between
the mean PANSS at the fifth assessment and the mean PANSS at the fifth assessment among
completers, as a function of α, along with 95% pointwise confidence intervals.
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Figure 4: Contour plot of the estimated differences between mean PANSS at the fifth assessment
for placebo vs. 6mg risperidone for various treatment-specific combinations of α. Dots indicate
whether the treatment difference would be statistically significant at the 0.05 level.
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Table 1: Treatment-specific cumulative probability of treatment termination
Cum. prob. of treatment termination

Treatment n k = 1 k = 2 k = 3 k = 4 k = 5

PLA 88 0.11 0.27 0.49 0.62 0.69
RIS 6mg 86 0.06 0.09 0.22 0.35 0.38
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Table 2: Parameter estimates (and 95% confidence intervals) for observed data models: drop-out
and PANSS

Dropout model:

Placebo Risperidone 6mg

Variable Estimate 95% CI Estimate 95% CI

Visit 1 (γ0,1) -6.34 -8.94 -4.62 -5.14 -8.39 -2.93
Visit 2 (γ0,2) -5.72 -7.97 -4.22 -5.28 -17.88 -2.89
Visit 3 (γ0,3) -4.73 -6.80 -3.29 -3.73 -5.63 -2.15
Visit 4 (γ0,4) -4.82 -6.77 -3.44 -3.44 -5.42 -1.84
Visit 5 (γ0,5) -5.48 -7.62 -4.13 -4.62 -17.01 -2.98
PANSS (γ1) 0.044 0.029 0.066 0.024 0.003 0.045

PANSS model:

Placebo Risperidone 6mg

Outcome Variable Estimate 95 % CI Estimate 95 % CI

PANSSt=1 Intercept (η0,1) 11.45 -10.68 30.43 21.47 4.38 39.83
PANSSt=0 (η1,1) 0.85 0.64 1.08 0.63 0.43 0.82
Std. Dev. (η2,1) 15.25 12.46 17.38 14.96 12.09 17.02

PANSSt=2 Intercept (η0,2) 16.80 -0.39 32.80 6.32 -4.17 17.92
PANSSt=1 (η1,2) 0.80 0.62 1.01 0.87 0.73 1.01
Std. Dev. (η2,2) 13.24 10.10 15.65 11.64 9.60 13.45

PANSSt=3 Intercept (η0,3) 14.33 -4.46 33.56 7.68 -5.99 20.20
PANSSt=2 (η1,3) 0.84 0.61 1.07 0.87 0.72 1.05
Std. Dev. (η2,3) 13.04 10.00 15.36 13.48 10.42 16.17

PANSSt=4 Intercept (η0,4) 23.57 2.75 53.53 -4.11 -17.99 10.10
PANSSt=3 (η1,4) 0.77 0.44 1.00 1.00 0.79 1.20
Std. Dev. (η2,4) 17.59 8.66 26.28 12.27 9.20 14.78

PANSSt=5 Intercept (η0,5) -2.73 -12.75 7.32 5.67 -0.88 14.07
PANSSt=4 (η1,5) 1.01 0.89 1.16 0.93 0.81 1.02
Std. Dev. (η2,5) 7.27 3.55 9.68 6.82 4.64 8.71
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Table 3: The logarithm of the odds ratio of last being seen at assessment k (among those on-study
at assessment k and who share the same history of observed data through that assessment) for
choices of yk+1 and y∗k+1 that differ by 20 points.

y∗k+1 yk+1 Log Odds Ratio

50 30 α0.02
60 40 α0.07
80 60 α0.22
100 80 α0.30
120 100 α0.24
140 120 α0.12
160 140 α0.04
180 160 α0.01
200 180 α0.00
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Table 4: Treatment-specific mean PANSS at the fifth assessment for completers and under the
assumption of explainable drop-out (α = 0 in each treatment arm).

Observed Explainable Drop-out
Mean Estimate 95% CI

Placebo 77.19 90.52 [83.82,97.43]
6mg Risperidone 68.36 72.30 [67.13,77.47]

Difference -18.22 [-26.50,-9.22]
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