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Missing Data Matters

While unbiased estimates of treatment effects can be
obtained from randomized trials with no missing data, this
is no longer true when data are missing on some patients.

The essential problem is that inference about treatment
effects relies on unverifiable assumptions about the nature
of the mechanism that generates the missing data.

While we usually know the reasons for missing data, we
do not know the distribution of outcomes for patients
with missing data, how it compares to that of patients
with observed data and whether differences in these
distributions can be explained by the observed data.
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Robert Temple and Bob O’Neil (FDA)

”During almost 30 years of review experience, the issue of
missing data in ... clinical trials has been a major concern
because of the potential impact on the inferences that
can be drawn .... when data are missing .... the analysis
and interpretation of the study pose a challenge and the
conclusions become more tenuous as the extent of
’missingness’ increases.”
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NRC Report and Sensitivity Analysis

In 2010, the National Research Council (NRC) issued a
reported entitled ”The Prevention and Treatment of
Missing Data in Clinical Trials.”

This report, commissioned by the FDA, provides 18
recommendations targeted at (1) trial design and conduct,
(2) analysis and (3) directions for future research.

Recommendation 15 states

Sensitivity analyses should be part of the primary
reporting of findings from clinical trials. Examining
sensitivity to the assumptions about the missing data
mechanism should be a mandatory component of
reporting.
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ICH, EMEA and Sensitivity Analysis

1998 International Conference of Harmonization (ICH)
Guidance document (E9) entitled ”Statistical Principles in
Clinical Trials” states: ”it is important to evaluate the
robustness of the results to various limitations of the data,
assumptions, and analytic approaches to data analysis”

The recent draft Addendum to ICH-E9 confirms the
importance of sensitivity analysis.

European Medicines Agency 2009 draft ”Guideline on
Missing Data in Confirmatory Clinical Trials” states ”[i]n
all submissions with non-negligible amounts of missing
data sensitivity analyses should be presented as support
to the main analysis.”
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PCORI and Sensitivity Analysis

In 2012, Li et al. issued the report ”Minimal Standards in
the Prevention and Handling of Missing Data in
Observational and Experimental Patient Centered
Outcomes Research”

This report, commissioned by PCORI, provides 10
standards targeted at (1) design, (2) conduct, (3) analysis
and (4) reporting.

Standard 8 echoes the NRC report, stating

Examining sensitivity to the assumptions about the
missing data mechanism (i.e., sensitivity analysis) should
be a mandatory component of the study protocol,
analysis, and reporting.
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Sensitivity Analysis

The set of possible assumptions about the missing data
mechanism is very large and cannot be fully explored. There
are different approaches to sensitivity analysis:

Ad-hoc

Local

Global
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Ad-hoc Sensitivity Analysis

Analyzing data using a few different analytic methods,
such as last or baseline observation carried forward,
complete or available-case analysis, mixed models or
multiple imputation, and evaluate whether the resulting
inferences are consistent.

The problem with this approach is that the assumptions
that underlie these methods are very strong and for many
of these methods unreasonable.

More importantly, just because the inferences are
consistent does not mean that there are no other
reasonable assumptions under which the inference about
the treatment effect is different.
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Local Sensitivity Analysis

Specify a reasonable benchmark assumption (e.g., missing
at random) and evaluate the robustness of the results
within a small neighborhood of this assumption.

What if there are assumptions outside the local
neighborhood which are plausible?
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Global Sensitivity Analysis

Evaluate robustness of results across a much broader
range of assumptions that include a reasonable benchmark
assumption and a collection of additional assumptions
that trend toward best and worst case assumptions.

Emphasized in Chapter 5 of the NRC report.

This approach is substantially more informative because it
operates like ”stress testing” in reliability engineering,
where a product is systematically subjected to
increasingly exaggerated forces/conditions in order to
determine its breaking point.

11 / 202



Global Sensitivity Analysis

In the missing data setting, global sensitivity analysis
allows one to see how far one needs to deviate from the
benchmark assumption in order for inferences to change.

”Tipping point” analysis (Yan, Lee and Li, 2009;
Campbell, Pennello and Yue, 2011)

If the assumptions under which the inferences change are
judged to be sufficiently far from the benchmark
assumption, then greater credibility is lent to the
benchmark analysis; if not, the benchmark analysis can be
considered to be fragile.
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Global Sensitivity Analysis

Restrict consideration to follow-up randomized study
designs that prescribe that measurements of an outcome
of interest are to be taken on each study participant at
fixed time-points.

First part of course will focus on monotone missing data
pattern. Second part will address how to handle
intermittent missing data patterns.

Consider the case where interest is focused on a
comparison of treatment arm means at the last scheduled
visit in a counterfactual world without missingness.
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Case Study: Quetiapine Bipolar Trial

Patients with bipolar disorder randomized equally to one
of three treatment arms: placebo, Quetiapine 300 mg/day
or Quetiapine 600 mg/day (Calabrese et al., 2005).

Randomization was stratified by type of bipolar disorder.

Short-form version of the Quality of Life Enjoyment
Satisfaction Questionnaire (QLESSF, Endicott et al.,
1993), was scheduled to be measured at baseline, week 4
and week 8.

Focus on the subset of 234 patients with bipolar 1
disorder who were randomized to either the placebo
(n=116) or 600 mg/day (n=118) arms.
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Quetiapine Bipolar Trial

600 mg/day dose was titrated to achieve target by Day 8.

In each treatment group, a dose reduction of 100 mg was
allowed to improve tolerability.

At discretion of the investigator, patients could be
discontinued from study treatment and assessments at
any time.

Patients were free to discontinue their participation in the
study at any time.

Use of psychoactive drugs, except lorazepam and
zolpidem tartrate during the first 3 weeks, was prohibited.
Investigators were allowed to prescribe other medications
for the safety and well-being of the participant.
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Quetiapine Bipolar Trial

Only 65 patients (56%) in placebo arm and 68 patients
(58%) in the 600mg/day arm had a complete set of
QLESSF scores.

Patients with complete data tend to have higher average
QLESSF scores, suggesting that a complete-case analysis
could be biased.
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Observed Data

Figure: Treatment-specific (left: placebo; right: 600 mg/day
Quetiapine) trajectories of mean QLESSF scores, stratified by last
available measurement.
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Central Question

What is the difference in the mean QLESSF score at
week 8 between Quetiapine 600 mg/day and placebo
in the counterfactual world in which all patients were
followed to that week?
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Imagination

Validity of assumptions will depend on what is imagined
about treatments that patients receive off-study.

Not imagining the continuation of assigned treatment
after occurrence of intolerable side effects or lack of
efficacy.

Imagining that patients receive treatment as close to the
assigned treatment as ethically possible.

The difference of the treatment-specific mean QLESSF
outcomes at week 8 under this imaginary, yet plausible,
treatment scenario is the target estimand of interest.
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Global Sensitivity Analysis

Inference about the treatment arm means requires two
types of assumptions:

(i) unverifiable assumptions about the distribution of
outcomes among those with missing data and

(ii) additional testable assumptions that serve to increase
the efficiency of estimation.
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Global Sensitivity Analysis

Type (i) assumptions are necessary to identify the
treatment-specific means.

By identification, we mean that we can write it as a
function that depends only on the distribution of the
observed data.

When a parameter is identified we can hope to estimate it
as precisely as we desire with a sufficiently large sample
size,

In the absence of identification, statistical inference is
fruitless as we would be unable to learn about the true
parameter value even if the sample size were infinite.
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Global Sensitivity Analysis

To address the identifiability issue, it is essential to
conduct a sensitivity analysis, whereby the data analysis is
repeated under different type (i) assumptions, so as to
investigate the extent to which the conclusions of the trial
are dependent on these subjective, unverifiable
assumptions.

The usefulness of a sensitivity analysis ultimately depends
on the plausibility of the unverifiable assumptions.

It is key that any sensitivity analysis methodology allow
the formulation of these assumptions in a transparent and
easy to communicate manner.
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Global Sensitivity Analysis

There are an infinite number of ways of positing type (i)
assumptions.

Ultimately, however, these assumptions prescribe how
missing outcomes should be ”imputed.”

A reasonable way to posit these assumptions is to

stratify individuals with missing outcomes according to
the data that we were able to collect on them and the
occasions at which the data were collected
separately for each stratum, hypothesize a connection
(or link) between the distribution of the missing outcome
with the distribution of the outcome among those with
the observed outcome and who share the same recorded
data.
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Global Sensitivity Analysis

Type (i) assumptions will not suffice when the repeated
outcomes are continuous or categorical with many levels.
This is because of data sparsity.

For example, the stratum of people who share the same
recorded data will typically be small. As a result, it is
necessary to draw strength across strata by ”smoothing.”

Without smoothing, the data analysis will rarely be
informative because the uncertainty concerning the
treatment arm means will often be too large to be of
substantive use.

As a result, it is necessary to impose type (ii) smoothing
assumptions.

Type (ii) assumptions should be scrutinized with standard
model checking techniques.
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Global Sensitivity Analysis

The global sensitivity framework proceeds by
parameterizing (i.e., indexing) the connections (i.e., type
(i) assumptions) via sensitivity analysis parameters.

The parameterization is configured so that a specific
value of the sensitivity analysis parameters (typically set
to zero) corresponds to a benchmark connection that is
considered reasonably plausible and sensitivity analysis
parameters further from the benchmark value represent
more extreme departures from the benchmark connection.
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Global Sensitivity Analysis

The global sensitivity analysis strategy that we propose is
focused on separate inferences for each treatment arm,
which are then combined to evaluate treatment effects.

Until later, our focus will be on estimation of the mean
outcome at week 8 (in a world without missing outcomes)
for one of the treatment groups and we will suppress
reference to treatment assignment.
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Notation: Quetiapine Bipolar Trial

Y0, Y1, Y2: QLESSF scores scheduled to be collected at
baseline, week 4 and week 8.

Let Rk be the indicator that Yk is observed.

We assume R0 = 1 and that Rk = 0 implies Rk+1 = 0
(i.e., missingness is monotone).

Patient is on-study at visit k if Rk = 1

Patient discontinued prior to visit k if Rk = 0

Patient last seen at visit k − 1 if Rk−1 = 1 and Rk = 0.

Y obs
k equals to Yk if Rk = 1 and equals to nil if Rk = 0.
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Notation: Quetiapine Bipolar Trial

The observed data for an individual are

O = (Y0,R1,Y
obs
1 ,R2,Y

obs
2 ),

which has some distribution P∗ contained within a set of
distributions M (type (ii) assumptions discussed later).

The superscript ∗ will be used to denote the true value of
the quantity to which it is appended.

Any distribution P ∈M can be represented in terms of
the following distributions:

f (Y0)
P(R1 = 1|Y0)
f (Y1|R1 = 1,Y0)
P(R2 = 1|R1 = 1,Y1,Y0)
f (Y2|R2 = 1,Y1,Y0).
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Notation: Quetiapine Bipolar Trial

We assume that n independent and identically distributed
copies of O are observed.

The goal is to use these data to draw inference about
µ∗ = E ∗[Y2].

When necessary, we will use the subscript i to denote
data for individual i .
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Benchmark Assumption (Missing at Random)

A0(y0): patients last seen at visit 0 (R0 = 1,R1 = 0) with
Y0 = y0.

B1(y0): patients on-study at visit 1 (R1 = 1) with
Y0 = y0.

A1(y0, y1): patients last seen at visit 1 (R1 = 1,R2 = 0)
with Y0 = y0 and Y1 = y1.

B2(y0, y1): patients who complete study (R2 = 1) with
Y0 = y0 Y1 = y1.
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Benchmark Assumption (Missing at Random)

Missing at random posits the following type (i) “linking”
assumptions:

For each y0, the distribution of Y1 and Y2 is the same for
those in stratum A0(y0) as those in stratum B1(y0).

For each y0, y1, the distribution of Y2 is the same for
those in stratum A1(y0, y1) as those in stratum B2(y0, y1).
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Benchmark Assumption (Missing at Random)

Mathematically, we can express these assumptions as follows:

f ∗(Y1,Y2|A0(y0)) = f ∗(Y1,Y2|B1(y0)) for all y0 (1)

and

f ∗(Y2|A1(y0, y1)) = f ∗(Y2|B2(y0, y1)) for all y0, y1 (2)
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Benchmark Assumption (Missing at Random)

Using Bayes’ rule, we can re-write these expressions as:

P∗(R1 = 0|R0 = 1,Y0 = y0,Y1 = y1,Y2 = y2)

= P∗(R1 = 0|R0 = 1,Y0 = y0)

and

P∗(R2 = 0|R1 = 1,Y0 = y0,Y1 = y1,Y2 = y2)

= P∗(R2 = 0|R1 = 1,Y0 = y0,Y1 = y1)

Missing at random implies:
The decision to discontinue the study before visit 1 is like
the flip of a coin with probability depending on the value
of the outcome at visit 0.
For those on-study at visit 1, the decision to discontinue
the study before visit 2 is like the flip of a coin with
probability depending on the value of the outcomes at
visits 1 and 0.
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Benchmark Assumption (Missing at Random)

MAR is a type (i) assumption. It is ”unverifiable.”

For patients last seen at visit k , we cannot learn from the
observed data about the conditional (on observed history)
distribution of outcomes after visit k .

For patients last seen at visit k , any assumption that we
make about the conditional (on observed history)
distribution of the outcomes after visit k will be
unverifiable from the data available to us.

For patients last seen at visit k , the assumption that the
conditional (on observed history) distribution of outcomes
after visit k is the same as those who remain on-study
after visit k is unverifiable.
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Benchmark Assumption (Missing at Random)

Under MAR, µ∗ is identified. That is, it can be expressed as a
function of the distribution of the observed data. Specifically,

µ∗ = µ(P∗) =

∫
y0

∫
y1

∫
y2

y2dF
∗
2 (y2|y1, y0)dF ∗1 (y1|y0)dF ∗0 (y0)

where

F ∗2 (y2|y1, y0) = P∗(Y2 ≤ y2|B2(y1, y0))

F ∗1 (y1|y0) = P∗(Y1 ≤ y1|B1(y0))

F ∗0 (y0) = P∗(Y0 ≤ y0).
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Missing Not at Random (MNAR)

The MAR assumption is not the only one that is (a)
unverifiable and (b) allows identification of the mean of Y2.
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Missing Not at Random (MNAR)

The first part of the MAR assumption (see (1) above) is

f ∗(Y1,Y2|A0(y0)) = f ∗(Y1,Y2|B1(y0)) for all y0

It is equivalent to

f ∗(Y2|A0(y0),Y1 = y1)

= f ∗(Y2|B1(y0),Y1 = y1) for all y0, y1 (3)

and
f ∗(Y1|A0(y0)) = f ∗(Y1|B1(y0)) for all y0 (4)
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Missing Not at Random (MNAR)

In building a class of MNAR models, we will retain (3):

For all y0, y1, the distribution of Y2 for patients in stratum
A0(y0) with Y1 = y1 is the same as the distribution of Y2

for patients in stratum B1(y0) with Y1 = y1.

The decision to discontinue the study before visit 1 is
independent of Y2 (i.e., the future outcome) after
conditioning on the Y0 (i.e., the past outcome) and Y1

(i.e., the most recent outcome).

Non-future dependence (Diggle and Kenward, 1994)
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Missing Not at Random (MNAR)

Generalizing (4) using Exponential Tilting

f ∗(Y1|A0(y0))

∝ f ∗(Y1|B1(y0)) exp{αr(Y1)} for all y0 (5)

Generalizing (2) using Exponential Tilting

f ∗(Y2|A1(y0, y1))

∝ f ∗(Y2|B2(y0, y1)) exp{αr(Y2)} for all y0, y1 (6)

r(y) is a specified increasing function; α is a sensitivity
analysis parameter.

α = 0 is MAR.
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Missing Not at Random (MNAR)

When α > 0 (< 0)

For each y0, the distribution of Y1 for patients in stratum
A0(y0) is weighted more heavily to higher (lower) values
than the distribution of Y1 for patients in stratum B1(y0).

For each y0, y1, the distribution of Y2 for patients in
stratum A1(y0, y1) is weighted more heavily to higher
(lower) values than the distribution of Y2 for patients in
stratum B2(y0, y1).

The amount of ”tilting” increases with the magnitude of α.
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Missing Not at Random (MNAR)

Using Bayes’ rule, we can re-write (3), (5) and (6) as:

logit P∗(R1 = 0|R0 = 1,Y0 = y0,Y1 = y1,Y2 = y2)

= l∗1 (y0;α) + αr(y1)

and

logit P∗(R2 = 0|R1 = 1,Y0 = y0,Y1 = y1,Y2 = y2)

= l∗2 (y0, y1;α) + αr(y2)

where

l∗1 (y0;α) = logit P∗(R1 = 0|R0 = 1,Y0 = y0)−
log E ∗(exp{αr(Y1)}|B1(y0))

and

l∗2 (y1, y0;α) = logit P∗(R2 = 0|R1 = 1,Y0 = y0,Y1 = y1)−
log E ∗(exp{αr(Y2)}|B2(y1, y0))
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Missing Not at Random (MNAR)

Written in this way:

The decision to discontinue the study before visit 1 is like
the flip of a coin with probability depending on the value
of the outcome at visit 0 and (in a specified way) the
value of the outcome at visit 1.

