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Missing Data Matters

While unbiased estimates of treatment effects can be
obtained from randomized trials with no missing data, this
is no longer true when data are missing on some patients.

The essential problem is that inference about treatment
effects relies on unverifiable assumptions about the nature
of the mechanism that generates the missing data.

While we usually know the reasons for missing data, we
do not know the distribution of outcomes for patients
with missing data, how it compares to that of patients
with observed data and whether differences in these
distributions can be explained by the observed data.
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Robert Temple and Bob O’Neil (FDA)

”During almost 30 years of review experience, the issue of
missing data in ... clinical trials has been a major concern
because of the potential impact on the inferences that
can be drawn .... when data are missing .... the analysis
and interpretation of the study pose a challenge and the
conclusions become more tenuous as the extent of
’missingness’ increases.”
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NRC Report and Sensitivity Analysis

In 2010, the National Research Council (NRC) issued a
reported entitled ”The Prevention and Treatment of
Missing Data in Clinical Trials.”

This report, commissioned by the FDA, provides 18
recommendations targeted at (1) trial design and conduct,
(2) analysis and (3) directions for future research.

Recommendation 15 states

Sensitivity analyses should be part of the primary
reporting of findings from clinical trials. Examining
sensitivity to the assumptions about the missing data
mechanism should be a mandatory component of
reporting.
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ICH, EMEA and Sensitivity Analysis

1998 International Conference of Harmonization (ICH)
Guidance document (E9) entitled ”Statistical Principles in
Clinical Trials” states: ”it is important to evaluate the
robustness of the results to various limitations of the data,
assumptions, and analytic approaches to data analysis”

European Medicines Agency 2009 draft ”Guideline on
Missing Data in Confirmatory Clinical Trials” states ”[i]n
all submissions with non-negligible amounts of missing
data sensitivity analyses should be presented as support
to the main analysis.”
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PCORI and Sensitivity Analysis

In 2012, Li et al. issued the report ”Minimal Standards in
the Prevention and Handling of Missing Data in
Observational and Experimental Patient Centered
Outcomes Research”

This report, commissioned by PCORI, provides 10
standards targeted at (1) design, (2) conduct, (3) analysis
and (4) reporting.

Standard 8 echoes the NRC report, stating

Examining sensitivity to the assumptions about the
missing data mechanism (i.e., sensitivity analysis) should
be a mandatory component of the study protocol,
analysis, and reporting.
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Sensitivity Analysis

The set of possible assumptions about the missing data
mechanism is very large and cannot be fully explored. There
are different approaches to sensitivity analysis:

Ad-hoc

Local

Global
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Ad-hoc Sensitivity Analysis

Analyzing data using a few different analytic methods,
such as last or baseline observation carried forward,
complete or available-case analysis, mixed models or
multiple imputation, and evaluate whether the resulting
inferences are consistent.

The problem with this approach is that the assumptions
that underlie these methods are very strong and for many
of these methods unreasonable.

More importantly, just because the inferences are
consistent does not mean that there are no other
reasonable assumptions under which the inference about
the treatment effect is different.
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Local Sensitivity Analysis

Specify a reasonable benchmark assumption (e.g., missing
at random) and evaluate the robustness of the results
within a small neighborhood of this assumption.

What if there are assumptions outside the local
neighborhood which are plausible?
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Global Sensitivity Analysis

Evaluate robustness of results across a much broader
range of assumptions that include a reasonable benchmark
assumption and a collection of additional assumptions
that trend toward best and worst case assumptions.

Emphasized in Chapter 5 of the NRC report.

This approach is substantially more informative because it
operates like ”stress testing” in reliability engineering,
where a product is systematically subjected to
increasingly exaggerated forces/conditions in order to
determine its breaking point.
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Global Sensitivity Analysis

In the missing data setting, global sensitivity analysis
allows one to see how far one needs to deviate from the
benchmark assumption in order for inferences to change.

”Tipping point” analysis (Yan, Lee and Li, 2009;
Campbell, Pennello and Yue, 2011)

If the assumptions under which the inferences change are
judged to be sufficiently far from the benchmark
assumption, then greater credibility is lent to the
benchmark analysis; if not, the benchmark analysis can be
considered to be fragile.
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Global Sensitivity Analysis

Restrict consideration to follow-up randomized study
designs that prescribe that measurements of an outcome
of interest are to be taken on each study participant at
fixed time-points.

Focus on monotone missing data pattern

Consider the case where interest is focused on a
comparison of treatment arm means at the last scheduled
visit.
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Case Study: Quetiapine Bipolar Trial

Patients with bipolar disorder randomized equally to one
of three treatment arms: placebo, Quetiapine 300 mg/day
or Quetiapine 600 mg/day (Calabrese et al., 2005).

Randomization was stratified by type of bipolar disorder.

Short-form version of the Quality of Life Enjoyment
Satisfaction Questionnaire (QLESSF, Endicott et al.,
1993), was scheduled to be measured at baseline, week 4
and week 8.
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Quetiapine Bipolar Trial

Focus on the subset of 234 patients with bipolar 1
disorder who were randomized to either the placebo
(n=116) or 600 mg/day (n=118) arms.

Only 65 patients (56%) in placebo arm and 68 patients
(58%) in the 600mg/day arm had a complete set of
QLESSF scores.

Patients with complete data tend to have higher average
QLESSF scores, suggesting that a complete-case analysis
could be biased.
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Observed Data

Figure: Treatment-specific (left: placebo; right: 600 mg/day
Quetiapine) trajectories of mean QLESSF scores, stratified by last
available measurement.
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Central Question

What is the difference in the mean QLESSF score at
week 8 between Quetiapine 600 mg/day and placebo
in the counterfactual world in which all patients were
followed to that week?
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Global Sensitivity Analysis

Inference about the treatment arm means requires two
types of assumptions:

(i) unverifiable assumptions about the distribution of
outcomes among those with missing data and

(ii) additional testable assumptions that serve to increase
the efficiency of estimation.
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Global Sensitivity Analysis

Type (i) assumptions are necessary to identify the
treatment-specific means.

By identification, we mean that we can write it as a
function that depends only on the distribution of the
observed data.

When a parameter is identified we can hope to estimate it
as precisely as we desire with a sufficiently large sample
size,

In the absence of identification, statistical inference is
fruitless as we would be unable to learn about the true
parameter value even if the sample size were infinite.
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Global Sensitivity Analysis

To address the identifiability issue, it is essential to
conduct a sensitivity analysis, whereby the data analysis is
repeated under different type (i) assumptions, so as to
investigate the extent to which the conclusions of the trial
are dependent on these subjective, unverifiable
assumptions.

The usefulness of a sensitivity analysis ultimately depends
on the plausibility of the unverifiable assumptions.

It is key that any sensitivity analysis methodology allow
the formulation of these assumptions in a transparent and
easy to communicate manner.
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Global Sensitivity Analysis

There are an infinite number of ways of positing type (i)
assumptions.

Ultimately, however, these assumptions prescribe how
missing outcomes should be ”imputed.”

A reasonable way to posit these assumptions is to

stratify individuals with missing outcomes according to
the data that we were able to collect on them and the
occasions at which the data were collected
separately for each stratum, hypothesize a connection
(or link) between the distribution of the missing outcome
with the distribution of the outcome among those with
the observed outcome and who share the same recorded
data.
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Global Sensitivity Analysis

Type (i) assumptions will not suffice when the repeated
outcomes are continuous or categorical with many levels.
This is because of data sparsity.

For example, the stratum of people who share the same
recorded data will typically be small. As a result, it is
necessary to draw strength across strata by ”smoothing.”

Without smoothing, the data analysis will rarely be
informative because the uncertainty concerning the
treatment arm means will often be too large to be of
substantive use.

As a result, it is necessary to impose type (ii) smoothing
assumptions.

Type (ii) assumptions should be scrutinized with standard
model checking techniques.
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Global Sensitivity Analysis

The global sensitivity framework proceeds by
parameterizing (i.e., indexing) the connections (i.e., type
(i) assumptions) via sensitivity analysis parameters.

The parameterization is configured so that a specific
value of the sensitivity analysis parameters (typically set
to zero) corresponds to a benchmark connection that is
considered reasonably plausible and sensitivity analysis
parameters further from the benchmark value represent
more extreme departures from the benchmark connection.
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Global Sensitivity Analysis

The global sensitivity analysis strategy that we propose is
focused on separate inferences for each treatment arm,
which are then combined to evaluate treatment effects.

Until later, our focus will be on estimation of the mean
outcome at week 8 (in a world without missing outcomes)
for one of the treatment groups and we will suppress
reference to treatment assignment.
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Notation: Quetiapine Bipolar Trial

Y0, Y1, Y2: QLESSF scores scheduled to be collected at
baseline, week 4 and week 8.

Let Rk be the indicator that Yk is observed.

We assume R0 = 1 and that Rk = 0 implies Rk+1 = 0
(i.e., missingness is monotone).

Patient is on-study at visit k if Rk = 1

Patient discontinued prior to visit k if Rk = 0

Patient last seen at visit k − 1 if Rk−1 = 1 and Rk = 0.

Y obs
k equals to Yk if Rk = 1 and equals to nil if Rk = 0.

26 / 164



Notation: Quetiapine Bipolar Trial

The observed data for an individual are

O = (Y0,R1,Y
obs
1 ,R2,Y

obs
2 ),

which has some distribution P∗ contained within a set of
distributions M (type (ii) assumptions discussed later).

The superscript ∗ will be used to denote the true value of
the quantity to which it is appended.

Any distribution P ∈M can be represented in terms of
the following distributions:

f (Y0)
P[R1 = 1|Y0]
f (Y1|R1 = 1,Y0)
P[R2 = 1|R1 = 1,Y1,Y0]
f (Y2|R2 = 1,Y1,Y0).
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Notation: Quetiapine Bipolar Trial

We assume that n independent and identically distributed
copies of O are observed.

The goal is to use these data to draw inference about
µ∗ = E ∗[Y2].

When necessary, we will use the subscript i to denote
data for individual i .
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Benchmark Assumption (Missing at Random)

A0(y0): patients last seen at visit 0 (R0 = 1,R1 = 0) with
Y0 = y0.

B0(y0): patients on-study at visit 1 (R1 = 1) with
Y0 = y0.

A1(y0, y1): patients last seen at visit 1
(R1 = 1,R2 = 0)with Y0 = y0 and Y1 = y1.

B1(y0, y1): patients who complete study (R2 = 1) with
Y0 = y0 Y1 = y1.
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Benchmark Assumption (Missing at Random)

Missing at random posits the following type (i) “linking”
assumptions:

For each y0, the distribution of Y1 and Y2 is the same for
those in stratum A(y0) as those in stratum B(y0).