For those on-study at visit 1, the decision to discontinue
the study before visit 2 is like the flip of a coin with
probability depending on the value of the outcomes at
visits 0 and 1 and (in a specified way) the value of the
outcome at visit 2.
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Exponential Tilting Explained

f (Y |R = 0) ∝ f (Y |R = 1) exp{αr(Y )}

If [Y |R = 1] ∼ N(µ, σ2) and r(Y ) = Y ,
[Y |R = 0] ∼ N(µ + ασ2, σ2)

If [Y |R = 1] ∼ Beta(a, b) and r(Y ) = log(Y ),
[Y |R = 0] ∼ Beta(a + α, b), α > −a.

If [Y |R = 1] ∼ Gamma(a, b) and r(Y ) = log(Y ),
[Y |R = 0] ∼ Gamma(a + α, b), α > −a.

If [Y |R = 1] ∼ Gamma(a, b) and r(Y ) = Y ,
[Y |R = 0] ∼ Gamma(a, b − α), α < b.

If [Y |R = 1] ∼ Bernoulli(p) and r(Y ) = Y ,

[Y |R = 0] ∼ Bernoulli
(

p exp(α)
p exp(α)+1−p

)
.

43 / 202



Beta
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Missing Not at Random (MNAR)

For given α, µ∗ is identified. Specifically, µ∗ = µ(P∗;α) equals

∫
y0

∫
y1

∫
y2

y2

dF∗2 (y2|y1, y0){1− H∗2 (y1, y0)} +
dF∗2 (y2|y1, y0) exp{αr(y2)}∫
y′
2
dF∗2 (y′2 |y1, y0) exp{αr(y

′
2)}

H∗2 (y1, y0)

×dF∗1 (y1|y0){1− H∗1 (y0)} +
dF∗1 (y1|y0) exp{αr(y1)}∫
y′
1
dF∗1 (y′1 |y0) exp{αr(y

′
1)}

H∗1 (y0)

 dF∗0 (y0)

where

H∗2 (y1, y0) = P∗(R2 = 0|R1 = 1,Y1 = y1,Y0 = y0)

and
H∗1 (y0) = P∗(R1 = 0|R0 = 1,Y0 = y0)

µ∗ is written as a function of the distribution of the
observed data (depending on α).
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Global Sensitivity Analysis
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Global Sensitivity Analysis
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Global Sensitivity Analysis
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Inference

For given α, the above formula shows that µ∗ depends on

F ∗2 (y2|y1, y0) = P∗(Y2 ≤ y2|B2(y1, y0))

F ∗1 (y1|y0) = P∗(Y1 ≤ y1|B1(y0))

H∗2 (y1, y0) = P∗(R2 = 0|R1 = 1,Y1 = y1,Y0 = y0)

H∗1 (y0) = P∗(R1 = 0|R0 = 1,Y0 = y0).

It is natural to consider estimating µ∗ by “plugging in”
estimators of these quantities.

How can we estimate these latter quantities? With the
exception of F ∗0 (y0), it is tempting to think that we can use
non-parametric procedures to estimate these quantities.
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Inference

A non-parametric estimate of F ∗2 (y2|y1, y0) would take the
form:

F̂2(y2|y1, y0) =

∑n
i=1 R2,i I (Y2,i ≤ y2)I (Y1,i = y1,Y0,i = y0)∑n

i=1 R2,i I (Y1,i = y1,Y0,i = y0)

This estimator will perform very poorly (i.e., have high
levels of uncertainty in moderate sample sizes) because
the number of subjects who complete the study (i.e.,
R2 = 1) and are observed to have outcomes at visits 1
and 0 exactly equal to y1 and y0 will be very small and
can only be expected to grow very slowly as the sample
size increases.

As a result, a a plug-in estimator of µ∗ that uses such
non-parametric estimators will perform poorly.
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Inference - Type (ii) Assumptions

We make the estimation task slightly easier by assuming that

F ∗2 (y2|y1, y0) = F ∗2 (y2|y1) (7)

and
H∗2 (y1, y0) = H∗2 (y1) (8)

52 / 202



Inference - Kernel Smoothing

Estimate F ∗2 (y2|y1), F ∗1 (y1|y0), H∗2 (y1) and H∗1 (y0) using kernel
smoothing techniques.

To motivate this idea, consider the following non-parametric
estimate of F ∗2 (y2|y1)

F̂2(y2|y1) =

∑n
i=1 R2,i I (Y2,i ≤ y2)I (Y1,i = y1)∑n

i=1 R2,i I (Y1,i = y1)

This estimator will still perform poorly, although better
than F̂2(y2|y1, y0).

Replace I (Y1,i = y1) by φ
(

Y1,i−y1
σF2

)
, where φ(·) is

standard normal density and σF2 is a tuning parameter.

F̂2(y2|y1;σF2) =

∑n
i=1 R2,i I (Y2,i ≤ y2)φ

(
Y1,i−y1
σF2

)
∑n

i=1 R2,iφ
(

Y1,i−y1
σF2

)
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Inference - Kernel Smoothing

This estimator allows all completers to contribute, not
just those with Y1 values equal to y1

It assigns weight to completers according to how far their
Y1 values are from y1, with closer values assigned more
weight.

The larger σF2 , the larger the influence of values of Y1

further from y1 on the estimator.

As σF2 →∞, the contribution of each completer to the
estimator becomes equal, yielding bias but low variance.

As σF2 → 0, only completers with Y1 values equal to y1
contribute, yielding low bias but high variance.
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Inference - Cross-Validation

To address the bias-variance trade-off, cross validation is
typically used to select σF2 .

Randomly divide dataset into J (typically, 10)
approximately equal sized validation sets.
Let Vj be the indices of the patients in jth validation set.
Let nj be the associated number of subjects.

Let F̂
(j)
2 (y2|y1;σF2) be the estimator of F ∗2 (y2|y1) based

on the dataset that excludes the jth validation set.
If σF2 is a good choice then one would expect

CVF∗
2
(·|·)(σF2 ) =

1

J

J∑
j=1


1

nj

∑
i∈Vj

R2,i

∫ {
I (Y2,i ≤ y2)− F̂

(j)
2 (y2|Y1,i ;σF2 )

}2
dF̂◦2 (y2)︸ ︷︷ ︸

Distance for i ∈ Vj



will be small, where F̂ ◦2 (y2) is the empirical distribution of
Y2 among subjects on-study at visit 2.
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Inference - Cross-Validation

For each individual i in the jth validation set with an
observed outcome at visit 2, we measure, by the quantity
above the horizontal brace, the distance (or loss) between
the collection of indicator variables
{I (Y2,i ≤ y2) : dF̂ ◦2 (y2) > 0} and the corresponding
collection of predicted values
{F̂ (j)

2 (y2|Y1,i ;σF2) : dF̂ ◦2 (y2) > 0}.
The distances for each of these individuals are then
summed and divided by the number of subjects in the jth
validation set.

An average across the J validation/training sets is
computed.

We can then estimate F ∗2 (y2|y1) by F̂2(y2|y1; σ̂F2), where
σ̂F2 = argmin CVF∗2 (·|·)(σF2).
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Inference - Cross-Validation

We use similar ideas to estimate

F ∗1 (y1|y0)

H∗2 (y1)

H∗1 (y0)

In our software, we set σF2 = σF1 = σF and minimize a single
CV function. The software refers to this smoothing parameter
as σQ .

In our software, we set σH2 = σH1 = σH and minimize a single
CV function. The software refers to this smoothing parameter
as σP .
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Inference - Potential Problem

The cross-validation procedure for selecting tuning
parameters achieves optimal finite-sample bias-variance
trade-off for the quantities requiring smoothing.

This optimal trade-off is usually not optimal for
estimating µ∗.

The plug-in estimator of µ∗ could possibly suffer from
excessive and asymptotically non-negligible bias due to
inadequate tuning.

This may prevent the plug-in estimator from having
regular asymptotic behavior, upon which statistical
inference is generally based.

The resulting estimator may have a slow rate of
convergence, and common methods for constructing
confidence intervals, such as the Wald and bootstrap
intervals, can have poor coverage properties.

58 / 202



Inference - Correction Procedure

Let M be the class of distributions for the observed data
O that satisfy constraints (7) and (8).

For P ∈M, it can be shown that

µ(P ;α)− µ(P∗;α)

= −E ∗[ψP(O;α)− ψP∗(O;α)] + Rem(P ,P∗;α), (9)

where ψP(O;α) is a “derivative” of µ(·;α) at P and
Rem(P ,P∗;α) is a ”second-order” remainder term which
converges to zero as P tends to P∗.
The derivative is used to quantify the change in µ(P ;α)
resulting from small perturbations in P ; it also has mean
zero (i.e., E ∗[ψP∗(O;α)] = 0).

The remainder term is second order in the sense that it
can be written as or bounded by the product of terms
involving differences between (functionals of) P and P∗.
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Inference - Correction Procedure

Equation (9) plus some simple algebraic manipulation teaches
us that

µ(P̂ ;α)︸ ︷︷ ︸
Plug-in

−µ(P∗;α)

=
1

n

n∑
i=1

ψP∗(Oi ;α)− 1

n

n∑
i=1

ψP̂(Oi ;α) (10)

+
1

n

n∑
i=1

{ψP̂(Oi ;α)− ψP∗(Oi ;α)− E ∗[ψP̂(O;α)− ψP∗(O;α)]}

(11)

+ Rem(P̂ ,P∗;α) (12)

where P̂ is the estimated distribution of P∗ discussed in the
previous section.
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Inference - Correction Procedure

Under smoothness and boundedness conditions, term (11)
will be oP∗(n

−1/2) (i.e., will converge in probabity to zero
even when it is multipled by

√
n).

Provided P̂ converges to P∗ at a reasonably fast rate,
term (12) will also be oP∗(n

−1/2).

The second term in (10) prevents us from concluding that
the plug-in estimator can be essentially represented as an
average of i.i.d terms plus oP∗(n

−1/2) terms.

By adding the second term in (10) to the plug-in
estimator, we can construct a “corrected” estimator that
does have this representation.
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Inference - Correction Procedure

The corrected estimator is

µ̃α = µ(P̂ ;α)︸ ︷︷ ︸
Plug-in

+
1

n

n∑
i=1

ψP̂(Oi ;α)

The practical implication is that µ̃α converges in probability to
µ∗ and

√
n (µ̃α − µ∗) =

1√
n

n∑
i=1

ψP∗(Oi ;α) + oP∗(1)

With this representation, we see that ψP∗(O;α) is the
so-called influence function.
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Inference - Correction Procedure

By the central limit theorem, we then know that√
n (µ̃α − µ∗) converges to a normal random variable

with mean 0 and variance σ2
α = E ∗[ψP∗(O;α)2].

The asymptotic variance can be estimated by
σ̃2
α = 1

n

∑n
i=1 ψP̂(Oi ;α)2.

A (1− γ)% Wald-based confidence interval for µ∗ can be
constructed as µ̃α ± z1−γ/2σ̃α/

√
n, where zq is the qth

quantile of a standard normal random variable.
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Inference - Efficient Influence Function/Gradient

Let

π∗(y0, y1, y2;α)−1 = (1 + exp{l∗1 (y0;α) + αr(y1)})×
(1 + exp{l∗2 (y1;α) + αr(y2)})

w ∗1 (y0;α) = E ∗ [exp{αr(Y1)} | R1 = 1,Y0 = y0] ,

w ∗2 (y1;α) = E ∗ [exp{αr(Y2)} | R2 = 1,Y1 = y1] ,

g ∗1 (y0, y1;α) = {1− H∗1 (y0)}w ∗1 (y0;α) + exp{αr(y1)}H∗1 (y0).

g ∗2 (y1, y2;α) = {1− H∗2 (y1)}w ∗2 (y1;α) + exp{αr(y2)}H∗2 (y1).
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Inference - Efficient Influence Function/Gradient

ψP∗(O;α) := a∗0(Y0;α) +

R1b
∗
1(Y0,Y1;α) +

R2b
∗
2(Y1,Y2;α) +

{1− R1 − H∗1 (Y0)}c∗1 (Y0;α) +

R1{1− R2 − H∗2 (Y1)}c∗2 (Y1;α)

where
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Inference - Efficient Influence Function/Gradient

a∗0 (Y0) = E∗
[

R2Y2

π∗(Y0, Y1, Y2;α)
Y0

]
− µ(P∗;α)

b∗1 (Y0, Y1;α) = E∗
[

R2Y2

π∗(Y0, Y1, Y2;α)
R1 = 1, Y1, Y0

]
− E∗

[
R2Y2

π∗(Y0, Y1, Y2;α)
R1 = 1, Y0

]

+ E∗
[

R2Y2

π∗(Y0, Y1, Y2;α)

[
exp{αr(Y1)}
g∗1 (Y0, Y1;α)

]
R1 = 1, Y0

]
H∗1 (Y0)

{
1−

exp{αr(Y1)}
w∗1 (Y0;α)

}

b∗2 (Y1, Y2;α) = E∗
[

R2Y2

π∗(Y0, Y1, Y2;α)
R2 = 1, Y2, Y1

]
− E∗

[
R2Y2

π∗(Y0, Y1, Y2;α)
R2 = 1, Y1

]

+ E∗
[

R2Y2

π∗(Y0, Y1, Y2;α)

[
exp{αr(Y2)}
g∗2 (Y1, Y2;α)

]
R2 = 1, Y1

]
H∗2 (Y1)

{
1−

exp{αr(Y2)}
w∗2 (Y1;α)

}

c∗1 (Y0) = E∗
[

R2Y2

π∗(Y0, Y1, Y2;α)

[
exp{αr(Y1)}
g∗1 (Y0, Y1;α)

]
Y0

]

− E∗
[

R2Y2

π∗(Y0, Y1, Y2;α)

[
1

g∗1 (Y0, Y1;α)

]
Y0

]
w∗1 (Y0;α)

c∗2 (Y1) = E∗
[

R2Y2

π∗(Y0, Y1, Y2;α)

[
exp{αr(Y2)}
g∗2 (Y1, Y2;α)

]
R1 = 1, Y1

]

− E∗
[

R2Y2

π∗(Y0, Y1, Y2;α)

[
1

g∗2 (Y1, Y2;α)

]
R1 = 1, Y1

]
w∗2 (Y1;α)
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Inference - Uncertainty

Wald-based confidence intervals don’t always have
adequate coverage properties is finite samples.

In equal-tailed studentized bootstrap, the confidence
interval takes the form [µ̂− t0.975ŝe(µ̂), µ̂− t0.025ŝe(µ̂)],

where tq is the qth quantile of
{
µ̂(b)−µ̂
ŝe(µ̂(b))

: b = 1, . . . ,B
}

In symmetric studentized bootstrap, the confidence
interval takes the form [µ̂− t∗0.95ŝe(µ̂), µ̂ + t∗0.95ŝe(µ̂)],
where t∗0.95 is selected so that 95% of the distribution of{
µ̂(b)−µ̂
ŝe(µ̂(b))

: b = 1, . . . ,B
}

falls between −t∗0.95 and t∗0.95.

Useful to replace influence-function based standard error
estimator with jackknife standard error estimator.
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Quetiapine Bipolar Trial - Fit

Estimated smoothing parameters for the drop-out model
are 11.54 and 9.82 for the placebo and 600 mg arms.

Estimated smoothing parameters for the outcome model
are 6.34 and 8.05 for the placebo and 600 mg arms.

In the placebo arm, the observed percentages of last
being seen at visits 0 and 1 among those at risk at these
visits are 8.62% and 38.68%. Model-based estimates are
7.99% and 38.19%.

For the 600 mg arm, the observed percentages are
11.02% and 35.24% and the model-based estimates are
11.70% and 35.08%.

68 / 202



Quetiapine Bipolar Trial - Fit

In the placebo arm, the Kolmogorov-Smirnov distances
between the empirical distribution of the observed
outcomes and the model-based estimates of the
distribution of outcomes among those on-study at visits 1
and 2 are 0.013 and 0.033.

In the 600 mg arm, these distances are 0.013 and 0.022.

These results suggest that our model for the observed
data fits the observed data well.
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Quetiapine Bipolar Trial - MAR

Under MAR, the estimated values of µ∗ are 46.45 (95%
CI: 42.35,50.54) and 62.87 (95% CI: 58.60,67.14) for the
placebo and 600 mg arms.

The estimated difference between 600 mg and placebo is
16.42 (95% 10.34, 22.51)

Statistically and clinically significant improvement in
quality of life in favor of Quetiapine.
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Quetiapine Bipolar Trial - Sensitivity Analysis

We set r(y) = y and ranged the sensitivity analysis
parameter from -10 and 10 in each treatment arm.

According to experts, there is no evidence to suggest that
there is a differential effect of a unit change in QLESSF
on the hazard of drop-out based on its location on the
scale.
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Quetiapine Bipolar Trial - Sensitivity Analysis

Figure: Treatment-specific (left: placebo; right: 600 mg/day
Quetiapine) estimates (along with 95% pointwise confidence
intervals) of µ∗ as a function of α.
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Quetiapine Bipolar Trial - Sensitivity Analysis

Figure: Treatment-specific differences between the estimated mean
QLESSF at Visit 2 among non-completers and the estimated mean
among completers, as a function of α.
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Quetiapine Bipolar Trial - Sensitivity Analysis

Figure: Contour plot of the estimated differences between mean
QLESSF at Visit 2 for Quetiapine vs. placebo for various
treatment-specific combinations of the sensitivity analysis
parameters.
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Quetiapine Bipolar Trial - Sensitivity Analysis

Only when the sensitivity analysis are highly differential
(e.g., α(placebo) = 8 and α(Quetiapine) = −8) are the
differences no longer statistically significant.
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Quetiapine Bipolar Trial - Sensitivity Analysis
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Quetiapine Bipolar Trial - Sensitivity Analysis
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Quetiapine Bipolar Trial - Sensitivity Analysis

Conclusions under MAR are highly robust.
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Simulation Study

Generated 2500 placebo and Quetiapine datasets using
the estimated distributions of the observed data from the
Quentiapine study as the true data generating
mechanisms.

For given treatment-specific α, these true data generating
mechanisms can be mapped to a true value of µ∗.

For each dataset, the sample size was to set to 116 and
118 in the placebo and Quetiapine arms, respectively.
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Simulation Study - Bias/MSE

Placebo Quetiapine
α Estimator µ∗ Bias MSE µ∗ Bias MSE

-10 Plug-in 40.85 0.02 4.43 56.07 0.40 4.69
Corrected 0.43 4.56 0.42 4.72

-5 Plug-in 43.45 0.05 4.29 59.29 0.34 4.55
Corrected 0.27 4.26 0.24 4.35

-1 Plug-in 46.02 0.28 4.34 62.58 0.50 4.39
Corrected 0.18 4.22 0.14 4.00

0 Plug-in 46.73 0.36 4.44 63.42 0.55 4.36
Corrected 0.17 4.27 0.14 3.95

1 Plug-in 47.45 0.43 4.57 64.25 0.59 4.32
Corrected 0.16 4.36 0.15 3.92

5 Plug-in 50.48 0.66 5.33 67.34 0.59 4.20
Corrected 0.14 5.11 0.19 4.15

10 Plug-in 54.07 0.51 5.78 70.51 0.07 4.02
Corrected 0.04 6.30 -0.05 4.66
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Simulation Study - Coverage

Placebo Quetiapine
α Procedure Coverage Coverage
-10 Wald-IF 91.5% 90.5%

Wald-JK 95.0% 94.6%
Bootstrap-IF-ET 94.3% 93.8%
Bootstap-JK-ET 94.4% 93.4%
Bootstap-IF-S 95.2% 94.6%
Bootstap-JK-S 95.0% 94.6%

-5 Wald-IF 93.5% 92.9%
Wald-JK 95.0% 94.8%
Bootstrap-IF-ET 95.2% 94.6%
Bootstap-JK-ET 94.8% 94.6%
Bootstap-IF-S 95.4% 95.2%
Bootstap-JK-S 95.1% 95.2%

-1 Wald-IF 93.9% 94.2%
Wald-JK 94.9% 95.4%
Bootstrap-IF-ET 95.1% 94.8%
Bootstap-JK-ET 95.1% 94.6%
Bootstap-IF-S 95.3% 96.4%
Bootstap-JK-S 95.1% 96.3%

0 Wald-IF 93.8% 94.0%
Wald-JK 95.0% 95.4%
Bootstrap-IF-ET 94.6% 94.5%
Bootstap-JK-ET 94.6% 94.6%
Bootstap-IF-S 95.5% 96.6%
Bootstap-JK-S 95.2% 96.7%
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Simulation Study - Coverage

Placebo Quetiapine
α Procedure Coverage Coverage
1 Wald-IF 93.3% 93.7%

Wald-JK 95.1% 95.5%
Bootstrap-IF-ET 94.6% 94.6%
Bootstap-JK-ET 94.6% 94.6%
Bootstap-IF-S 95.5% 96.5%
Bootstap-JK-S 95.2% 96.5%

5 Wald-IF 90.8% 91.3%
Wald-JK 95.3% 95.7%
Bootstrap-IF-ET 93.2% 91.6%
Bootstap-JK-ET 93.8% 93.0%
Bootstap-IF-S 95.5% 95.4%
Bootstap-JK-S 95.8% 96.4%

10 Wald-IF 85.4% 87.8%
Wald-JK 94.9% 94.5%
Bootstrap-IF-ET 88.2% 87.0%
Bootstap-JK-ET 92.2% 89.7%
Bootstap-IF-S 94.6% 93.9%
Bootstap-JK-S 95.5% 95.1%
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Software

1. R

samon library
functions with pass to C code

2. SAS

procedures and macros
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The Quet1/Quet2 Dataset

proc print data = quet1;

run;

Obs V1 V2 V3

1 36 56 57

2 32 32 31

3 25 42 27

4 48 52 54

5 27 40 40

6 38 43 .

7 35 44 39

8 24 26 28

9 25 30 .

10 25 28 .

11 40 45 45

12 14 16 .

13 34 37 .

14 27 25 .

15 26 25 .

16 38 . .

17 44 . .

18 35 31 .

19 25 45 49

20 45 53 56

21 32 38 48

22 46 45 .

23 30 . .

24 43 56 43

25 42 44 41

26 34 45 47

27 34 . .
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SAS: samonDataCheck macro

samonDataCheck macro can be used to check the
missing data pattern in the data.

%samonDataCheck
(
data = input dataset
vars = variable list (in time order)
out = output data
stats = output statistics dataset
mpattern = missing pattern counts dataset
);
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SAS: samonDataCheck macro

%samonDataCheck(

data = quet1,

vars = v1 v2 v3,

out = check1,

stats = stats1t,

mpattern = pattern1);
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R: samonDataCheck function

In R, the samonDataCheck function can be used for the
same purpose:

samonDataCheck( quet1 )

> # R version of samonDataCheck is a

> # function of the same name

>

> # Check data

> chk1 <- samonDataCheck( quet1 )

>

> chk2 <- samonDataCheck( quet2 )
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samonDataCheck

Samon Data Check:

-----------------------------------------------

Number of time-points: 3

Number of subjects: 116

Minimum observed value: 14

Maximum observed value: 63

Average number of timepoints on study: 2.47

Total number of observed values: 287

Subjects observed at final timepoint: 65

Subjects observed at all timepoint: 65

Missing Patterns:

N proportion

*__ : 10 0.0862

**_ : 41 0.3534

*** : 65 0.5603
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samonDataCheck

Samon Data Check:

-----------------------------------------------

Number of time-points: 3

Number of subjects: 118

Minimum observed value: 15

Maximum observed value: 67

Average number of timepoints on study: 2.47

Total number of observed values: 291

Subjects observed at final timepoint: 68

Subjects observed at all timepoint: 68

Missing Patterns:

N proportion

*__ : 13 0.1102

**_ : 37 0.3136

*** : 68 0.5763
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R: samoneval function

samoneval function can be used to compute the loss
function for a range of σ.

Takes four arguments:

samoneval(

mat = , # input matrix to evaluate

Npart = 10, # number of partitions

sigmaList = c(0,1), # vector of sigma values

type = ”both” # compute the loss function for σH ,
σF , or both σH and σF

)

Returns a matrix containing σH and its corresponding loss
function value and σF and its corresponding loss function
value.
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R: samoneval function

> library(samon, lib.loc="../samlib")

>

> Results1 <- samoneval(

+ mat = quet1,

+ Npart = 10,

+ sigmaList = seq(0.2,30.0,by=0.1),

+ type = "both"

+ )
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R: samoneval function

> Results2 <- samoneval(

+ mat = quet2,

+ Npart = 10,

+ sigmaList = seq(0.2,30.0,by=0.1),

+ type = "both"

+ )

> ResultsH <- cbind(Results1[,1:2],

+ Results2[,1:2])

> HFPlot(ResultsH, "H.pdf", 4.2, 4.2,

+ "Loss function (H)", c(0,30),

+ c( 2.5, 4.5), c(15,4.5) )
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samonev procedure

The samonev procedure computes the loss function for a
range of σ.
samonev

data = Input dataset

out = Output dataset

npart = Number of partitions

var varlist list of variables in time order

sigma sigmalist list of sigmas
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samonev procedure

proc samonev

data = quet1

out = ev1

Npart = 10;

var v1 - v3;

sigma 0.2 to 30 by 0.1;

run;

98 / 202



0 5 10 15 20 25 30

2.
5

3.
0

3.
5

4.
0

4.
5

Treatment 1
Treatment 2

σ

Lo
ss

 F
un

ct
io

n 
(H

)

99 / 202



0 5 10 15 20 25 30

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

Treatment 1
Treatment 2

σ

Lo
ss

 F
un

ct
io

n 
(F

)

100 / 202



samon

The samon function and the samon procedure can be used to
find optimal values of σH and σF . Like many optimization
techniques providing good initial estimates can improve the
efficiency of convergence of the optimization. Within samon

we also provide an upper bound for σH and σF . Should the
algorithm begin to converge to an optimal value greater than
the upper bound, samon returns the upper bound itself rather
than search for an optimal value above this upper bound. This
is to reflect the fact that larger values of σH or σF result in
little change in the smoothing.
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R: samon function

# Example1.R
# Finding optimal Sigma_h and Sigma_f.
# ----------------------------------------
library(samon, lib.loc="../samlib")

samonResults <- samon(
mat = quet1,
Npart = 10,

InitialSigmaH = 6.0,
HighSigmaH = 50.0,

InitialSigmaF = 4.0,
HighSigmaF = 50.0

)

# print the output
print(samonResults)
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SAS: samon procedure

* Finding optimal Sigma_h and Sigma_f.;
* ----------------------------------------;
proc samon data = quet1

out = samon1
Npart = 10
Hinit = 6.0
Hhigh = 50.0
Finit = 4.0
Fhigh = 50
Hout = HM1
Fout = FM1;

var v1 - v3;
run;
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Treatment 1

proc print data = HM1 noobs;
run;

rc Niter Sigma loss
2 3 6.6918 2.7468

proc print data = FM1 noobs;
run;

rc Niter Sigma loss
2 6 3.6771 1.9057
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Treatment 2

proc print data = HM2 noobs;
run;

rc Niter Sigma loss
2 3 5.6938 2.9607

proc print data = FM2 noobs;
run;

rc Niter Sigma loss
2 3 4.6704 2.1872
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Sensitivity Analysis

Within samon the sensitivity bias function is the
cumulative function of the beta distribution, a flexible
function with bounded support.

This together with the sensitivity analysis parameter α
provides the mechanism by which we measure the
sensitivity of the results to informative drop-out.
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Sensitivity Analysis

The cumulative beta function is defined on the interval
(0,1) and in order to use it as the sensitivity bias function
we need to map the range of our data into (0,1).

In the case of QLESSF scores the data are limited to the
range 13 and 71.

We take the parameters for the cumulative beta function
ζ1 and ζ2 to be 1.
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samon procedure
samon

data = Input dataset
IFout = Influence function estimates
npart = Number of partitions
Hinit = initial value for smoothing parameter sigma H
Hhigh = Highest value for smoothing parameter sigma H
Finit = initial value for smoothing parameter sigma F
Fhigh = Highest value for smoothing parameter sigma F
lb = lower bound of data
ub = upper bound of data
zeta1 = parameter for cumulative beta distribution
zeta2 = parameter for cumulative beta distribution
nsamples = Number of bootstrap samples
seed0 = Seed to pass to random number generator

var varlist list of variables in time order
sensp senslist list of sensitivity parameters
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proc samon data = quet1 IFout = IFM1
Npart = 10
Hinit = 6.0 HHigh = 50.0
Finit = 4.0 FHigh = 50.0

lb = 13 ub = 71
zeta1 = 1.0 zeta2 = 1.0
nomj nsamples = 0 ;

var v1 - v3;
sensp -10 to 10 by 1;

run;
proc print data = IFM1 noobs;
var alpha AEst AVar IFEst IFVar;

run;
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# Produce one-step influence function estimates
# ----------------------------------------------
library(samon, lib.loc="../samlib")

Results1 <- samon(
mat = quet1,
Npart = 10,

# initial value and upper bound for sigmaH
InitialSigmaH = 6.0,
HighSigmaH = 50.0,

# initial value and upper bound for sigmaF
InitialSigmaF = 4.0,
HighSigmaF = 50.0,

AlphaList = -10:10, # alphas

lb = 13, ub = 71,
zeta1 = 1.0, zeta2 = 1.0
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alpha AEst AVar IFEst IFVar

-10 36.6909 0.08754 36.9454 1.3374

-9 36.9556 0.09050 37.2108 1.3438

-8 37.2402 0.09354 37.4881 1.3497

-7 37.5435 0.09653 37.7740 1.3547

-6 37.8641 0.09934 38.0654 1.3585

-5 38.2007 0.10185 38.3611 1.3609

-4 38.5526 0.10395 38.6609 1.3625

-3 38.9189 0.10556 38.9660 1.3641

-2 39.2993 0.10660 39.2787 1.3668

-1 39.6935 0.10701 39.6020 1.3715

0 40.1010 0.10678 39.9386 1.3792

1 40.5210 0.10590 40.2911 1.3898

2 40.9517 0.10436 40.6609 1.4026

3 41.3907 0.10222 41.0484 1.4160

4 41.8343 0.09950 41.4525 1.4278

5 42.2785 0.09626 41.8710 1.4356

6 42.7186 0.09252 42.3006 1.4374

7 43.1501 0.08832 42.7372 1.4320

8 43.5690 0.08370 43.1760 1.4190

9 43.9724 0.07871 43.6127 1.3989

10 44.3586 0.07345 44.0435 1.3729
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Confidence intervals

Use bootstrap with jackknife to compute confidence
intervals.

The NSamples argument controls the number of
bootstraps to make.

The flags mj and sj control whether jackknifes are
performed on the main (input) data and the bootstrap
samples respectively.

For a small dataset with 100 individuals, 1,000 bootstraps
each with bootstrap estimates on 50 sensitivity
parameters gives rise to 50 x 100 x 1000 = 5 million
estimates.
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proc samon data = quet1 out = samon1

Npart = 10

Hinit = 6.0 HHigh = 50.0

FInit = 4.0 FHigh = 50.0

lb = 13 ub = 71

zeta1 = 1.0 zeta2 = 1.0

NSamples = 500 seed0 = 81881

sj;

var v1-v3;

sensp -10 to 10 by 1;

run;
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%samonSummary(

data = results1,

out = data.Summary1,

sampout = data.sampSummary1

);

proc print data=data.Summary1;

var alpha IFEst lb ub;

run;
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alpha IFEst lb ub

-10 36.9454 34.2645 39.6263

-9 37.2108 34.5635 39.8580

-8 37.4881 34.9005 40.0757

-7 37.7740 35.2496 40.2984

-6 38.0654 35.5840 40.5468

-5 38.3611 35.9267 40.7955

-4 38.6609 36.2627 41.0590

-3 38.9660 36.6038 41.3281

-2 39.2787 36.9218 41.6356

-1 39.6020 37.2546 41.9493

0 39.9386 37.5628 42.3144

1 40.2911 37.8957 42.6866

2 40.6609 38.2211 43.1007

3 41.0484 38.5820 43.5148

4 41.4525 38.9005 44.0045

5 41.8710 39.2378 44.5043

6 42.3006 39.5695 45.0318

7 42.7372 39.9254 45.5490

8 43.1760 40.2880 46.0641

9 43.6127 40.5862 46.6392

10 44.0435 40.8705 47.2165
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We use the samonCrossSummary function to compute the
difference in estimates for each pair of alpha.
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%samonCrossSummary(

IFM1 = data.Summary1,

sampIF1 = data.sampSummary1,

IFM2 = data.Summary2,

sampIF2 = data.sampSummary2,

out = data.Cross

);
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macro description

samonCombine Combines results from multiple runs of proc
samon

samonSummary Summarizes samon results. Combines boot-
strap and jackknife results to produce con-
fidence intervals

samonDifferenceSummary Computes treatment effect differences
and confidence intervals from a pair of
samonSummary objects.

samonCrossSummary Computes treatment effect differences and
confidence intervals for each pair of sensi-
tivity parameters α.

samonECompleterStatus Computes the difference in the expected
value of non-completers and completers
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samonCombine macro
samonCombine combines samon results into one dataset

(

inlib = input libref

stem = results file name stem

connect = name connector

partfrom = 1 parts start at 1

partto = 100 to 100

partform = z5 format to use on partno

outlib = output libref

)
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samonSummary macro
samonSummary computes summary of samon object

(

data = input dataset to summarize

out = summary of main data

sampSummary = summary of parametric bootstrap samples

)
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samonDifferenceSummary macro
samonDifferenceSummary Treatment-specific differences

(

IFM1 = main results from samonSummary for trt 1

sampIF1 = sample results from samonSummary for trt 1

IFM2 = main results from samonSummary for trt 2

sampIF2 = sample results from samonSummary for trt 2

out = summary of difference

)
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samonCrossSummary macro
samonCrossSummary Treatment-specific differences for all pairs of

sensitivity parameter

(

IFM1 = main results from samonSummary for trt 1

sampIF1 = sample results from samonSummary for trt 1

IFM2 = main results from samonSummary for trt 2

sampIF2 = sample results from samonSummary for trt 2

out = summary of difference

)
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R: samon function

function description
samonCombine combines the outputs from samon into one

samonMat object. The results are stored as
.Rds files. samonCombine takes a list of such
files
and combines them.

samonDiff Takes two samonMat objects and produces a
samonMat object for the difference in
influence function estimates

samonBiasCorrection Takes a samonMat object and produces cor-
rected influence function estimates

samonXBiasCorrection Takes two samonMat objects (one from each
treatment groups) and for each pair of alphas
produces the difference in influence function es-
timates.
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Generalization

Yk : outcome scheduled to be measured at assessment k .