For each y0, y1, the distribution of Y2 is the same for
those in stratum A1(y0, y1) as those in stratum B1(y0, y1).
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Benchmark Assumption (Missing at Random)

Mathematically, we can express these assumptions as follows:

f ∗(Y1,Y2|A0(y0)) = f ∗(Y1,Y2|B0(y0)) for all y0 (1)

and

f ∗(Y2|A1(y0, y1)) = f ∗(Y2|B1(y0, y1)) for all y0, y1 (2)
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Benchmark Assumption (Missing at Random)

Using Bayes’ rule, we can re-write these expressions as:

P∗[R1 = 0|R0 = 1,Y0 = y0,Y1 = y1,Y2 = y2]

= P∗[R1 = 0|R0 = 1,Y0 = y0]

and

P∗[R2 = 0|R1 = 1,Y0 = y0,Y1 = y1,Y2 = y2]

= P∗[R2 = 0|R1 = 1,Y0 = y0,Y1 = y1]

Missing at random implies:
The decision to discontinue the study before visit 1 is like
the flip of a coin with probability depending on the value
of the outcome at visit 0.
For those on-study at visit 1, the decision to discontinue
the study before visit 2 is like the flip of a coin with
probability depending on the value of the outcomes at
visits 1 and 0.
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Benchmark Assumption (Missing at Random)

MAR is a type (i) assumption. It is ”unverifiable.”

For patients last seen at visit k , we cannot learn from the
observed data about the conditional (on observed history)
distribution of outcomes after visit k .

For patients last seen at visit k , any assumption that we
make about the conditional (on observed history)
distribution of the outcomes after visit k will be
unverifiable from the data available to us.

For patients last seen at visit k , the assumption that the
conditional (on observed history) distribution of outcomes
after visit k is the same as those who remain on-study
after visit k is unverifiable.
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Benchmark Assumption (Missing at Random)

Under MAR, µ∗ is identified. That is, it can be expressed as a
function of the distribution of the observed data. Specifically,

µ∗ = µ(P∗) =

∫
y0

∫
y1

∫
y2

y2dF
∗
2 (y2|y1, y0)dF ∗1 (y1|y0)dF ∗0 (y0)

where

F ∗2 (y2|y1, y0) = P∗[Y2 ≤ y2|B1(y1, y0)]

F ∗1 (y1|y0) = P∗[Y1 ≤ y1|B0(y0)]

F ∗0 (y0) = P∗[Y0 ≤ y0].
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Missing Not at Random (MNAR)

The MAR assumption is not the only one that is (a)
unverifiable and (b) allows identification of µ∗.
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Missing Not at Random (MNAR)

The first part of the MAR assumption (see (1) above) is

f ∗(Y1,Y2|A0(y0)) = f ∗(Y1,Y2|B0(y0)) for all y0

It is equivalent to

f ∗(Y2|A0(y0),Y1 = y1)

= f ∗(Y2|B0(y0),Y1 = y1) for all y0, y1 (3)

and
f ∗(Y1|A0(y0)) = f ∗(Y1|B0(y0)) for all y0 (4)
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Missing Not at Random (MNAR)

In building a class of MNAR models, we will retain (3):

For all y0, y1, the distribution of Y2 for patients in stratum
A0(y0) with Y1 = y1 is the same as the distribution of Y2

for patients in stratum B0(y0) with Y1 = y1.

The decision to discontinue the study before visit 1 is
independent of Y2 (i.e., the future outcome) after
conditioning on the Y0 (i.e., the past outcome) and Y1

(i.e., the most recent outcome).

Non-future dependence (Diggle and Kenward, 1994)
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Missing Not at Random (MNAR)

Generalizing (4) Using Exponential Tilting

f ∗(Y1|A0(y0))

∝ f ∗(Y1|B0(y0)) exp{αr(Y1)} for all y0 (5)

Generalizing (2) Using Exponential Tilting

f ∗(Y2|A1(y0, y1))

∝ f ∗(Y2|B1(y0, y1)) exp{αr(Y2)} for all y0, y1 (6)

r(y) is a specified increasing function; α is a sensitivity
analysis parameter.

α = 0 is MAR.
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Missing Not at Random (MNAR)

When α > 0 (< 0)

For each y0, the distribution of Y1 for patients in stratum
A0(y0) is weighted more heavily to higher (lower) values
than the distribution of Y1 for patients in stratum B0(y0).

For each y0, y1, the distribution of Y2 for patients in
stratum A1(y0, y1) is weighted more heavily to higher
(lower) values than the distribution of Y2 for patients in
stratum B1(y0, y1).

The amount of ”tilting” increases with the magnitude of α.
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Missing Not at Random (MNAR)

Using Bayes’ rule, we can re-write (3), (5) and (6) as:

logit P∗[R1 = 0|R0 = 1,Y0 = y0,Y1 = y1,Y2 = y2]

= l∗1 (y0;α) + αr(y1)

and

logit P∗[R2 = 0|R1 = 1,Y0 = y0,Y1 = y1,Y2 = y2]

= l∗2 (y0, y1;α) + αr(y2)

where

l∗1 (y0;α) = logit P∗[R1 = 0|R0 = 1,Y0 = y0]−
log E ∗[exp{αr(Y1)}|B0(y0)]

and

l∗2 (y1, y0;α) = logit P∗[R2 = 0|R1 = 1,Y0 = y0,Y1 = y1]−
log E ∗[exp{αr(Y2)}|B1(y1, y0)]
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Missing Not at Random (MNAR)

Written in this way:

The decision to discontinue the study before visit 1 is like
the flip of a coin with probability depending on the value
of the outcome at visit 0 and (in a specified way) the
value of the outcome at visit 1.