Rk : indicator that individual is on-study at assessment k .

All individuals are present at baseline, i.e., R0 = 1.

Monotone missing data: Rk+1 = 1 implies Rk = 1.

C = max{k : Rk = 1}, C = K implies that the individual
completed the study.

For any given vector z = (z1, z2, . . . , zK ),

zk = (z0, z1, . . . , zk)
zk = (zk+1, zk+2, . . . , zK ).

For each individual, the data unit O = (C ,Y C ) is drawn
from some distribution P∗ contained in the
non-parametric model M of distributions.

The observed data consist of n independent draws
O1,O2, . . . ,On from P∗.
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Generalization

By factorizing the distribution of O in terms of chronologically
ordered conditional distributions, any distribution P ∈M can
be represented by

F0(y0) := P (Y0 ≤ y0);

Fk+1(yk+1 | y k) :=
P
(
Yk+1 ≤ yk+1 | Rk+1 = 1,Y k = y k

)
,

k = 0, 1, . . . ,K − 1;

Hk+1(ȳk) := P
(
Rk+1 = 0 | Rk = 1,Y k = y k

)
,

k = 0, 1, . . . ,K − 1.

The main objective is to draw inference about µ∗ := E ∗(YK ),
the true mean outcome at visit K in a hypothetical world in
which all patients are followed to that visit.
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Missing at Random

For every y k , define the following strata:

Ak(y k): patients last seen at visit k (i.e.,
Rk = 1,Rk+1 = 0) with Y k = y k .

Bk+1(y k): patients on-study at visit k + 1 (i.e.,
Rk+1 = 1) with Y k = y k .
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Missing at Random

For all y k , the distribution of Y k for patients in
stratum Ak(y k) is the same as the distribution of Y k

for patients in stratum Bk+1(y k)

Mathematically, we can express these assumptions as follows:

f ∗(Y k |Ak(y k)) = f ∗(Y k |Bk+1(y k)) for all y k (13)
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Missing at Random

Using Bayes’ rule, we can re-write these expressions as:

P∗(Rk+1 = 0|Rk = 1,Y K = yK )

= P∗(Rk+1 = 0|Rk = 1,Y k = y k) for all yK

Written in this way, missing at random implies that the
drop-out process is stochastic with the following interpretation:

Among those on study at visit k , the decision to
discontinue the study before the next visit is like the
flip of a coin with probability depending only on the
observable history of outcomes through visit k (i.e.,
no outcomes after visit k).
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Missing at Random

Under missing at random, µ∗ is identified. That is, it can be
expressed as a functional of the distribution of the observed
data. Specifically, µ∗ = µ(P∗) is∫

y0

· · ·
∫
yK

yK

{
K−1∏
k=0

dF ∗k+1(yk+1|y k)

}
dF ∗0 (y0)
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Missing Not at Random

Equation (13) is equivalent to the following two assumptions:

f ∗(Y k+1|Ak(y k),Yk+1 = yk+1)

= f ∗(Y k+1|Bk+1(y k),Yk+1 = yk+1) for all y k+1

(14)

and

f ∗(Yk+1|Ak(y k)) = f ∗(Yk+1|Bk+1(y k)) for all y k (15)

Equation (14) posits the following ”linking” assumption:

For all y k+1, the distribution of Y k+1 for patients in
stratum Ak(y k) with Yk+1 = yk+1 is the same as the
distribution of Y k+1 for patients in stratum Bk+1(y k)
with Yk+1 = yk+1.

132 / 202



Missing Not at Random

Using Bayes’ rule, this assumption can be re-written as:

P∗(Rk+1 = 0|Rk = 1,Y K = yK )

= P∗(Rk+1 = 0|Rk = 1,Y k+1 = y k+1) for all yK

(16)

This assumption has been referred to as the ”non-future”
dependence assumption (Diggle and Kenward, 1994) because
it has the following interpretation:

Among those on study at visit k , the decision to
discontinue the study before the next visit is like the
flip of a coin with probability depending only on the
observable history of outcomes through visit k and
the potentially unobserved outcome at visit k + 1
(i.e., no outcomes after visit k + 1).

We will retain this assumption.
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Missing Not at Random

Next, we generalize (15) and impose the following exponential
tilting ”linking” assumptions:

f ∗(Yk+1|Ak(y k)) ∝ f ∗(Yk+1|Bk+1(y k)) exp(αr(Yk+1)) for all y k

(17)
where r(·) is a specified function which we will assume to be
an increasing function of its argument and α is a sensitivity
analysis parameter.
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Missing Not at Random

The missing not at random class of assumptions that we
propose involves Equations (14) and (17), where r(·) is
considered fixed and α is a sensitivity analysis parameter
that serves as the class index.

(17) reduces to (15) when α = 0. Thus, when α = 0, the
missing at random assumption is obtained.

When α > 0 (< 0), (17) implies:

For all y k , the distribution of Yk+1 for patients
in stratum Ak(y k) is weighted more heavily (i.e.,
tilted) to higher (lower) values than the
distribution of Yk+1 for patients in stratum
Bk+1(y k).

The amount of ”tilting” increases with magnitude of α.
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Inference

Three steps:
1 Assume

F ∗k+1(yk+1 | yk) = F ∗k+1(yk+1 | yk)
H∗k+1(ȳk) = H∗k+1(yk)

2 Estimate F ∗k+1(yk+1 | yk) and H∗k+1(ȳk) = H∗k+1(yk) using
non-parametric smoothing with tuning parameters
selected by cross-validation.

3 Use plug-in + average of estimated influence functions.

4 Use alternatives to Wald-based confidence intervals.
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Case Study: SCA-3004

Randomized trial designed to evaluate the efficacy and
safety of once-monthly, injectable paliperidone palmitate
(PP1M) relative to placebo (PBO) in delaying the time
to relapse in subjects with schizoaffective disorder.

Open-label phase consisting of a flexible-dose, lead-in
period and a fixed-dose, stabilization period.

Stable subjects entered a 15-month relapse-prevention
phase and were randomized to receive PP1M or placebo
injections at baseline (Visit 0) and every 28 days (Visits
1-15).

Additional clinic visit (Visit 16) scheduled for 28 days
after the last scheduled injection.

170 and 164 subjects were randomized to the PBO and
PP1M arms.
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Case Study: SCA-3004

Research question: Are functional outcomes better in
patients with schizoaffective disorder better maintained if
they continue on treatment or are withdrawn from
treatment and given placebo instead?

An ideal study would follow all randomized subjects
through Visit 16 while maintaining them on their
randomized treatment and examine symptomatic and
functional outcomes at that time point.

Since clinical relapse can have a major negative impact,
the study design required that patients who had signs of
relapse were discontinued from the study.

In addition, some patients discontinued due to adverse
events, withdrew consent or were lost to follow-up.

38% and 60% of patients in the PBO and PP1M arms
were followed through Visit 16 (p=0.0001).
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Case Study: SCA-3004
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Case Study: SCA-3004

Focus: Patient function as measured by the Personal and
Social Performance (PSP) scale.

The PSP scale is scored from 1 to 100 with higher scores
indicating better functioning based on evaluation of 4
domains (socially useful activities, personal/social
relationships, self-care, and disturbing/aggressive
behaviors).

Estimate treatment-specific mean PSP at Visit 16 in the
counterfactual world in which all patients who are
followed to Visit 16.

The mean PSP score among completers was 76.05 and
76.96 in the PBO and PP1M arms; the estimated
difference is -0.91 (95%: -3.98:2.15).
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Case Study: SCA-3004 (PBO)
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Case Study: SCA-3004 (PP1M)
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Case Study: SCA-3004
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Case Study: SCA-3004
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Case Study: SCA-3004
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Case Study: SCA-3004

Under MAR (i.e., α = 0), the estimated means of interest
are 69.60 and 74.37 for the PBO and PP1M arms.

The estimated treatment difference is −4.77 (95% CI:
-10.89 to 0.09).
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Case Study: SCA-3004
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Case Study: SCA-3004

yk+1 y ∗k+1 Log Odds Ratio
30 20 α× 0.01
40 30 α× 0.18
50 40 α× 0.40
60 50 α× 0.30
70 60 α× 0.09
80 700 α× 0.01
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Case Study: SCA-3004
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Case Study: SCA-3004
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Case Study: SCA-3004
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Simulation Study

PBO PP1M
α Estimator µ∗ Bias MSE µ∗ Bias MSE

-10 µ(P̂) 72.89 0.76 1.75 73.76 0.41 1.36
µ̂ 0.50 1.58 0.31 1.26

-5 µ(P̂) 73.38 0.52 1.42 74.25 0.26 1.14
µ̂ 0.31 1.32 0.16 1.05

-1 µ(P̂) 73.74 0.38 1.23 74.59 0.17 1.02
µ̂ 0.19 1.18 0.06 0.95

0 µ(P̂) 73.80 0.36 1.21 74.63 0.16 1.01
µ̂ 0.18 1.17 0.08 0.95

1 µ(P̂) 73.84 0.35 1.19 74.67 0.18 1.01
µ̂ 0.17 1.15 0.05 0.94

5 µ(P̂) 74.00 0.30 1.13 74.67 0.16 1.00
µ̂ 0.13 1.11 0.04 0.93

10 µ(P̂) 74.15 0.24 1.08 74.84 0.15 0.97
µ̂ 0.10 1.08 0.06 0.91
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Simulation Study

PBO PP1M
α Procedure Coverage Coverage
-10 Normal-IF 86.1% 88.6%

Normal-JK 92.1% 92.6%
Bootstrap-IF-ET 90.2% 91.9%
Bootstap-JK-ET 92.4% 93.7%
Bootstap-IF-S 92.3% 92.7%
Bootstap-JK-S 93.9% 94.3%

-5 Normal-IF 89.0% 91.7%
Normal-JK 94.1% 94.2%
Bootstrap-IF-ET 91.7% 92.6%
Bootstap-JK-ET 93.6% 94.9%
Bootstap-IF-S 94.1% 94.2%
Bootstap-JK-S 95.1% 95.1%

-1 Normal-IF 90.8% 93.4%
Normal-JK 94.9% 94.8%
Bootstrap-IF-ET 91.0% 94.0%
Bootstap-JK-ET 92.8% 94.9%
Bootstap-IF-S 94.4% 94.7%
Bootstap-JK-S 95.0% 95.3%

0 Normal-IF 90.7% 93.5%
Normal-JK 95.0% 94.9%
Bootstrap-IF-ET 92.8% 93.9%
Bootstap-JK-ET 94.3% 95.0%
Bootstap-IF-S 95.3% 94.7%
Bootstap-JK-S 96.0% 95.1%
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Simulation Study

PBO PP1M
α Procedure Coverage Coverage
1 Normal-IF 90.9% 93.5%

Normal-JK 94.9% 94.8%
Bootstrap-IF-ET 92.8% 93.5%
Bootstap-JK-ET 94.2% 95.0%
Bootstap-IF-S 95.3% 94.6%
Bootstap-JK-S 96.0% 95.2%

5 Normal-IF 91.5% 93.7%
Normal-JK 94.6% 95.1%
Bootstrap-IF-ET 92.6% 93.8%
Bootstap-JK-ET 93.8% 94.7%
Bootstap-IF-S 94.9% 95.1%
Bootstap-JK-S 96.0% 95.5%

10 Normal-IF 92.1% 93.4%
Normal-JK 94.8% 95.0%
Bootstrap-IF-ET 92.9% 93.8%
Bootstap-JK-ET 93.9% 94.8%
Bootstap-IF-S 94.7% 95.0%
Bootstap-JK-S 95.6% 95.4%
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Intermittent Missing Data

Propose a method for multiply imputing missing data
prior to the last study visit in order to create a monotone
missing data structure.

Previous methods are applied to the monotonized
datasets.

Results are averaged across imputed datasets.

Confidence intervals computed using methods that
properly accounting for uncertainty due to imputation.

155 / 202



Data Structure

Mk : indicator that Yk is unobserved at time k .

M0 = 0 and MC = 0.

Mk = 1 if Rk = 0.

Ok = (Mk ,Yk : Mk = 0).

Observed data for an individual are OK .

O0 = Y0 and C can be computed from OK as
max{k : Mk = 0}.
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Assumption

For 0 < k < C ,
Mk ⊥ Yk Y k−1,Ok (18)

While on-study, the probability of providing outcome data
at time k can depend on previous outcomes (observed or
not) and observed data after time k .

Imagine a stratum of individuals who share the same
history of outcomes prior to time k and same observed
data after time k .

Imagine splitting the stratum into two sets: those who
provide outcome data at time k (stratum B) and those
who do not (stratum A).

The distribution of the outcome at time k is the same for
these two strata.
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Assumption

For 0 < k < C ,

f ∗(Yk |Mk = 1,Y k−1,Ok︸ ︷︷ ︸
Stratum A

) = f ∗(Yk |Mk = 0,Y k−1,Ok︸ ︷︷ ︸
Stratum B

) (19)

Using Bayes’ rule, (19) can be written as follows:

P∗(Mk = 1 | Y k ,Ok) = P∗(Mk = 1 | Y k−1,Ok) : 0 < k < C .
(20)
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Assumption

In our imputation algorithm, we will use the following fact:

Mk ⊥ Yk | ρ∗k(Y k−1,Ok) : 0 < k < C (21)

where
ρ∗k(Y k−1,Ok) = P∗(Mk = 1 | Y k−1,Ok) (22)
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Assumption

Under assumption (18), the joint distribution of (C ,Y C ) (i.e.,
the monotonized data) is identified by a recursive algorithm.

160 / 202



Illustration
1

I

HB !! Mar1 17

Y0 Y1 Y2 Y3 Y4

II

YH Mar6 17

Y0 Y1 Y2 Y3 Y4

Y0 Y1 Y2 Y3 Y4

Low High

III

Y0 Y1 Y2 Y3 Y4

Low High

IV

Y0 Y1 Y2 Y3 Y4

Low High

V

V I

Y0 Y1 Y2 Y3 Y4
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Illustration
1

V I

YH Mar6 17

Y0 Y1 Y2 Y3 Y4

Y0 Y1 Y2 Y3 Y4

Low High

V II

Y0 Y1 Y2 Y3 Y4

Low High

V III

IX

Y0 Y1 Y2 Y3 Y4
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Imputation

The number of individuals contributing to the histograms
that form of the basis of the imputation strategy may be
quite small.

Rather than matching on the past outcomes and future
observed data, we plan to use (21) and match on
estimates of ρ∗k(Y k−1,Ok).
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Smoothing Assumptions

logit{ρ∗k(Y k−1,Ok)} = wk(Y k−1,Ok ; ν∗k); k = 1, . . . ,K − 1
(23)

where wk(Y k−1,Ok ; νk) is a specified function of its arguments
and νk is a finite-dimensional parameter with true value ν∗k .

164 / 202



Simultaneous Estimation/Imputation

The parameters ν∗k (k = 1, . . . ,K − 1) can be estimated and
the intermittent missingness can be imputed using the
following sequential procedure:

1 Set k = 1.
2 Estimate ν∗k by ν̂k as the solution to:

n∑
i=1

Rk,idk(Y k−1,i ,Ok,i ; νk)
(
Mk,i − expit{wk(Y k−1,i ,Ok,i ; νk)}

)
= 0,

where

dk(Y k−1,Ok ; ν∗k) =
∂wk(Y k−1,Ok ; νk)

∂νk
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Simultaneous Estimation/Imputation

3 For each individual i with Rk,i = 1, compute

ρ̂k(Y k−1,i ,Ok,i) = expit{wk(Y k−1,i ,Ok,i ; ν̂k)}.

Let
Jk = {i : Rk,i = 1,Mk,i = 0}
J ′k = {i : Rk,i = 1,Mk,i = 1}.

For each individual i ∈ J ′k , impute Yk,i by randomly
selecting an element from the set{
Yk,l : l ∈ Jk , ρ̂k(Y k−1,l ,Ok,l) is ”near” ρ̂k(Y k−1,i ,Ok,i)

}
4 Set k = k + 1. If k = K then stop. Otherwise, return to

Step 2.
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Inference

Use algorithm to create to M monotone missing datasets.

Apply monotone missing data methods to each of these
datasets.

Overall point estimates are obtained by averaging across
imputed datasets.

µ̃α =
1

M

M∑
m=1

µ̃α,m,

where µ̃α,m is the corrrected estimator of µ∗ based on the
mth imputed dataset.
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Confidence Intervals

When M > 1, we can replace σ̃2
α with Rubin’s (1987) multiple

imputation variance estimator, i.e.,

σ̃2
α =

1

M

M∑
m=1

σ̃2
α,m +

(
1 +

1

M

)
1

M − 1

M∑
m=1

(µ̃α,m − µ̃α)2 (24)

In simulations, we have found success using (24) coupled
with symmteric bootstrap to form confidence intervals.
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Bootstrap

Let D be the observed dataset. To create a bootstrap dataset
D(b), use the following procedure:

1 Use D to estimate the ν̂k ’s and impute a monotonized
dataset D†.

2 Using D†, estimate of F ∗0 (y0), F ∗k+1(yk+1|yk) and
H∗k+1(yk) and simulate a new monotonized dataset D‡.

3 Use D‡ and the ν̂k ’s from Step 1 to create a
non-monotone dataset D(b).
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Bootstrap

In Step 3, we create a non-monotone dataset by applying the
following procedure to each patient i with Ci > 1:

1 Set k = Ci − 1.

2 Generate U ∼ Uniform(0, 1). If U < ρ̂k(Y k−1,i ,Ok,i), set
Mk,i = 1 and delete Yk,i ; otherwise set Mk,i = 0 and
retain Yk,i .