For those on-study at visit 1, the decision to discontinue
the study before visit 2 is like the flip of a coin with
probability depending on the value of the outcomes at
visits 0 and 1 and (in a specified way) the value of the
outcome at visit 2.
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Exponential Tilting Explained

f (Y |R = 0) ∝ f (Y |R = 1) exp{αr(Y )}

If [Y |R = 1] ∼ N(µ, σ2) and r(Y ) = Y ,
[Y |R = 0] ∼ N(µ + ασ2, σ2)

If [Y |R = 1] ∼ Beta(a, b) and r(Y ) = log(Y ),
[Y |R = 0] ∼ Beta(a + α, b), α > −a.

If [Y |R = 1] ∼ Gamma(a, b) and r(Y ) = log(Y ),
[Y |R = 0] ∼ Gamma(a + α, b), α > −a.

If [Y |R = 1] ∼ Gamma(a, b) and r(Y ) = Y ,
[Y |R = 0] ∼ Gamma(a, b − α), α < b.

If [Y |R = 1] ∼ Bernoulli(p) and r(Y ) = Y ,

[Y |R = 0] ∼ Bernoulli
(

p exp(α)
p exp(α)+1−p

)
.
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Beta
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Missing Not at Random (MNAR)

For given α, µ∗ is identified. Specifically, µ∗ = µ(P∗;α) equals

∫
y0

∫
y1

∫
y2

y2

dF∗2 (y2|y1, y0){1− H∗2 (y1, y0)} +
dF∗2 (y2|y1, y0) exp{αr(y2)}∫
y′
2
dF∗2 (y′2 |y1, y0) exp{αr(y

′
2)}

H∗2 (y1, y0)

×dF∗1 (y1|y0){1− H∗1 (y0)} +
dF∗1 (y1|y0) exp{αr(y1)}∫
y′
1
dF∗1 (y′1 |y0) exp{αr(y

′
1)}

H∗1 (y0)

 dF∗0 (y0)

where
H∗2 (y1, y0) = P∗[R2 = 0|B1(y1, y0)]

and
H∗1 (y0) = P∗[R1 = 0|B0(y0)]

µ∗ is written as a function of the distribution of the
observed data (depending on α).
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Global Sensitivity Analysis
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Global Sensitivity Analysis
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Global Sensitivity Analysis
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Inference

For given α, the above formula shows that µ∗ depends on

F ∗2 (y2|y1, y0) = P∗[Y2 ≤ y2|B1(y1, y0)]

F ∗1 (y1|y0) = P∗[Y1 ≤ y1|B0(y0)]

H∗2 (y1, y0) = P∗[R2 = 0|B1(y1, y0)]

H∗1 (y0) = P∗[R1 = 0|B0(y0)].

It is natural to consider estimating µ∗ by “plugging in”
estimators of these quantities.

How can we estimate these latter quantities? With the
exception of F ∗0 (y0), it is tempting to think that we can use
non-parametric procedures to estimate these quantities.
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Inference

A non-parametric estimate of F ∗2 (y2|y1, y0) would take the
form:

F̂2(y2|y1, y0) =

∑n
i=1 R2,i I (Y2,i ≤ y2)I (Y1,i = y1,Y0,i = y0)∑n

i=1 R2,i I (Y1,i = y1,Y0,i = y0)

This estimator will perform very poorly (i.e., have high
levels of uncertainty in moderate sample sizes) because
the number of subjects who complete the study (i.e.,
R2 = 1) and are observed to have outcomes at visits 1
and 0 exactly equal to y1 and y0 will be very small and
can only be expected to grow very slowly as the sample
size increases.

As a result, a a plug-in estimator of µ∗ that uses such
non-parametric estimators will perform poorly.
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Inference - Type (ii) Assumptions

We make the estimation task slightly easier by assuming that

F ∗2 (y2|y1, y0) = F ∗2 (y2|y1) (7)

and
H∗2 (y1, y0) = H∗2 (y1) (8)
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Inference - Kernel Smoothing

Estimate F ∗2 (y2|y1), F ∗1 (y1|y0), H∗2 (y1) and H∗1 (y0) using kernel
smoothing techniques.

To motivate this idea, consider the following non-parametric
estimate of F ∗2 (y2|y1)

F̂2(y2|y1) =

∑n
i=1 R2,i I (Y2,i ≤ y2)I (Y1,i = y1)∑n

i=1 R2,i I (Y1,i = y1)

This estimator will still perform poorly, although better
than F̂2(y2|y1, y0).

Replace I (Y1,i = y1) by φ
(

Y1,i−y1
σF2

)
, where φ(·) is

standard normal density and σF2 is a tuning parameter.

F̂2(y2|y1;σF2) =

∑n
i=1 R2,i I (Y2,i ≤ y2)φ

(
Y1,i−y1
σF2

)
∑n

i=1 R2,iφ
(

Y1,i−y1
σF2

)
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Inference - Kernel Smoothing

This estimator allows all completers to contribute, not
just those with Y1 values equal to y1

It assigns weight to completers according to how far their
Y1 values are from y1, with closer values assigned more
weight.

The larger σF2 , the larger the influence of values of Y1

further from y1 on the estimator.

As σF2 →∞, the contribution of each completer to the
estimator becomes equal, yielding bias but low variance.

As σF2 → 0, only completers with Y1 values equal to y1
contribute, yielding low bias but high variance.
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Inference - Cross-Validation

To address the bias-variance trade-off, cross validation is
typically used to select σF2 .

Randomly divided dataset into J (typically, 10)
approximately equal sized validation sets.
Let Vj be the indices of the patients in jth validation set.
Let nj be the associated number of subjects.