3 Set k = k − 1. If k = 0 then stop; otherwise go to step 2.
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Diabetic Peripheral Polyneuropathy

Peripheral neuropathy is a common complication of
diabetes.

Diabetic peripheral polyneuropathy is characterized by
damage to small-diameter sensory fibers in distal areas of
the peripheral nervous system.

This condition commonly manifests itself by painful
tingling or burning sensations in the hands and feet.

This pain can be so severe that it compromises
day-to-day actitivities and quality of life.
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Topiramate

Topiramate is an approved medication for the treatment
of epileptic seizures.

It operates by dampening neuronal hyperexcitability in the
central nervous system.

It was hypothesized that topiramate might also dampen
the excitability of nerves in peripheral nervous system.

Small studies were conducted that showed that
topiramate reduced the pain associated with peripheral
neuropathies, including diabetic peripheral neuropathy.

Based on these data, three placebo-controlled randomized
trials to evaluate the efficacy of different doses of
topiramate in reducing pain in patients with diabetic
peripheral polyneuropathy (Thienel et al., 2004).
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NP 001 and 002

Two these studies had nearly identical designs and will
form the basis of our second case study.

In Studies NP 001 and 002, there were baseline and
double-blind phases.

Eligibility was determined during the baseline phase that
lasted up to 28 days.

At least 7 days before randomization, subjects must have
been tapered off all background medications being used
to treat neuropathic pain.

During the baseline phase, all subjects were to have their
diabetes controlled on a stable regimen of oral
hypoglycemics, insulin, or diet alone.

The double-blind phase included 2 periods: a 10 week
titration period and a 12 week maintenance peiod.
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NP 001 and 002

The primary efficacy variable was the pain score measured
on a 100-mm Visual Analog Scale (VAS), where higher
levels of VAS indicate worse pain.

VAS scores were scheduled on day 1 of the baseline
phase, every two weeks during titration, and then
monthly during the maintenance phase.

Treatment effects were based on the difference in the
mean VAS scores at the final scheduled follow-up visit.

Adverse events and use of rescue medications was also
scheduled to be monitored throughout the double-blind
phase.

The trials were not designed to follow patients after they
discontinued their assigned therapy.
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NP 001 and 002

In NP 001, 531 subjects were randomized to one of four
study arms: placebo (n = 137), 100 mg/day (n = 129),
200 mg/day (n = 132), and 400 mg/day (n = 133).

In NP 002, 370 subjects were randomized to one of three
study arms: placebo (n = 123), 200 mg/day (n = 118),
and 400 mg/day (n = 129).

Seven subjects in NP 001 and six subjects NP 002 did not
have at least one follow-up visit and were not considered
part of the intent-to-treat (ITT) population.
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NP 001 and 002

In our analysis, we merge the data from the two studies.

We focus our analysis on a comparison of the placebo
versus 400 mg/day arms.

One individual from the 400 mg/day arm was excluded
because of undue influence on the analysis.

The sample sizes are 255 and 256 in the placebo and 400
mg/day arms, respectively.
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Missing Data Patterns

Placebo

Monotone:

N %

*________ : 5 0.0196

**_______ : 5 0.0196

***______ : 10 0.0392

****_____ : 3 0.0118

*****____ : 19 0.0745

******___ : 12 0.0471

*******__ : 12 0.0471

********_ : 5 0.0196

********* : 81 0.3176

Intermittent:

N %

*_*_***** : 14 0.0549

*_******* : 13 0.0510

****_**** : 7 0.0275

***_***** : 6 0.0235

******_** : 5 0.0196

Other : 47 0.1843
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Missing Data Patterns

400 mg/day

Monotone:

N %

*________ : 4 0.0156

**_______ : 14 0.0547

***______ : 19 0.0742

****_____ : 7 0.0273

*****____ : 19 0.0742

******___ : 10 0.0391

*******__ : 9 0.0352

********_ : 2 0.0078

********* : 67 0.2617

Intermittent:

N %

*_*______ : 15 0.0586

*_*_***** : 9 0.0352

*_******* : 8 0.0312

***_***** : 7 0.0273

*_*_***__ : 5 0.0195

Other : 56 0.2188
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Central Question

What is the difference in the mean VAS scores at the
end of the double blind phase between topiramate at
a specified dose level vs. placebo in the
counterfactual world in which there is no missing
data at that visit?
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Observed Data

Placebo
Number

On- Last Obs. Std.
k Study Seen Value Mean Dev.
0 255 5 255 58.902 19.196
1 250 5 188 53.202 23.048
2 245 14 238 48.899 24.888
3 231 5 186 45.849 23.928
4 226 27 203 42.291 25.338
5 199 24 192 38.896 25.117
6 175 15 162 37.549 25.827
7 160 10 150 35.047 26.313
8 150 150 150 35.613 26.446
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Observed Data

400 mg/day
Number

On- Last Obs. Std.
k Study Seen Value Mean Dev.
0 256 4 256 58.305 19.958
1 252 14 192 51.297 22.605
2 238 34 223 47.466 25.268
3 204 12 162 44.228 22.956
4 192 28 174 41.879 23.851
5 164 26 159 36.528 24.101
6 138 20 133 36.211 24.334
7 118 6 109 33.138 21.842
8 112 112 112 31.482 22.149
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Observed Data
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Observed Data
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Observed Data

In the placebo arm, 59.6% of individuals have a
monotone missing data pattern, with only 31.8% having
complete data.

In the 400 mg/day arm, these numbers are 59.0% and
26.2%.

There is a statistically significant difference in the
proportion of individuals who completed the study in the
placebo versus 400/day arms (58.8% vs. 42.8%;
p < 0.001).

The primary reason for premature discontinuation of the
study differed by treatment arm.

The most common reason for placebo patients was lack
of efficacy and, for 400/mg day patients, it was adverse
events.
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Observed Data

In both treatment arms, there is a decline in the average
observed VAS scores through time.

The mean of the observed VAS scores at time K = 8 is
35.6 and 31.48 in the placebo versus 400/day arms,
respectively.

A naive t-test based of the observed outcomes at time
K = 8 does not suggest a statistical difference between
the treatment arms (p = 0.17).

Patients who prematurely discontinue the study tend to
have higher VAS scores at their penultimate visit than
those who complete the study. This is true for both
treatment arms, although the differences appear
somewhat larger in the placebo group.
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Observed Data

Using last observation carried forward, the means at time
K = 8 are 43.8 and 40.6 in the placebo versus 400/day
arms, respectively. The estimated treatment difference
between 400 mg/day and placebo of -3.3.

A t-test based on LOCF also does not suggest a statistical
difference between the treatment arms (p = 0.18).
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Estimation of Smoothing Parameters - Placebo
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Estimation of Smoothing Parameters - 400 mg
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Estimation of Smoothing Parameters - Placebo
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Estimation of Smoothing Parameters - 400 mg
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Goodness of Fit
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Goodness of Fit
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Goodness of Fit
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MAR Analysis

The estimates of µ∗ are 39.07 (95% CI: 34.19 to 43.95)
and 33.06 (95% CI: 28.33 to 37.78) in the placebo and
400 mg/day arms, respectively.

These estimates correct for the fact that individuals with
higher VAS scores appear to be dropping out of the study.

The correction is bigger for placebo versus 400 mg/day
arm.

The estimated difference in means between the arms is
-6.01 (95% CI: -11.70, -0.329), indicating a statistically
significant difference in favor of the 400 mg/day arm.
This is a different inference than the naive inferences
reported above.
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Sensitivity Analysis
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Sensitivity Analysis
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Sensitivity Analysis

Placebo
400 mg/day
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Simulation Study - Five Imputes

PBO 400 mg/day
α Estimator µ∗ Bias MSE µ∗ Bias MSE

-10 µ(P̂) 31.69 0.53 4.13 25.88 1.05 4.75
µ̂ 0.10 3.76 0.60 3.75

-5 µ(P̂) 33.60 0.03 4.03 28.20 0.37 3.89
µ̂ -0.02 3.93 0.26 3.55

-1 µ(P̂) 37.10 -0.70 4.93 31.40 -0.30 3.99
µ̂ -0.32 4.41 -0.08 3.66

0 µ(P̂) 38.12 -0.82 5.23 32.35 -0.45 4.17
µ̂ -0.36 4.53 -0.16 3.77

1 µ(P̂) 39.10 -0.89 5.47 33.32 -0.59 4.39
µ̂ -0.37 4.65 -0.22 3.92

5 µ(P̂) 42.75 -1.06 6.43 37.32 -1.32 6.26
µ̂ -0.49 5.35 -0.62 5.11

10 µ(P̂) 45.59 -1.43 8.10 41.07 -2.48 11.39
µ̂ -0.70 6.50 -1.38 8.11
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Simulation Study - Five Imputes

PBO 400 mg/day
α Procedure Coverage Coverage
-10 Normal-IF(Rubin) 94.6% 93.6%

Normal-BootstrapSE 94.4% 93.8%
Bootstrap-Percentile 92.6% 86.6%
Bootstap-IF(Rubin)-ET 93.8% 94.5%
Bootstap-IF(Rubin)-S 95.4% 95.5%

-5 Normal-IF(Rubin) 93.9% 94.5%
Normal-BootstrapSE 94.3% 94.6%
Bootstrap-Percentile 93.8% 93.3%
Bootstap-IF(Rubin)-ET 94.3% 95.8%
Bootstap-IF(Rubin)-S 94.7% 95.2%

-1 Normal-IF(Rubin) 92.8% 94.8%
Normal-BootstrapSE 92.8% 94.7%
Bootstrap-Percentile 92.0% 93.4%
Bootstap-IF(Rubin)-ET 94.0% 96.0%
Bootstap-IF(Rubin)-S 94.8% 95.2%

0 Normal-IF(Rubin) 92.7% 95.1%
Normal-BootstrapSE 92.9% 95.0%
Bootstrap-Percentile 91.3% 92.5%
Bootstap-IF(Rubin)-ET 93.8% 95.9%
Bootstap-IF(Rubin)-S 94.9% 96.1%
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Simulation Study - Five Imputes

PBO 400 mg/day
α Procedure Coverage Coverage
1 Normal-IF(Rubin) 93.1% 94.6%

Normal-BootstrapSE 92.9% 94.4%
Bootstrap-Percentile 90.7% 91.8%
Bootstap-IF(Rubin)-ET 94.3% 95.7%
Bootstap-IF(Rubin)-S 95.0% 96.2%

5 Normal-IF(Rubin) 93.3% 93.2%
Normal-BootstrapSE 93.4% 93.2%
Bootstrap-Percentile 89.8% 84.5%
Bootstap-IF(Rubin)-ET 94.3% 93.3%
Bootstap-IF(Rubin)-S 95.2% 96.0%

10 Normal-IF(Rubin) 94.0% 88.6%
Normal-BootstrapSE 93.5% 88.4%
Bootstrap-Percentile 86.8% 70.6%
Bootstap-IF(Rubin)-ET 93.6% 89.7%
Bootstap-IF(Rubin)-S 96.4% 94.8%
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Honey-do List

Develop data adaptive technique for handling outliers

Incorporate auxiliary covariates
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Missing Data Matters

No substitute for better trial design and procedures to
minimize missing data.

Global sensitivity analysis should be a mandatory
component of trial reporting.

Visit us at www.missingdatamatters.org or email me
at dscharf@jhu.edu
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HT-ANAM 302 Study

Anamorelin is a drug developed for the treatment of
cancer cachexia and anorexia.

HT-ANAM 302 was a randomized, double-blind,
placebo-controlled Phase III study designed to evaluate
the efficacy of anamorelin in patients with advanced
non-small cell lung cancer.

Lean body mass (LBM) was scheduled to be measured at
baseline (Y0), 6 weeks (Y1) and 12 weeks (Y2)

Primary functional endpoint: Z = (Y2+Y1)
2
− Y0
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Death and missingness

Placebo Anamorelin
n = 157 n = 322

Died Prior to Wk 12 24 (15.3%) 54 (16.8%)
Survivors with complete data 93 (59.2%) 185 (57.5%)
Survivors missing only Wk 6 3 (1.9%) 17 (5.3%)

Survivors missing only Wk 12 17 (10.8%) 31 (9.6%)
Survivors missing both Wks 6, 12 20 (12.7%) 35 (10.9%)
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Central Question

How should data from studies like HT-ANAM 302 be analyzed
to evaluate the effect of treatment on the functional outcome?
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Key Issue

Distinction between missing data and data truncated by
death

Missing data: exist but not collected
Data truncated by death: does not exist and undefined

Can’t just treat as a missing data problem.
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Common Approaches

1 Evaluate treatment effect on functional outcome
conditional on survival

Conditioning on post-baseline factor

2 Joint modeling survival and functional outcomes

Allows extrapolation of outcomes after death

3 Principal stratification

Applies to a subset of patients who are not identifiable
at baseline

4 Composite endpoint combining survival and functional
outcomes

May be hard to separate effect on function.
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Bottom Line

NO PERFECT SOLUTIONS

Not a fan of Approaches 1 and 2.
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Goal

To construct a composite endpoint approach that handles
both death and missing data
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Notation

T = 0, 1: treatment assignment

X vector baseline covariates

Y0: baseline functional measure at t0

Y1, . . . ,YK : functional outcomes at t1, . . . , tK

L: survival time

Ak = I (L > tk): survival status at tk
Z = g(Y0, . . . ,YK ): primary functional endpoint

e.g. K = 2, Z = (Y2 + Y1)/2− Y0

only defined when AK = 1
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Composite Outcome

Finite-valued random variable U which assigns a score to each
patient such that

each patient who dies prior to tK is assigned a score
according to their survival time (L), with shorter survival
times assigned lower scores

each patient who survives past tK is assigned a score
(higher than those who died prior to tK ) according to
their functional status (Z ), with lower functional status
assigned lower scores.

Only the ordering of U is important, not the actual score
assignments.
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Treatment Effect

Treatment effect (θ) is measured by the probability that the
outcome for an individual with T = 0 is less than the outcome
of an individual with T = 1 minus the probability that the
outcome for an individual with T = 0 is greater than the
outcome of an individual with T = 1

θ = 0 under the null

θ > 0 favors T = 1; θ < 0 favors T = 0

First part: Mann-Whitney

Second part: needed to handle ties

Can also compare the treatment-specific quantiles of U .
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Estimation of θ

In the absence of missing data,

θ̂ =
1

n0n1

∑
i :Ti=0

∑
j :Tj=1

{I (Ui < Uj)− I (Ui > Uj)}

where n0 =
∑

i(1− Ti) and n1 =
∑

i Ti .
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Missing Data

Rk : missing data indicator (defined when Ak = 1)

S = (R1, . . . ,RK ) (defined when AK = 1)

Y
(s)
obs = {Yk : Rk = 1, k ≥ 1, S = s}

Y
(s)
mis = {Yk : Rk = 0, k ≥ 1,S = s}

Z is unobserved when S 6= 1.

To estimate θ, need to impute Z or equivalently Y
(s)
mis for s 6= 1
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Missing Data Assumptions

f (Y
(s)
mis |AK = 1,Y

(s)
obs ,Y0,X ,T , S = s)

∝ exp(βTZ ) f (Y
(s)
mis |AK = 1,Y

(s)
obs ,Y0,X ,T , S = 1)︸ ︷︷ ︸

Reference Distribution

for all s 6= 1,

βT is a treatment-specific sensitivity parameter.

βT = 0 (i.e., benchmark assumption) reduces to the
complete case missing value (CCMV) restrictions applied
to the missing data patterns for patients alive at tK .

CCMV is different than missing at random (MAR)
assumption.
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K = 2, Z = (Y1 + Y2)/2− Y0.

β′T = 2βT

f (Y2|A2 = 1,Y1,Y0,X ,T , S = (1, 0))

∝ exp(β′TY2) f (Y2|A2 = 1,Y1,Y0,X ,T , S = 1)︸ ︷︷ ︸
Reference Distribution

For subjects alive at t2, who are observed at time t1, who
share the same functional measure at t1 and who share the
same baseline factors, the distribution of Y2 for those whose
functional measure at t2 is missing is, when β′T > 0 (< 0),
more heavily weighted toward higher (lower) values of Y2 than
those whose functional measure at t2 is observed.
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f (Y1|A2 = 1,Y2,Y0,X ,T , S = (0, 1))

∝ exp(β′TY1) f (Y1|A2 = 1,Y2,Y0,X ,T , S = 1)︸ ︷︷ ︸
Reference Distribution

For subjects alive at t2, who are observed at time t2, who
share the same functional measure at t2 and who share the
same baseline factors, the distribution of Y1 for those whose
functional measure at t1 is missing is, when β′T > 0 (< 0),
more heavily weighted toward higher (lower) values of Y1 than
those whose functional measure at t1 is observed.
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f (Y1,Y2|A2 = 1,Y0,X ,T , S = (0, 0))

∝ exp (β′T (Y1 + Y2)) f (Y1,Y2|A2 = 1,Y0,X ,T , S = 1)︸ ︷︷ ︸
Reference Distribution

For subjects alive at t2 and who share the same baseline
factors, the joint distribution of Y1 and Y2 for those whose
functional measures at t1 and t2 are missing is, when β′T > 0
(< 0), more heavily weighted toward higher (lower) values of
Y1 and Y2 than those whose measures are fully observed.
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Ignore conditioning on Y0 and X and suppose
f (Y1,Y2|A2 = 1,T , S = 1) is multivariate normal with
mean (µT ,1, µT ,2) and variance-covariance matrix

ΣT =

[
σ2
T ,1 ρTσT ,1σT ,2
ρTσT ,1σT ,2 σ2

T ,2

]
f (Y2|A2 = 1,Y1,T , S = (1, 0)) is normal with mean
µT ,2 + β′T (1− ρ2T )σ2

T ,2 + ρT
σT ,2

σT ,1
(Y1 − µT ,1) and variance

(1− ρ2T )σ2
T ,2

f (Y1|A2 = 1,Y2,T , S = (0, 1)) is normal with mean
µT ,1 + β′T (1− ρ2T )σ2

T ,1 + ρT
σT ,1

σT ,2
(Y2 − µT ,2) and variance

(1− ρ2T )σ2
T ,1
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f (Y1,Y2|A2 = 1,T , S = (0, 0)) is multivariate normal
with mean (µT ,1 + β′Tσ

2
T ,1 + β′TρTσT ,1σT ,2, µT ,2 +

β′Tσ
2
T ,2 + β′TρTσT ,1σT ,2) and variance-covariance matrix

ΣT .

If ρT > 0, then the means increase linearly in β′T
β′T has no impact on the variances and covariances.

β′T > 0 (β′T < 0) implies that the non-identified
distributions have more (less) mass at higher values than
their reference distributions.
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Example: Exponential tilting
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Modeling

Need to specify of a model for

f (Y K |AK = 1,Y0,X ,T , S = 1)

To respect bounds, define

φ(yk) = log

{
yk − BL

BU − yk

}
,

Y †k = φ(Yk) and Y
†
k = (Y †1 , . . . ,Y

†
k ).

One-to-one mapping between

h(Y
†
K |AK = 1,Y0,X ,T , S = 1)

and
f (Y K |AK = 1,Y0,X ,T , S = 1)

.
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Modeling

h(Y
†
K |AK = 1,Y0,X ,T , S = 1) =
K∏

k=1

h(Y †k |AK = 1,Y
†
k−1,Y0,X ,T , S = 1)

Posit a model for each component of the product.
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Modeling

h(Y †k |AK = 1,Y
†
k−1,Y0,X ,T = t, S = 1)

= hk,t(Y
†
k − µk,t(Y

†
k−1,Y0,X ;αk,t))

µk,t(Y
†
k−1,Y0,X ;αk,t) is a specified function

αk,t is an unknown parameter vector

hk,t is an unspecified time/treatment-specific density
function.
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Estimation

The parameter vectors αk,t can be estimated by
minimizing the least squares objective function

n∑
i=1

I (Ti = t)AK ,i

(
K∏

k=1

Rk,i

)
{Y †k,i−µk,t(Y

†
k−1,Y0,X ;αk,t)}2

The density function hk,t can be estimated by kernel
density estimation based on the residuals

{Y †k,i − µk,t(Y
†
k−1,i ,Y0,i ,Xi ; α̂k,t) : Ti = t,AK ,i =

1,R1,i = . . . ,RK ,i = 1, i = 1, . . . , n}
f (Y K |AK = 1,Y0,X ,T , S = 1) is estimated by

K∏
k=1

ĥk,t(Y
†
k − µk,t(Y

†
k−1,Y0,X ; α̂k,t))

∣∣∣∣dφ(Yk)

dYk

∣∣∣∣ .
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Imputation/Estimation

For each individual i alive at tK and who is in a stratum
s 6= 1, impute the missing functional outcomes by
drawing (using rejection sampling technqiues) from the
density that is proportional to

exp(βTZ)f (̂Y
(s)
mis |AK = 1,Y

(s)
obs = Yobs,i ,Y0 = Y0,i ,X = Xi ,T = Ti ,S = 1)

.Draw M copies of the missing functional outcomes to
create M complete datasets.

For each complete dataset m, estimate θ by θ̂m.

Overall estimator of θ is θ̃ = 1
M

∑M
m=1 θ̂m.

Confidence intervals can be constructed by
non-parametric bootstrap
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Baseline covariates: ECOG performance status, age,
gender, BMI, weight loss in prior 6 months

LBM is bounded between 24 and 140

10 imputed datasets

Under benchmark assumptions,

θ̂ = 0.30 (95% CI: 0.16 to 0.37, p < 0.0001)
Placebo: Median -0.98 kg (95% CI: -1.27 kg to -0.28
kg).
Anamorelin: Median 0.69 kg (95% CI: 0.43 kg to 0.93
kg).
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Discussion

Method presumes that death and the functional outcome
can be ordered in a scientifically meaningful way.

Use mixed methods to confirm that ordering is consistent
with the health preferences of patient population.

Ranking scheme is similar to ‘untied worst-rank score
analysis” for missing data of Lachin (1999).

The “worst-rank score analysis” ranks all the patients
who died (AK = 0) the same and is also commonly used.

CCMV is a strong benchmark assumption.

Assumed survival time is always known, need to extend
methods to handle censoring.

idem software is available on CRAN.
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Abstract

In randomized controlled trials of seriously ill patients, death is common and often
defined as the primary endpoint. Increasingly, non-mortality outcomes such as functional
outcomes are co-primary or secondary endpoints. Functional outcomes are not defined
for patients who die, referred to as “truncation due to death”, and among survivors,
functional outcomes are often unobserved due to missed clinic visits or loss to follow-up.
It is well known that if the functional outcomes “truncated due to death” or missing are
handled inappropriately, treatment effect estimation can be biased. In this paper, we
describe the package idem that implements a procedure for comparing treatments that is
based on a composite endpoint of mortality and the functional outcome among survivors.
Among survivors, the procedure incorporates a missing data imputation procedure with
a sensitivity analysis strategy. A web-based graphical user interface is provided in the
idem package to facilitate users conducting the proposed analysis in an interactive and
user-friendly manner. We demonstrate idem using data from a recent trial of sedation
interruption among mechanically ventilated patients.

Keywords: Clinical trial, Truncation due to death, Composite endpoint, Imputation, Missing
data, R, SACE, Sensitivity analysis, Shiny, STAN.

1. Introduction

In randomized clinical trials (RCTs) that evaluate medical interventions for patients at
high risk of death, functional outcomes scheduled to be measured at pre-specified post-
randomization time points may be pre-empted due to death. Furthermore, patients alive

http://www.jstatsoft.org/
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at a pre-specified time may fail to be evaluated due to missed visits or withdrawal, yielding
missing data. The distinction between the two types of unobserved functional outcomes is
that data pre-empted due to death are considered to be undefined, whereas missing data exist
but were not collected.

The so-called issue of “truncation due to death” is challenging even if there is no missing data
among survivors. One method proposed for analyzing such data is to create a composite end-
point that combines mortality information among patients that die prior to the pre-specified
time and the functional outcome among survivors (Diehr, Patrick, Spertus, Kiefe, Donell, and
Fihn 2001; Lachin 1999; Joshua Chen, Gould, and Nessly 2005). In cases where patients can be
ordered in a scientifically meaningful way , the simplicity of the composite outcome approach
can be a useful way of globally assessing treatment effects that are causally interpretable.

Wang, Scharfstein, Colantuoni, Girard, and Yan (2017) integrated the composite endpoint
definition based on Lachin (1999) with a missing data imputation approach for intermittent
missing data. They proposed a ranking scheme that ranks all the patients who died before
the end of the study according to their time of death (earlier times are worse than later times)
lower than patients who survived past the end of the study and survivors are then ranked
according to their functional outcome. The inference for treatment arm comparisons are
based on comparing the distribution of ranks across the treatment arms, accounting for the
possibility of ties. Their method considered the complete case missing value constraints (Little
1993) as the benchmark assumption for intermittent missing data imputation and suggested a
global sensitivity analysis framework to further assess the robustness of the findings through
exponential tilting.

In this paper, we describe the R package idem that implements the proposed method in
Wang et al. (2017) for making inferences in randomized clinical trials with both intermittent
missing data and deaths. Notably, there are several extensions and modifications in idem
from the original paper. First, Wang et al. (2017) proposed a Metropolis-Hastings algorithm
for imputing missing data from their target distributions. In contrast, the package idem
implements a rejection sampling approach where the candidate samples are drawn by rstan
(Carpenter, Gelman, Hoffman, Lee, Goodrich, Betancourt, Brubaker, Guo, Li, and Riddell
2017). Second, the package idem implements two alternative approaches to estimate and test
for a treatment effect when data are “truncated due to death”, the survivors only analysis and
the survivor average causal effect (SACE) analysis (Chiba and VanderWeele 2011). Lastly,
the package idem implements a web-based graphical user interface (GUI) where users can
conduct the analysis in an interactive and user-friendly manner.

There are several software packages on the Comprehensive R Archive Network (CRAN) for
analyzing death truncated data. The package JM (Rizopoulos 2010) applies shared parameter
models for the joint modeling of longitudinal and survival data and the package JMbayes (Ri-
zopoulos 2016) implements the shared parameter joint modeling approach under the Bayesian
framework. The joint modeling approach implemented in the two packages introduces a shared
set of latent random effects for modeling both the functional outcome and survival. In this
approach, the model for the functional outcome allows trajectories of the functional outcome
after death, which is not scientifically meaningful. The package sensitivityPStrat (Dupont
and Shepherd 2014) applies the causal inference framework that addresses the problem in
terms of counterfactuals and seeks to estimate the “principal stratum” causal effect (Fran-
gakis and Rubin 2002; Hayden, Pauler, and Schoenfeld 2005; Chiba and VanderWeele 2011),
e.g., the SACE. Although this approach is useful for understanding the mechanistic effect of
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treatment on clinical outcomes, it requires strong assumptions to identify whether a patient
is a member of the “principal stratum” at the time of the treatment decision. To the best of
our knowledge, there is no statistical software package that handles both the “truncation due
to death” problem and intermittent missing data among survivors for RCTs, let alone one
with a graphical user interface (GUI).

In this paper, we demonstrate idem by using data from the Awakening and Breathing Con-
trolled (ABC) trial (Girard, Kress, Fuchs, Thomason, Schweickert, Pun, Taichman, Dunn,
Pohlman, Kinniry, Jackson, Canonico, Light, Shintani, Thompson, Gordon, Hall, Dittus,
Bernard, and Ely 2008). The ABC trial randomized acute respiratory failure patients receiv-
ing mechanical ventilation 1:1 within each study site to management with a paired sedation
plus ventilator weaning protocol involving daily interruption of sedatives through spontaneous
awakening trials (SATs) and spontaneous breathing trials (SBTs) or sedation per usual care
(UC) and SBTs (Girard et al. 2008). In a single-site substudy, cognitive, psychological and
physical function was measured at 3 and 12-months post-randomization among n = 94 and
n = 93 patients in the UC+SBT and SAT+SBT arms, respectively. We analyze a continuous
measure of cognitive function where higher scores indicate better cognition.

The reminder of the paper is organized as follows. In Section 2, we briefly introduce the
method proposed in Wang et al. (2017). We demonstrate the idem package in the R interactive
mode using data from the ABC trial in Section 3. In Section 4, we describe the details of the
idem GUI. In Section 5, we illustrate the idem GUI using the ABC trial. Section 6 is devoted
to discussion.

2. Method

In this section, we briefly introduce the composite endpoint approach implemented in Wang
et al. (2017), the survivors only analysis and the SACE analysis.

2.1. Notation

Consider a randomized study with K post-randomization assessment times l1, . . . , lK . Let Yk
(k = 1, . . . ,K) denote the functional outcome scheduled to be measured at time lk. We use Y k

to denote (Y1, Y2, . . . , Yk). Let X denote covariates measured at baseline, which may or may
not include the functional outcome, Y0. Let T define the treatment assignment. Let L denote
the survival time and Ak = I(L > lk), an indicator that the patient survived past assessment
time lk. Let Z = g(Y0, . . . , YK) be the study’s functional endpoint (e.g., Z = YK − Y0).
Assume that higher values of Z denote better outcomes.

In the absence of missing data, patients i and j are ranked as follows:

• If AK,i = AK,j = 1, then patient i is ranked better than patient j if Zi > Zj and ranked
the same if Zi = Zj .

• If AK,j = 0 and AK,i = 1, then patient i is ranked better than patient j.

• If AK,i = AK,j = 0, then patient i is ranked better than patient j if Li > Lj and ranked
the same if Li = Lj .

More formally, let U be a function of (AK ,W ) where W = L if AK = 0 and W = Z if AK = 1
with the ordering following the above ranking rules. Wang et al. (2017) argued that U is a
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composite endpoint in the sense that it is univariate and contains information on survival and
functional status.

When Ak = 1, define Rk to be the indicator that Yk is observed. For patients alive at lK (i.e.,

AK = 1), let S = (R1, . . . , RK) denote the missing data pattern; further, let Y
(s)
obs = {Yk :

Rk = 1, k ≥ 1,S = s} and Y
(s)
mis = {Yk : Rk = 0, k ≥ 1,S = s} denote the observed and

missing post-randomization functional outcomes. Note that Z is only observed when S = 1,
where 1 is a K-dimensional vector of 1’s, if g(·) is a non-constant function of all Yk’s.

2.2. Missing data imputation

To impute the missing functional outcomes, Y
(s)
mis, for patients alive at lK , the following class

of untestable assumptions are posited:

f(Y
(s)
mis|AK = 1,Y

(s)
obs, Y0,X, T,S = s)

∝ exp(∆TZ)f(Y
(s)
mis|AK = 1,Y

(s)
obs, Y0,X, T,S = 1) (1)

for all s 6= 1, where ∆T is a treatment-specific sensitivity parameter. Note that the benchmark
assumption in the class (i.e., ∆T = 0) is the complete case missing value (CCMV) restrictions
(Little 1993).

To avoid non-sensical imputations that generate out-of-bound functional outcomes, Wang
et al. (2017) suggested the following data transformation of Yk (k = 1, . . . ,K):

φ(yk) = log

(
yk −BL

BU − yk

)
, (2)

where (BL, BU ) denote the lower and upper bound of the functional outcome. Let Y †k = φ(Yk)

and Y
†
k = (Y †1 , . . . , Y

†
k ). Note that there is a one-to-one mapping between the conditional

distributions h(Y
†
K |AK = 1, Y0,X, T,S = 1) and f(Y K |AK = 1, Y0,X, T,S = 1).

We first factorize h(Y
†
K |AK = 1, Y0,X, T,S = 1) as follows

h(Y
†
K |AK = 1, Y0,X, T,S = 1) =

K∏
k=1

h(Y †k |AK = 1,Y
†
k−1, Y0,X, T,S = 1) (3)

and posit a model for each component of the product. Specifically, we consider models of the
form:

h(Y †k |AK = 1,Y
†
k−1, Y0,X, T = t,S = 1) = hk,t(Y

†
k − µk,t(Y

†
k−1, Y0,X;αk,t)) (4)

where µk,t(Y
†
k−1, Y0,X;αk,t) is a specified conditional mean function of Y

†
k−1, Y0,X and αk,t,

αk,t is an unknown parameter vector and hk,t is an unspecified time and treatment-specific
mean zero density function.

Let α̂k,t denote the least squares estimator of αk,t. The density function hk,t can be estimated
by kernel density estimation based on the residuals or estimated with parametric assumptions
(e.g., normality) if the sample size is small. Let ĥk,t denote the kernel density estimator of
hk,t. We then estimate f(Y K |AK = 1, Y0,X, T,S = 1) by

f̂(Y K |AK = 1, Y0,X, T,S = 1) =
K∏
k=1

ĥk,t(Y
†
k − µk,t(Y

†
k−1, Y0,X; α̂k,t))

∣∣∣∣dφ(Yk)

dYk

∣∣∣∣ . (5)
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2.3. Treatment effect quantification: composite endpoint approach

Let i and j be random individuals randomized to treatment T = 0 and T = 1, respectively.
Wang et al. (2017) proposed to quantify the treatment effect, denoted θ, as

θ = P (Ui < Uj)− P (Ui > Uj). (6)

Values of θ > 0 and θ < 0 favor T = 1 and T = 0, respectively. Note that θ = 0 under the
null hypothesis of no treatment effect.

In the absence of missing data, θ can be estimated by

θ̂ =
1

n0n1

∑
i:Ti=0

∑
j:Tj=1

{I(Ui < Uj)− I(Ui > Uj)}

where n0 and n1 are the sample size of treatment arm T = 0 and T = 1, respectively.

In addition to estimating θ, Wang et al. (2017) suggested reporting quantiles (e.g., median) of
the treatment-specific distribution of the composite endpoint U to further help characterize
the treatment effect.

2.4. Treatment effect quantification: alternative approaches

In the absence of missing data, several alternative approaches to quantify the effect of an
intervention on the functional endpoint in the presence of mortality have also been proposed
and utilized in the statistical and clinical literature.

The survivors only approach defines the treatment effect of the intervention on the functional
endpoint as

θsurv = E(Z|T = 1, AK = 1)− E(Z|T = 0, AK = 1),

i.e., the difference in the mean functional endpoint comparing survivors receiving the interven-
tion to survivors receiving the control. If survival is independent of the treatment assignment,
then this treatment effect definition has a causal interpretation. However, in cases where the
intervention affects mortality then this treatment effect definition does not define a causal
effect and interpreting the estimated treatment effect can be misleading.