Let F̂
(j)
2 (y2|y1;σF2) be the estimator of F ∗2 (y2|y1) based

on the dataset that excludes the jth validation set.
If σF2 is a good choice then one would expect

CVF∗
2
(·|·)(σF2 ) =

1

J

J∑
j=1


1

nj

∑
i∈Vj

R2,i

∫ {
I (Y2,i ≤ y2)− F̂

(j)
2 (y2|Y1,i ;σF2 )

}2
dF̂◦2 (y2)︸ ︷︷ ︸

Distance for i ∈ Vj



will be small, where F̂ ◦2 (y2) is the empirical distribution of
Y2 among subjects on-study at visit 2.
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Inference - Cross-Validation

For each individual i in the jth validation set with an
observed outcome at visit 2, we measure, by the quantity
above the horizontal brace, the distance (or loss) between
the collection of indicator variables
{I (Y2,i ≤ y2) : dF̂ ◦2 (y2) > 0} and the corresponding
collection of predicted values
{F̂ (j)

2 (y2|Y1,i ;σF2) : dF̂ ◦2 (y2) > 0}.
The distances for each of these individuals are then
summed and divided by the number of subjects in the jth
validation set.

An average across the J validation/training sets is
computed.

We can then estimate F ∗2 (y2|y1) by F̂2(y2|y1; σ̂F2), where
σ̂F2 = argmin CVF∗2 (·|·)(σF2).
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Inference - Cross-Validation

We use similar ideas to estimate

F ∗1 (y1|y0)

H∗2 (y1)

H∗1 (y0)

In our software, we set σF2 = σF1 = σF and minimize a single
CV function. The software refers to this smoothing parameter
as σQ .

In our software, we set σH2 = σH1 = σH and minimize a single
CV function. The software refers to this smoothing parameter
as σP .
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Inference - Potential Problem

The cross-validation procedure for selecting tuning
parameters achieves optimal finite-sample bias-variance
trade-off for the quantities requiring smoothing.

This optimal trade-off is usually not optimal for
estimating µ∗.

The plug-in estimator of µ∗ could possibly suffer from
excessive and asymptotically non-negligible bias due to
inadequate tuning.

This may prevent the plug-in estimator from having
regular asymptotic behavior, upon which statistical
inference is generally based.

The resulting estimator may have a slow rate of
convergence, and common methods for constructing
confidence intervals, such as the Wald and bootstrap
intervals, can have poor coverage properties.
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Inference - Correction Procedure

Let M be the class of distributions for the observed data
O that satisfy constraints (7) and (8).

For P ∈M, it can be shown that

µ(P ;α)− µ(P∗;α)

= −E ∗[ψP(O;α)− ψP∗(O;α)] + Rem(P ,P∗;α), (9)

where ψP(O;α) is a “derivative” of µ(·;α) at P and
Rem(P ,P∗;α) is a ”second-order” remainder term which
converges to zero as P tends to P∗.

The derivative is used to quantify the change in µ(P ;α)
resulting from small perturbations in P ; it also has mean
zero (i.e., E ∗[ψP∗(O;α)] = 0).

The remainder term is second order in the sense that it
can be written as or bounded by the product of terms
involving differences between (functionals of) P and P∗.
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Inference - Correction Procedure

Equation (9) plus some simple algebraic manipulation teaches
us that

µ(P̂ ;α)︸ ︷︷ ︸
Plug-in

−µ(P∗;α)

=
1

n

n∑
i=1

ψP∗(Oi ;α)− 1

n

n∑
i=1

ψP̂(Oi ;α) (10)

+
1

n

n∑
i=1

{ψP̂(Oi ;α)− ψP∗(Oi ;α)− E ∗[ψP̂(O;α)− ψP∗(O;α)]}

(11)

+ Rem(P̂ ,P∗;α) (12)

where P̂ is the estimated distribution of P∗ discussed in the
previous section.
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Inference - Correction Procedure

Under smoothness and boundedness conditions, term (11)
will be oP∗(n

−1/2) (i.e., will converge in probabity to zero
even when it is multipled by

√
n).

Provided P̂ converges to P∗ at a reasonably fast rate,
term (19) will also be oP∗(n

−1/2).

The second term in (10) prevents us from concluding that
the plug-in estimator can be essentially represented as an
average of i.i.d terms plus oP∗(n

−1/2) terms.

By adding the second term in (10) to the plug-in
estimator, we can construct a “corrected” estimator that
does have this representation.
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Inference - Correction Procedure

The corrected estimator is

µ̃α = µ(P̂ ;α)︸ ︷︷ ︸
Plug-in

+
1

n

n∑
i=1

ψP̂(Oi ;α)

The practical implication is that µ̃α converges in probability to
µ∗ and

√
n (µ̃α − µ∗) =

1√
n

n∑
i=1

ψP∗(Oi ;α) + oP∗(1)

With this representation, we see that ψP∗(O;α) is the
so-called influence function.
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Inference - Correction Procedure

By the central limit theorem, we then know that√
n (µ̃α − µ∗) converges to a normal random variable

with mean 0 and variance σ2
α = E ∗[ψP∗(O;α)2].

The asymptotic variance can be estimated by
σ̃2
α = 1

n

∑n
i=1 ψP̂(Oi ;α)2.