To remedy the potential bias in the survivors only approach, one may compare the functional
endpoint within a special subset of patients, referred to as the principle stratum. This special
subset of patients would survive to the end of the follow-up regardless of which intervention
they receive. To define the survivor average causal effect (SACE), we define what would
happen to patients (in terms of survival and functional endpoint) under both intervention
and control. Let AK(t) be the indicator that the patient survives to time lK under treatment
T = t, and if AK(t) = 1, define Z(t) as the potential functional endpoint observed (otherwise,
Z(t) is not defined). Among patients who survive to time lK regardless of which treatment
they receive (i.e., AK(0) = AK(1) = 1), the SACE is defined as

θSACE = E[Z(1)|AK(0) = 1, AK(1) = 1]− E[Z(0)|AK(1) = 1, AK(0) = 1].

Since the survival status and functional endpoint are only observed for the treatment that was
received, additional assumptions are required to estimate SACE or obtain bounds. Under the
monotonicity assumption AK(1) ≥ AK(0), that is, if a patient would survive to time lK under
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control, then the patient would survive to time lK under intervention, Chiba and VanderWeele
(2011) showed that

θSACE = θsurv −∆SACE ,

where ∆SACE is the difference in the mean functional endpoint for surviving intervention arm
patients and the mean functional endpoint if surviving control group patients had, contrary
to fact, received the intervention. That is,

∆SACE = E[Z|T = 1, AK = 1]− E[Z(1)|AK(0) = 1]. (7)

Possible values for ∆SACE should be elicited from expert opinions. In practice, an additional
assumption is often made that the surviving control group patients are healthier than the
surviving intervention group patients. Consequently, ∆SACE is assumed to be non-positive if
the healthier patients are expected to obtain a better functional outcome.

2.5. Inference

For individual i alive at lK with missing functional outcomes, M copies of the missing func-

tional outcomes can be drawn from the density that is proportional to exp(∆TZ)f̂(Y
(s)
mis|AK =

1,Y
(s)
obs = Y obs,i, Y0 = Y0,i,X = Xi, T = Ti,S = 1) using MCMC sampling techniques to

create M complete datasets.

Wang et al. (2017) suggested the Metropolis Hastings algorithm for the MCMC sampling.
To improve the Markov Chain convergence, idem implements a rejection sampling approach

with ξf̂(Y
(s)
mis|AK = 1,Y

(s)
obs = Y obs,i, Y0 = Y0,i,X = Xi, T = Ti,S = 1) being the proposal

distribution, where ξ is a constant that is large enough such that exp(∆TZ) < ξ for all Z.
Such a constant exists in the settings we consider where the functional outcome is bounded by

its biological boundaries. Rejection sampling candidates are then drawn from f̂(Y
(s)
mis|AK =

1,Y
(s)
obs = Y obs,i, Y0 = Y0,i,X = Xi, T = Ti,S = 1) in idem via rstan (Carpenter et al. 2017)

by Adaptive Hamiltonian Monte Carlo.

For each complete dataset m, we estimate θ by θ̂m. The overall estimator of θ is then
θ̃ = 1

M

∑M
m=1 θ̂m. Confidence intervals can be constructed by applying the non-parametric

bootstrap procedure.

Similarly, computations are applied to generate overall estimates of and confidence intervals
for θsurv and θSACE .
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3. The idem package

3.1. Installation and overall scheme

The idem package is available from CRAN at http://CRAN.R-project.org/package=idem.
To install and load idem, type the following in R:

R> install.packages("idem")

R> require(idem)

The major steps of conducting an analysis using idem include data preparation, imputation
model fitting, missing data imputation, and treatment effect estimation and hypothesis test-
ing. Intermediate results are organized and passed between steps as idem-specific classes.
Figure 1 presents the overall scheme and the major functions in idem.

Function

imInfer

Treatment effect estimation 
and hypothesistesting

Function

imImpAll

Conduct imputation 

Function

imFitModel

Fit imputation models 

Function

imData

Create data for 
IDEM analysis

START

END

Class

IDEMDATA

Output

Input

Class

IDEMFIT
Output

Input

Input
Output

Class

IDEMINFER

Output

Class

IDEMIMP

Figure 1: Overall scheme of the idem package.

3.2. Data preparation

Data format

The idem package requires the dataset to be formatted as follows: each row represents a
subject and includes the treatment assignment, baseline covariates, baseline outcome (if ap-
plicable), post-randomization functional outcomes and survival time. It is assumed that there

http://CRAN.R-project.org/package=idem
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is no censoring of the survival time prior to time lK . For patients who were censored after
time lK , their survival time can be entered as any arbitrary number that is longer than lK .

The idem package provides the dataset abc from the ABC trial as an example dataset with
a single baseline covariate, Age. Note: baseline cognition was not measured in the ABC trial.

R> head(abc)

AGE TRT SURV Y2 Y1

1 59.63 1 999 NA NA

2 66.89 0 999 52 49

3 59.70 1 1 NA NA

4 81.41 0 72 NA NA

5 66.52 1 999 45 51

6 40.27 0 65 NA NA

Create analysis data object

As the first step, the function imData combines the original dataset and analysis specification
parameters to create a class IDEMDATA object for the idem analysis. The parameters include
variable names in the dataset, functional outcome specification, functional endpoint specifi-
cation, duration of the study, etc.. Details can be found in the help document of imData.

When there are mis-specifications in the parameters, error and inconsistency messages will be
returned by imData. Otherwise, the return value is class IDEMDATA and contains the original
dataset and the specification parameters.

R> err.data <- imData(abc, trt = "TRT", outcome = c("Y1","Y2"),

+ y0 = NULL, endfml = "Y2", bounds = c(10,20), duration = 365)

R> err.data

Model specification is invalid. Please check the following:

No survival time specified

Upper bound is smaller than some observed outcomes

R> im.abc <- imData(abc, trt = "TRT", surv = "SURV",

+ outcome = c("Y1","Y2"), unitTime = "days",

+ trt.label = c("UC+SBT", "SAT+SBT"),

+ cov = c("AGE"), endfml = "Y2", duration = 365, bounds = c(0,100))

R> im.abc

There are 187 observations of 5 variables in the data.

Detailed specifications are as follows:

Treatment: TRT

Survival time: SURV

Study duration: 365

Outcomes (ordered chronically): Y1 Y2
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Endpoint (in R formula): Y2

Treatment labels: UC+SBT SAT+SBT

Covariates: AGE

Biological boundary of the outcomes: 0 100

Data visualization

The class IDEMDATA result from imData provides S3 methods summary and plot for data
visualization.

The missing data patterns among survivors will be generated as a data frame by its summary
function:

R> summary(im.abc)

Y1 Y2 Control Intervention

Deaths on study 58 (62%) 38 (41%)

S=1 Observed Observed 18 (19%) 32 (34%)

S=2 Observed Missing 8 (9%) 8 (9%)

S=3 Missing Observed 1 (1%) 0 (0%)

S=4 Missing Missing 9 (10%) 15 (16%)

Total 94 93

Spaghetti plots of the functional outcomes for survivors (Figure 2), missing data pattern
heatmaps (Figure 3) and Kaplan-Meier survival curves (Figure 4) can be generated by the S3
plot method using options survivor, missing and KM, respectively.

R> plot(im.abc, opt = "survivor")

R> plot(im.abc, opt = "missing", cols = c("blue", "gray"))

R> plot(im.abc, opt = "KM")
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Figure 2: Spaghetti plot of the functional outcome among survivors in the ABC trial. The
purple dots represent patients with missing functional outcomes. The red line represents the
mean of the observed functional outcomes as a function of time.
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Figure 3: Missing data pattern heatmap for survivors in the ABC trial. The blue and gray
cells represent observed and missing functional outcomes, respectively.
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Figure 4: Kaplan-Meier survival curves for patients in the ABC trial. The p-value from the
log-rank test is displayed.



12 idem: Inferences in Clinical Trials with Death and Missingness

In addition, through the S3 summary method, the IDEMDATA class returns the row indices that
correspond to the subjects who were alive at the end of the study but had missing functional
outcomes, i.e., the subjects that need missing data imputation.

R> summary(im.abc, opt = "missid")

[1] 1 15 25 27 47 50 57 61 63 67 70 73 79 80 83 86

[17] 87 88 89 95 106 112 122 127 132 133 142 155 158 161 162 167

[33] 169 171 172 174 178 180 183 185 187

3.3. Missing data imputation

Fit imputation models

For the missing data imputation, the function imFitModel needs to be called first to fit the
imputation model(s) (3) among survivors with S = 1, i.e., the patients who were alive at the
end of the study without missing functional outcomes. The return value of the imFitModel

function has class IDEMFIT and contains lm results for all the imputation models.

R> rst.fit <- imFitModel(im.abc)

R> rst.fit

-- Treatment UC+SBT

---- Y1 ~ AGE

Call:

lm(formula = as.formula(cur.f), data = cur.data)

Residuals:

Min 1Q Median 3Q Max

-0.83313 -0.11755 -0.01075 0.22708 0.48152

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.255046 0.415477 -0.614 0.548

AGE -0.002226 0.006473 -0.344 0.735

Residual standard error: 0.3271 on 16 degrees of freedom

Multiple R-squared: 0.007339, Adjusted R-squared: -0.0547

F-statistic: 0.1183 on 1 and 16 DF, p-value: 0.7354

...

-- Treatment SAT+SBT

...
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---- Y2 ~ Y1+AGE

Call:

lm(formula = as.formula(cur.f), data = cur.data)

Residuals:

Min 1Q Median 3Q Max

-0.34779 -0.10677 -0.01963 0.15173 0.27374

...

The S3 plot of the IDEMFIT class generates the goodness of fit diagnostic plots (Figure 5). If
the normality assumption of the distribution of the residuals does not seem to hold, imputation
of the missing data using kernel density estimation of the residuals should be considered (see
Section 2.2 for more details).

R> plot(rst.fit, mfrow=c(2,4))
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Figure 5: Goodness of fit diagnostic plots.
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MCMC convergence checking

Before conducting the imputation for the entire dataset, it is recommended that the MCMC
sampling convergence be checked. The idem package provides the function imImpSingle that
implements the MCMC sampling under the benchmark assumption (i.e., with ∆T = 0) for
an individual subject. The convergence of the MCMC chains can then be checked by a trace
plot of the results (Figure 6). If the mixing of the Markov chains are not satisfactory, users
should refer to the rstan documents for options (e.g., adapt_delta) that can improve the
convergence.

R> rst.mixing <- imImpSingle(abc[1,], rst.fit, chains = 4,

+ normal = F, iter = 2000, warmup = 1000)

R> plot(rst.mixing)
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Figure 6: Trace plot of the imputed missing functional outcomes of an individual subject.

Conduct imputation

The function imImpAll imputes missing outcomes for all survivors with missing functional
outcomes to generate complete datasets. The following code shows how to use imImpAll

to get M = 5 (n.imp = 5) imputed complete datasets for sensitivity parameters ∆T =
−0.2,−0.15, . . . , 0.2; in this example, the residuals are not assumed to follow a Normal dis-
tribution (normal = F).

R> rst.imp <- imImpAll(rst.fit, deltas = seq(-0.2, 0.2, 0.05),

+ n.imp = 5, normal = F, chains = 4, iter = 2000, warmup = 1000)

R> rst.imp

A total of 5 complete datasets were imputed. Normality assumption

was NOT made for the imputation model residual distribution.
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The sensitivity parameters considered were

[1] -0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20

The last 5 records in the complete dataset

are given below as an example:

ID DELTA IMP AGE TRT SURV Y1 Y2 ORGY1 ORGY2 ENDP

1943 187 0.2 1 66.12 1 999 26 34.68728 26 NA 34.68728

1944 187 0.2 2 66.12 1 999 26 28.41199 26 NA 28.41199

1945 187 0.2 3 66.12 1 999 26 32.02637 26 NA 32.02637

1946 187 0.2 4 66.12 1 999 26 36.16493 26 NA 36.16493

1947 187 0.2 5 66.12 1 999 26 26.95370 26 NA 26.95370

The returned value from function imImpAll is class IDEMIMP. Its S3 plot method provides
options to generate treatment-specific densities of the imputed functional outcomes. Figure 7
presents the treatment-specific densities of the imputed Y2 (the functional endpoint) for the
ABC trial.

R> plot(rst.imp, opt = "imputed", deltas = c(-0.2,0,0.2),

+ xlim = c(0,100), endp = TRUE)
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Figure 7: Treatment-specific densities of the imputed Y2 for different choices of the sensitivity
parameters ∆T .

The other option provided in the plot method of the IDEMIMP class is composite. The
composite option generates the treatment-specific cumulative distribution function of the
composite endpoint, where the values of the composite endpoint are labeled according to the
survival time and functional endpoint among survivors (Figure 8).
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R> plot(rst.imp, opt = "composite", delta = 0)
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Figure 8: Cumulative distribution function of the composite endpoint for each treatment
group based on the multiple imputation algorithm with the benchmark assumptions (∆T = 0).

3.4. Treatment effect estimation and hypothesis testing

Composite endpoint approach

Given a class IDEMIMP object that contains complete datasets with imputed outcomes, idem
uses function imInfer to estimate the treatment effect and quantiles of the composite end-
point distribution. Note that the results of quantiles of the composite endpoint may be a
survival time or a value of the functional outcome, which are reported in columns QuantY and
QuantSurv, respectively.

R> rst.est <- imInfer(rst.imp, n.boot = 0,

+ effect.quantiles = c(0.25,0.5,0.75))

R> print(rst.est, delta0=0)

The sensitivity parameters considered were

[1] -0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20

The estimated treatment effect theta under different

sensitivity parameters are:
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Delta0 Delta1 Theta

5 0 -0.20 -0.1266

14 0 -0.15 -0.1379

23 0 -0.10 -0.1460

32 0 -0.05 -0.1688

41 0 0.00 -0.1992

50 0 0.05 -0.2161

59 0 0.10 -0.2378

68 0 0.15 -0.2537

77 0 0.20 -0.2647

The estimated treatment effect quantiles under different

sensitivity parameters are:

Delta TRT Q QuantY QuantSurv

123 0 0 0.25 NA 14

128 0 0 0.50 NA 72

133 0 0 0.75 38 NA

138 0 1 0.25 NA 61

143 0 1 0.50 30 NA

148 0 1 0.75 44 NA

When choosing the number of bootstrap samples to be bigger than 0, the function imInfer

performs non-parametric boostrap to conduct hypothesis testing for the treatment effect in-
cluding evaluating the uncertainties of the estimated quantiles from the composite endpoint
distribution. For bootstrap analysis, the function imInfer supports parallel computation
by specifying ncore > 1. For the other imputation parameters (e.g. normality assumption,
number of MCMC chains, etc.), the function imInfer takes the same settings contained in
the IDEMIMP class object.

Two-sided p-values for testing the null hypothesis of θ = 0, the standard deviation of the
bootstraps for the estimated θ, and confidence intervals for quantiles of the composite endpoint
are obtained by summarizing the results from the bootstrap analysis. Note that the 2.5% and
97.5% credible intervals are reported in columns Q2.5 and Q97.5, respectively. The columns
Q2.5_Surv and Q97.5_Surv are indicators for Q2.5 and Q97.5, respectively, of being a survival
time.

R> rst.final <- imInfer(rst.imp, n.boot = 100, n.cores = 5)

R> print(rst.final, delta0 = 0)

The sensitivity parameters considered were

[1] -0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20

Treatment effect (theta) under different

sensitivity parameters are:
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Delta0 Delta1 Theta SD PValue

5 0 -0.20 -0.1225 0.09129 0.179680

14 0 -0.15 -0.1270 0.09163 0.165669

23 0 -0.10 -0.1438 0.09116 0.114760

32 0 -0.05 -0.1544 0.09091 0.089364

41 0 0.00 -0.1905 0.09008 0.034468

50 0 0.05 -0.2071 0.08874 0.019584

59 0 0.10 -0.2395 0.08771 0.006316

68 0 0.15 -0.2534 0.08669 0.003462

77 0 0.20 -0.2573 0.08591 0.002742

Treatment effect (quantiles) under different

sensitivity parameters are:

Delta TRT Q QuantY QuantSurv Q2.5 Q97.5 Q2.5_Surv Q97.5_Surv

43 0 0 0.5 NA 72 31 365.00 1 1

48 0 1 0.5 29 NA 348 37.73 1 0

The hypothesis testing and confidence intervals are

based on 100 bootstrap samples.

A contour plot of two-sided p-values for the null hypothesis of θ = 0 as a function of the
multiple imputation sensitivity parameters, ∆T , can be generated by the S3 plot method of
the imInfer function result. Alternatively, the contour plot of the estimated treatment effect
θ̂ can be generated by specifying the option to be effect. Figure 9 presents these two types
of plots.

R> plot(rst.final, nlevels = 30, con.v = 0.05, main = 'P-Value')
R> plot(rst.final, opt = "effect", nlevels = 30,

+ con.v = c(-0.1, -0.2), main = expression(theta))

Survivors only approach

The default summary of the IDEMINFER class, returned by the imInfer function, generates
the survivors only analysis results. As a cautious note, the print out emphasizes that the
survivors only analysis is only valid when the treatment has no effect on survival.