A (1− γ)% Wald-based confidence interval for µ∗ can be
constructed as µ̃α ± z1−γ/2σ̃α/

√
n, where zq is the qth

quantile of a standard normal random variable.
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Inference - Efficient Influence Function/Gradient

Let

π∗(y0, y1, y2;α)−1 = (1 + exp{l∗1 (y0;α) + αr(y1)})×
(1 + exp{l∗2 (y1;α) + αr(y2)})

w ∗1 (y0;α) = E ∗ [exp{αr(Y1)} | R1 = 1,Y0 = y0] ,

w ∗2 (y1;α) = E ∗ [exp{αr(Y2)} | R2 = 1,Y1 = y1] ,

g ∗1 (y0, y1;α) = {1− H∗1 (y0)}w ∗1 (y0;α) + exp{αr(y1)}H∗1 (y0).

g ∗2 (y1, y2;α) = {1− H∗2 (y1)}w ∗2 (y1;α) + exp{αr(y2)}H∗2 (y1).
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Inference - Efficient Influence Function/Gradient

ψP∗(O;α) := a∗0(Y0;α) +

R1b
∗
1(Y0,Y1;α) +

R2b
∗
2(Y1,Y2;α) +

{1− R1 − H∗1 (Y0)}c∗1 (Y0;α) +

R1{1− R2 − H∗2 (Y1)}c∗2 (Y1;α)

where
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Inference - Efficient Influence Function/Gradient

a∗0 (Y0) = E∗
[

R2Y2

π∗(Y0, Y1, Y2;α)
Y0

]
− µ(P∗;α)

b∗1 (Y0, Y1;α) = E∗
[

R2Y2

π∗(Y0, Y1, Y2;α)
R1 = 1, Y1, Y0

]
− E∗

[
R2Y2

π∗(Y0, Y1, Y2;α)
R1 = 1, Y0

]

+ E∗
[

R2Y2

π∗(Y0, Y1, Y2;α)

[
exp{αr(Y1)}
g∗1 (Y0, Y1;α)

]
R1 = 1, Y0

]
H∗1 (Y0)

{
1−

exp{αr(Y1)}
w∗1 (Y0;α)

}

b∗2 (Y1, Y2;α) = E∗
[

R2Y2

π∗(Y0, Y1, Y2;α)
R2 = 1, Y2, Y1

]
− E∗

[
R2Y2

π∗(Y0, Y1, Y2;α)
R2 = 1, Y1

]

+ E∗
[

R2Y2

π∗(Y0, Y1, Y2;α)

[
exp{αr(Y2)}
g∗2 (Y1, Y2;α)

]
R2 = 1, Y1

]
H∗2 (Y1)

{
1−

exp{αr(Y2)}
w∗2 (Y1;α)

}

c∗1 (Y0) = E∗
[

R2Y2

π∗(Y0, Y1, Y2;α)

[
exp{αr(Y1)}
g∗1 (Y0, Y1;α)

]
Y0

]

− E∗
[

R2Y2

π∗(Y0, Y1, Y2;α)

[
1

g∗1 (Y0, Y1;α)

]
Y0

]
w∗1 (Y0;α)

c∗2 (Y1) = E∗
[

R2Y2

π∗(Y0, Y1, Y2;α)

[
exp{αr(Y2)}
g∗2 (Y1, Y2;α)

]
R1 = 1, Y1

]

− E∗
[

R2Y2

π∗(Y0, Y1, Y2;α)

[
1

g∗2 (Y1, Y2;α)

]
R1 = 1, Y1

]
w∗2 (Y1;α)
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Inference - Uncertainty

Wald-based confidence intervals don’t always have
adequate coverage properties is finite samples.

In equal-tailed studentized bootstrap, the confidence
interval takes the form [µ̂− t0.975ŝe(µ̂), µ̂− t0.025ŝe(µ̂)],

where tq is the qth quantile of
{
µ̂(b)−µ̂
ŝe(µ̂(b))

: b = 1, . . . ,B
}

In symmetric studentized bootstrap, the confidence
interval takes the form [µ̂− t∗0.95ŝe(µ̂), µ̂ + t∗0.95ŝe(µ̂)],
where t∗0.95 is selected so that 95% of the distribution of{
µ̂(b)−µ̂
ŝe(µ̂(b))

: b = 1, . . . ,B
}

falls between −t∗0.95 and t∗0.95.

Useful to replace influence-function based standard error
estimator with jackknife standard error estimator.
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Quetiapine Bipolar Trial - Fit

Estimated smoothing parameters for the drop-out model
are 11.54 and 9.82 for the placebo and 600 mg arms.

Estimated smoothing parameters for the outcome model
are 6.34 and 8.05 for the placebo and 600 mg arms.

In the placebo arm, the observed percentages of last
being seen at visits 0 and 1 among those at risk at these
visits are 8.62% and 38.68%. Model-based estimates are
7.99% and 38.19%.

For the 600 mg arm, the observed percentages are
11.02% and 35.24% and the model-based estimates are
11.70% and 35.08%.
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Quetiapine Bipolar Trial - Fit

In the placebo arm, the Kolmogorov-Smirnov distances
between the empirical distribution of the observed
outcomes and the model-based estimates of the
distribution of outcomes among those on-study at visits 1
and 2 are 0.013 and 0.033.

In the 600 mg arm, these distances are 0.013 and 0.022.

These results suggest that our model for the observed
data fits the observed data well.
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Quetiapine Bipolar Trial - MAR

Under MAR, the estimated values of µ∗ are 46.45 (95%
CI: 42.35,50.54) and 62.87 (95% CI: 58.60,67.14) for the
placebo and 600 mg arms.

The estimated difference between 600 mg and placebo is
16.42 (95% 10.34, 22.51)

Statistically and clinically significant improvement in
quality of life in favor of Quetiapine.
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Quetiapine Bipolar Trial - Sensitivity Analysis

We set r(y) = y and ranged the sensitivity analysis
parameter from -10 and 10 in each treatment arm.

According to experts, there is no evidence to suggest that
there is a differential effect of a unit change in QLESSF
on the hazard of drop-out based on its location on the
scale.

70 / 164



Quetiapine Bipolar Trial - Sensitivity Analysis

Figure: Treatment-specific (left: placebo; right: 600 mg/day
Quetiapine) estimates (along with 95% pointwise confidence
intervals) of µ∗ as a function of α.
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Quetiapine Bipolar Trial - Sensitivity Analysis

Figure: Treatment-specific differences between the estimated mean
QLESSF at Visit 2 among non-completers and the estimated mean
among completers, as a function of α.
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Quetiapine Bipolar Trial - Sensitivity Analysis

Figure: Contour plot of the estimated differences between mean
QLESSF at Visit 2 for Quetiapine vs. placebo for various
treatment-specific combinations of the sensitivity analysis
parameters.
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Quetiapine Bipolar Trial - Sensitivity Analysis

Only when the sensitivity analysis are highly differential
(e.g., α(placebo) = 8 and α(Quetiapine) = −8) are the
differences no longer statistically significant.

Conclusions under MAR are highly robust.
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Simulation Study

Generated 2500 placebo and Quetiapine datasets using
the estimated distributions of the observed data from the
Quentiapine study as the true data generating
mechanisms.

For given treatment-specific α, these true data generating
mechanisms can be mapped to a true value of µ∗.

For each dataset, the sample size was to set to 116 and
118 in the placebo and Quetiapine arms, respectively.
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Simulation Study - Bias/MSE

Placebo Quetiapine
α Estimator µ∗ Bias MSE µ∗ Bias MSE

-10 Plug-in 40.85 0.02 4.43 56.07 0.40 4.69
Corrected 0.43 4.56 0.42 4.72

-5 Plug-in 43.45 0.05 4.29 59.29 0.34 4.55
Corrected 0.27 4.26 0.24 4.35

-1 Plug-in 46.02 0.28 4.34 62.58 0.50 4.39
Corrected 0.18 4.22 0.14 4.00

0 Plug-in 46.73 0.36 4.44 63.42 0.55 4.36
Corrected 0.17 4.27 0.14 3.95

1 Plug-in 47.45 0.43 4.57 64.25 0.59 4.32
Corrected 0.16 4.36 0.15 3.92

5 Plug-in 50.48 0.66 5.33 67.34 0.59 4.20
Corrected 0.14 5.11 0.19 4.15

10 Plug-in 54.07 0.51 5.78 70.51 0.07 4.02
Corrected 0.04 6.30 -0.05 4.66
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Simulation Study - Coverage

Placebo Quetiapine
α Procedure Coverage Coverage
-10 Wald-IF 91.5% 90.5%

Wald-JK 95.0% 94.6%
Bootstrap-IF-ET 94.3% 93.8%
Bootstap-JK-ET 94.4% 93.4%
Bootstap-IF-S 95.2% 94.6%
Bootstap-JK-S 95.0% 94.6%

-5 Wald-IF 93.5% 92.9%
Wald-JK 95.0% 94.8%
Bootstrap-IF-ET 95.2% 94.6%
Bootstap-JK-ET 94.8% 94.6%
Bootstap-IF-S 95.4% 95.2%
Bootstap-JK-S 95.1% 95.2%

-1 Wald-IF 93.9% 94.2%
Wald-JK 94.9% 95.4%
Bootstrap-IF-ET 95.1% 94.8%
Bootstap-JK-ET 95.1% 94.6%
Bootstap-IF-S 95.3% 96.4%
Bootstap-JK-S 95.1% 96.3%

0 Wald-IF 93.8% 94.0%
Wald-JK 95.0% 95.4%
Bootstrap-IF-ET 94.6% 94.5%
Bootstap-JK-ET 94.6% 94.6%
Bootstap-IF-S 95.5% 96.6%
Bootstap-JK-S 95.2% 96.7%
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Simulation Study - Coverage

Placebo Quetiapine
α Procedure Coverage Coverage
1 Wald-IF 93.3% 93.7%

Wald-JK 95.1% 95.5%
Bootstrap-IF-ET 94.6% 94.6%
Bootstap-JK-ET 94.6% 94.6%
Bootstap-IF-S 95.5% 96.5%
Bootstap-JK-S 95.2% 96.5%

5 Wald-IF 90.8% 91.3%
Wald-JK 95.3% 95.7%
Bootstrap-IF-ET 93.2% 91.6%
Bootstap-JK-ET 93.8% 93.0%
Bootstap-IF-S 95.5% 95.4%
Bootstap-JK-S 95.8% 96.4%

10 Wald-IF 85.4% 87.8%
Wald-JK 94.9% 94.5%
Bootstrap-IF-ET 88.2% 87.0%
Bootstap-JK-ET 92.2% 89.7%
Bootstap-IF-S 94.6% 93.9%
Bootstap-JK-S 95.5% 95.1%

78 / 164



Generalization

Yk : outcome scheduled to be measured at assessment k .

Rk : indicator that individual is on-study at assessment k .

All individuals are present at baseline, i.e., R0 = 1.

Monotone missing data: Rk+1 = 1 implies Rk = 1.

C = max{k : Rk = 1}, C = K implies that the individual
completed the study.

For any given vector z = (z1, z2, . . . , zK ),

zk = (z0, z1, . . . , zk)
zk = (zk+1, zk+2, . . . , zK ).

For each individual, the data unit O = (C ,Y C ) is drawn
from some distribution P∗ contained in the
non-parametric model M of distributions.