R> rst.survonly <- summary(rst.final)

R> rst.survonly

The imputation sensitivity parameters considered were

[1] -0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20

The estimated survivors only treatment effects are



Journal of Statistical Software 19

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

−0.20 −0.15 −0.10 −0.05 0.00 0.05 0.10 0.15 0.20

−0.20

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

0.20

 0
.0

5 

P−Value

UC+SBT ∆

S
AT

+
S

B
T

 ∆

−0.30

−0.25

−0.20

−0.15

−0.10

−0.20 −0.15 −0.10 −0.05 0.00 0.05 0.10 0.15 0.20

−0.20

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

0.20

 −
0.

1 

 −
0.

2 

θ

UC+SBT ∆
S

AT
+

S
B

T
 ∆

Figure 9: The contour plots of the two-sided p-values obtained by testing the null hypothesis
of θ = 0 and the estimated treatment effect θ̂ as functions of treatment-specific sensitivity
analysis parameters.

Delta0 Delta1 Effect LB UB PValue

1 -0.20 -0.20 -5.38365 -14.4889 3.7216 2.465e-01

2 -0.20 -0.15 -2.39526 -11.2445 6.4539 5.957e-01

3 -0.20 -0.10 2.22139 -5.9230 10.3658 5.929e-01

4 -0.20 -0.05 4.94428 -2.7069 12.5955 2.053e-01

5 -0.20 0.00 10.92172 4.3017 17.5418 1.222e-03

...

80 0.20 0.15 3.71120 -5.3493 12.7717 4.221e-01

81 0.20 0.20 5.08226 -4.2587 14.4233 2.862e-01

PLEASE BE CAUTIOUS that survivors only analysis is only valid

when the treatment has no impact on survival.

Similar as for the composite endpoint approach, contour plots of p-values and the estimated
treatment effect on the functional outcomes for survivors only analysis can be generated by
the plot function of the summary results (Figure 10).

R> plot(rst.survonly, nlevels = 30, con.v = 0.05,

+ main = 'Survivors Only: P-Value')
R> plot(rst.final, opt = "effect", nlevels = 30, con.v = c(-15, 0, 15),

+ main = expression(theta[surv]))



20 idem: Inferences in Clinical Trials with Death and Missingness

0.0

0.2

0.4

0.6

0.8

1.0

−0.20 −0.15 −0.10 −0.05 0.00 0.05 0.10 0.15 0.20

−0.20

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

0.20

 0.05 

 0
.0

5 

Survivors Only: P−Value

UC+SBT ∆

S
AT

+
S

B
T

 ∆

−20

−10

0

10

20

−0.20 −0.15 −0.10 −0.05 0.00 0.05 0.10 0.15 0.20

−0.20

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

0.20

 −
15

 

 0 

 15 

θsurv

UC+SBT ∆
S

AT
+

S
B

T
 ∆

Figure 10: Survivors only analysis results.

SACE approach

The summary function of the IDEMINFER class will generate the SACE analysis results when
the option (opt) is specified as SACE. The sensitivity parameters ∆SACE (7) are passed to
the summary function by its argument sace.delta. The default values of sace.delta are
provided based on the standard deviation of the bootstraps for the estimated treatment effect
on the functional outcomes for survivors.

R> rst.sace <- summary(rst.final, opt = "SACE",

+ sace.deltas = seq(-2, 0, by = 0.5))

R> rst.sace

The imputation sensitivity parameters considered were

[1] -0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20

The SACE sensitivity parameters considered were

[1] 0.0 -0.5 -1.0 -1.5 -2.0

The estimated SACE are

Delta0 Delta1 Effect SACE_Delta LB UB PValue

1 -0.20 -0.20 -5.38365 0.0 -14.48891 3.72160 2.465e-01

2 -0.20 -0.15 -2.39526 0.0 -11.24447 6.45394 5.957e-01

3 -0.20 -0.10 2.22139 0.0 -5.92299 10.36577 5.929e-01

4 -0.20 -0.05 4.94428 0.0 -2.70695 12.59550 2.053e-01

5 -0.20 0.00 10.92172 0.0 4.30167 17.54177 1.222e-03

...
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404 0.20 0.15 5.71120 -2.0 -3.34927 14.77167 2.167e-01

405 0.20 0.20 7.08226 -2.0 -2.25873 16.42325 1.373e-01

The idem package provides two different types plots for visualizing the SACE analysis results.
With by.sace = FALSE, the plot function generates the contour plots of p-values and θSACE

for given ∆SACE . With by.sace = TRUE, the plot function of the summary results displays
the estimates of and confidence intervals for θSACE for given imputation sensitivity parameters
∆0 and ∆1. Figure 4 presents the different types of plots.

R> plot(rst.sace, by.sace = FALSE, sace.delta = -1,

+ main = "SACE: P-Value")

R> plot(rst.sace, by.sace = TRUE, delta0 = 0, delta1 = 0,

+ main = expression(theta[SACE]))
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Figure 11: SACE analysis results. The left panel is the contour plot of the p-values (obtained
by testing the null hypothesis of θSACE = 0) as a function of ∆0 and ∆1 for ∆SACE = −1.5.
The right panel presents θ̂SACE with its 95% confidence intervals as a function of ∆SACE for
∆0 = ∆1 = 0.
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4. The idem GUI

The idem GUI is web-based and developed in R using the Shiny (RStudio, Inc 2013) web
application framework. The GUI can be accessed within R using the function imShiny, which
calls the runApp function in the R package shiny (Chang, Cheng, Allaire, Xie, and McPherson
2016).

R> imShiny()

The idem GUI provides a series of tab panels that sequentially walk the user through the anal-
ysis which include About, Upload Data, Model Specification, Data Exploration, Model
Fitting, Configuration, Imputation and Report. The details of each tab panel are given
as follows:

About Panel:

The About panel serves as an introduction page for the software. The sections on this panel
present the background information for idem and the purpose of the software. It also explains
the basic steps to use the software.

Upload Data Panel:

The Upload Data panel provides an interface for users to upload the data to be analyzed.
The sections and items within each section on this panel include:

• Upload Data

Choose File Clicking the Browse... button will load local data files in csv

or plain text format.

Separator Field separating character.

Quote Quoting character.

NA String String for NA values.

Other There are two additional options: the Header Checkbox indicates
if the first line of the file are the names of the columns, the Show
Data Checkbox indicates whether to present the uploaded data in
the Review Data section on this panel.

• Try An Example

Clicking the Try it button will load the example abc dataset.

• Review Data

Presents the uploaded dataset in a table view.

Model Specification Panel:

The Model Specification panel is designed to specify the idem-parameters. This panel is
only available after a dataset has been successfully uploaded. Items on this panel include:
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Define Variables The columns Treatment, Time to death, Outcome, Baseline outcome,
Baseline covariates correspond to the idem-parameters trt, surv,
outcome, y0 and cov, respectively. The user selects the appropriate
variables from the uploaded dataset that define Treatment, Time to

death, Outcome, Baseline outcome, and Baseline covariates.

Functional

Endpoint

Specify enfml in idem-parameters. This is an R expression indicating
the user-specified final functional outcome of interest.

Study Duration Specify duration, lK , in idem-parameters. This is the length of the
study.

Boundary Specify bounds in idem-parameters. These create a numeric vector
of lower and upper bounds for the functional outcomes

Unit Time A drop-down list that specifies unitTime in idem-parameters. This
is the unit of time measurement for survival.

Ranking Rules Reserved for advanced users.

After the parameters are specified, click the Validate Model button which calls the idem
function imChkPars to check if there are any errors or inconsistencies in the specifications.

Data Exploration Panel:

The Data Exploration panel provides summary tables and figures for the users to visual-
ize the uploaded dataset including the missing data patterns survival status and functional
outcomes among survivors. The items on this panel include:

Missing Table Missingness frequency table generated by imMisTable in idem.

Missing Heatmap Missingness heatmap plot generated by imPlotMisPattern in idem.

Survival Kaplan-Meier survival curve generated by imPlotSurv in idem.

Survivors Spaghetti plot of the observed functional outcomes for survivors gen-
erated by imPlotCompleters in idem.

Model Fitting Panel:

The Model Fitting panel provides R output and diagnostic plots for each component in the
factorized joint distribution of the functional outcomes among survivors with no missing data
(Equation 3). The diagnostic plots include the Residuals vs. Fitted plot and the Normal

Q-Q plot.

Configuration Panel:

The Configuration panel sets the parameters for the multiple imputation and MCMC sam-
pling. The sections and items within each section on this panel include:
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• General Imputation Settings

Imputed Datasets Number of complete datasets to be generated.

Bootstrap Samples Number of boostrap samples for bootstrap analysis.

Cores Number of cores for parallel bootstap analysis .

Random Seed Random seed for multiple imputation.

• MCMC Parameters

Iterations STAN parameter specifying how many iterations including burn-in
for posterior sampling.

Number of burn-in STAN parameter specifying how many burn-in for posterior sam-
pling.

Number of thinning STAN parameter specifying the period for saving posterior sam-
ples.

Number of Chains STAN parameter specifying the number of MCMC chains for sam-
pling.

Acceptance Rate STAN parameters that affect the MCMC convergence.

Initial Step-size STAN parameters that affect the MCMC convergence.

• Sensitivity Parameters And Additional Quantile Output

Percentiles Percentiles of the composite endpoint to be analyzed and reported.

Sensitivity

Parameters

Choices of sensitivity parameters ∆T .

• Check Convergence

Clicking the Check Convergence button will randomly select a subject with at least

one missing functional outcome, draw samples of the missing functional outcome(s) by
MCMC sampling and present the trace plots of the Markov chains. The trace plots serve
as a diagnostic tool for evaluating the mixing of the Markov chains in the imputation.

Imputation Panel:

The Imputation Panel conducts the imputation and bootstap analysis, presents the results
and provides a link to download the imputed data. The sections and items within each section
on this panel include:

• Get Imputed Data

After clicking the Get Imputed Data button, a progress bar will show up during the
imputation. Once the imputation is finished, the following results are presented in this
section:
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Imputed Data Contains three panels. The Imputed Dataset panel provides a
table view of the complete dataset. The Imputed Outcome and
the Imputed Endpoint panel provide the density plots of the im-
puted functional outcomes and the functional endpoint, respec-
tively, that are generated by the idem function imPlotImputed.

Analysis Results Presents the tables of the estimated θ and quantiles of the compos-
ite endpoint for all values of the sensitivity analysis parameters. It
also presents the cumulative distribution function of the compos-
ite endpoint under the benchmark assumption that is generated
by the imPlotComposite function in idem.

Download Select the Download button to download the complete datasets
as a delimited text file.

• Hypothesis Testing By Bootstrap

Clicking the button Hypothesis Testing by Bootstrap will conduct the bootstrap
analysis. The results are further presented in three panels.

The Ranks panel presents the table of θ̂’s, the corresponding standard deviation of the
bootstraps and p-values for all sensitivity analysis scenarios.

The Quantiles panel presents the table of requested quantiles and the corresponding
lower and upper bounds for all sensitivity analysis scenarios.

The Contour Plot panel presents the contour plot of the p-values obtained by testing
the null hypothesis of θ = 0 as a function of the treatment-specific sensitivity analysis.
The plot is generated by the idem function imPlotContour.

Report Panel:

The Report panel provides a Download button for downloading the analysis results as a
report. The available document formats for the report include PDF, HTML and Word.

5. Demonstration of idem GUI

In this section, we demonstrate the idem GUI using the ABC trial data. The imputation
incorporates patient age (AGE) as the baseline covariate. There is no Y0 and we set BL = 0
and BU = 100. The variable TRT is 0 and 1 for the UC+SBT and the SAT+SBT arm,

respectively. We specify the following models for µk,t(Y
†
k−1, X;αk,t):

µ1,t(X,α1,t) = α1,t,1 + α1,t,2AGE

µ2,t(Y
†
1, X;α2,t) = α2,t,1 + α2,t,2AGE + α2,t,3Y

†
1 .

The entire analysis can be performed using the following steps:

Step 1. Upload the ABC data file to idem from the Upload Data panel (Figure 12). One can
also load the data from idem by clicking the Try it button.
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Step 2. Specify the idem-parameters on the Model Specification panel (Figure 13). Set
the TRT column to be the Treatment, SURV column to be Time to Death, Y1 and Y2 columns
to be Outcome and AGE column to be Baseline covariates. Specify the functional endpoint
Z as Y2 and study duration to be 365 days. Set the boundaries of the cognition score (i.e.,
functional outcomes) to be (0, 100).

Click the Validate Model button to validate the model specification settings and may
proceed to the next step if the result is Model specification is valid (Figure 14).

Step 3. In the Data Exploration panel, review the missing data pattern table (Figure 15), the
missing data pattern heatmap, the Kaplan-Meier survival curves (Figure 16) and the spaghetti
plot of the functional outcome among survivors. The results show that there is a statistically
significant difference between Kaplan-Meier survival functions for the two treatment arms
(p-value = 0.006).

Step 4. The model fitting results are presented on the Model Fitting panel (Figures 17-18).
The residuals vs. fitted plot and the normal Q-Q plot of the model fitting results indicate
that the normality assumption for the residuals may not hold.

Step 5. Move to the Configuration panel to specify imputation and bootstrap analysis
parameters. Because of the concern about the normality assumption based on the model
fitting results, specify the Normality assumption to be No. Specify 100 bootstrap samples
for the bootstrap analysis and specify the sensitivity parameters to be −0.2, 0, 0.2. Choose 4
cores for bootstap parallel analysis (Figure 19).

This panel provides a Check Convergence button to randomly select an individual with
missing functional outcomes, conduct the imputation under the benchmark assumption for
the individual and present the traceplot of the MCMC samples (Figure 20). If there appears
to be an issue with the convergence, the user should consider running a longer Markov chain
and adjusting the target Metropolis acceptance rate or initial step-size. In our example, it
can be seen that the MCMC chains are mixed well.

Step 6. On the Imputation panel, click the Get Imputed Data button to conduct the

imputation and the Hypothesis Testing by Bootstrap button to conduct the bootstrap
analysis and draw inference. Selected results for the example are presented on Figures 21 and
22.

The results on the Ranks panel under hypothesis testing suggest that the SAT+SBT group
is favored over the control group under all the sensitivity analysis scenarios we consider, i.e.,
θ > 0, Figure 22. Under the benchmark assumptions, θ = 0.18 (SD 0.08, p-value = 0.02).
The statistical test for θ results in a statistically significant finding for scenarios when ∆1 = 0
or 0.2 for the SAT+SBT arm except when ∆1 = 0 and ∆0 = 0.2 for the UC+SBT arm. When
∆1 = −0.2, the test for θ is significant when ∆0 = −0.2.

For the UC+SBT group, we estimate that 50% of the subjects will survive past 72 days (95%
CI: survive past 34 to 364 days). In the SAT+SBT group, we estimate that 50% of subjects
will survive to 12 months with cognitive scores of 29 or greater (95% CI: cognitive score of
17 to 38 or greater). These results are reported on the Quantiles panel under hypothesis
testing (not shown).

Based on the primary and sensitivity analysis results, we conclude that there is relatively
robust evidence that a difference exists between the control and the intervention arms in the
composite endpoint of survival and cognitive performance which favors the intervention arm.
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Step 7. After conducting the analysis, choose to download a report as a PDF, HTML, or Word

document from the Report panel, (Figure 23). The report contains sections for Data Summary,
Analysis Summary, Missingness Summary, Imputation Results and Bootstrap Results.
Figure 24 shows the content page of report for the example.

Figure 12: Upload data.
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Figure 13: Model specification.
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Figure 14: Model specification.
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Figure 15: Data exploration: Missigness frequency table.
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Figure 16: Data exploration: Survival curves.
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Figure 17: Model fitting: Raw R output.
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Figure 18: Model fitting: Model fitting diagnostic plots.
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Figure 19: Configuration: Parameter specification
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Figure 20: Configuration: Convergence.



36 idem: Inferences in Clinical Trials with Death and Missingness

Figure 21: Imputation results
.
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Figure 22: Hypothesis analysis results
.

Figure 23: Report panel.
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Figure 24: Content page of a downloaded report.
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6. Conclusion

Missing data and data “truncated due to death” occur frequently in randomized clinical trials.
Wang et al. (2017) proposed an approach that was based on the composite of mortality and
the functional outcomes among survivors that accounts for both intermittent missing data
and data “truncated due to death”. Their proposal applied the complete case missing value
constraints for missing data imputation and suggested a global sensitivity analysis framework
to further assess the robustness of the findings.

In this paper, we introduce the R package idem that implements the proposed method in
Wang et al. (2017). The idem package provides functions for users to visualize the missing
data patterns, the observed functional outcomes among survivors and the survival curves for
all randomized patients. The imputation functions in idem implement the imputation using
the Adaptive Hamiltonian Monte Carlo algorithm provided by rstan. The idem also provides
functions for conducting bootstrap analysis and drawing inference. In addition, the idem
package also provides functions to evaluate the survivors only treatment effect and survivor
average causal effect on the functional outcomes based on the same missing data imputation
strategy proposed by Wang et al. (2017).

A unique feature of idem is that it provides a Shiny-based graphical user interface for users
to apply functions in idem in an interactive and user-friendly manner. With the GUI feature,
idem can be used by not only statisticians but also analysts that are not familiar with the R
environment.
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