The observed data consist of n independent draws
O1,O2, . . . ,On from P∗.
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Generalization

By factorizing the distribution of O in terms of chronologically
ordered conditional distributions, any distribution P ∈M can
be represented by

F0(y0) := P (Y0 ≤ y0);

Fk+1(yk+1 | y k) :=
P
(
Yk+1 ≤ yk+1 | Rk+1 = 1,Y k = y k

)
,

k = 0, 1, . . . ,K − 1;

Hk+1(ȳk) := P
(
Rk+1 = 0 | Rk = 1,Y k = y k

)
,

k = 0, 1, . . . ,K − 1.

The main objective is to draw inference about µ∗ := E ∗(YK ),
the true mean outcome at visit K in a hypothetical world in
which all patients are followed to that visit.

80 / 164



Missing at Random

For every y k , define the following strata:

Ak(y k): patients last seen at visit k (i.e.,
Rk = 1,Rk+1 = 0) with Y k = y k .

Bk(y k): patients on-study at visit k + 1 (i.e., Rk+1 = 1)
with Y k = y k .
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Missing at Random

For all y k , the distribution of Y k for patients in
stratum Ak(y k) is the same as the distribution of Y k

for patients in stratum Bk(y k)

Mathematically, we can express these assumptions as follows:

f ∗(Y k |Ak(y k)) = f ∗(Y k |Bk(y k)) for all y k (13)
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Missing at Random

Using Bayes’ rule, we can re-write these expressions as:

P∗(Rk+1 = 0|Rk = 1,Y K = yK )

= P∗(Rk+1 = 0|Rk = 1,Y k = y k) for all yK

Written in this way, missing at random implies that the
drop-out process is stochastic with the following interpretation:

Among those on study at visit k, the decision to
discontinue the study before the next visit is like the
flip of a coin with probability depending only on the
observable history of outcomes through visit k (i.e.,
no outcomes after visit k).
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Missing at Random

Under missing at random, µ∗ is identified. That is, it can be
expressed as a functional of the distribution of the observed
data. Specifically, µ∗ = µ(P∗) is∫

y0

· · ·
∫
yK

yK

{
K−1∏
k=0

dF ∗k+1(yk+1|y k)

}
dF ∗0 (y0)
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Missing Not at Random

Equation (13) is equivalent to the following two assumptions:

f ∗(Y k+1|Ak(y k),Yk+1 = yk+1)

= f ∗(Y k+1|Bk(y k),Yk+1 = yk+1) for all y k+1 (14)

and

f ∗(Yk+1|Ak(y k)) = f ∗(Yk+1|Bk(y k)) for all y k (15)

Equation (14) posits the following ”linking” assumption:

For all y k+1, the distribution of Y k+1 for patients in
stratum Ak(y k) with Yk+1 = yk+1 is the same as the
distribution of Y k+1 for patients in stratum Bk(y k)
with Yk+1 = yk+1.
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Missing Not at Random

Using Bayes’ rule, this assumption can be re-written as:

P∗(Rk+1 = 0|Rk = 1,Y K = yK )

= P∗(Rk+1 = 0|Rk = 1,Y k+1 = y k+1) for all yK

(16)

This assumption has been referred to as the ”non-future”
dependence assumption (Diggle and Kenward, 1994) because
it has the following interpretation:

Among those on study at visit k, the decision to
discontinue the study before the next visit is like the
flip of a coin with probability depending only on the
observable history of outcomes through visit k and
the potentially unobserved outcome at visit k + 1
(i.e., no outcomes after visit k + 1).

We will retain this assumption.
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Missing Not at Random

Next, we generalize (15) and impose the following exponential
tilting ”linking” assumptions:

f ∗(Yk+1|Ak(y k)) ∝ f ∗(Yk+1|Bk(y k)) exp(αr(Yk+1)) for all y k

(17)
where r(·) is a specified function which we will assume to be
an increasing function of its argument and α is a sensitivity
analysis parameter.
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Missing Not at Random

The missing not at random class of assumptions that we
propose involves Equations (14) and (17), where r(·) is
considered fixed and α is a sensitivity analysis parameter
that serves as the class index.

(17) reduces to (15) when α = 0. Thus, when α = 0, the
missing at random assumption is obtained.

When α > 0 (< 0), (17) implies:

For all y k , the distribution of Yk+1 for patients
in stratum Ak(y k) is weighted more heavily (i.e.,
tilted) to higher (lower) values than the
distribution of Yk+1 for patients in stratum
Bk(y k).

The amount of ”tilting” increases with magnitude of α.
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Inference

Three steps:
1 Assume

F ∗k+1(yk+1 | yk) = F ∗k+1(yk+1 | yk)
H∗k+1(ȳk) = H∗k+1(yk)

2 Estimate F ∗k+1(yk+1 | yk) and H∗k+1(ȳk) = H∗k+1(yk) using
non-parametric smoothing with tuning parameters
selected by cross-validation.

3 Use plug-in + average of estimated influence functions.

4 Use alternatives to Wald-based confidence intervals.
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Case Study: SCA-3004

Randomized trial designed to evaluate the efficacy and
safety of once-monthly, injectable paliperidone palmitate
(PP1M) relative to placebo (PBO) in delaying the time
to relapse in subjects with schizoaffective disorder.

Open-label phase consisting of a flexible-dose, lead-in
period and a fixed-dose, stabilization period.

Stable subjects entered a 15-month relapse-prevention
phase and were randomized to receive PP1M or placebo
injections at baseline (Visit 0) and every 28 days (Visits
1-15).

Additional clinic visit (Visit 16) scheduled for 28 days
after the last scheduled injection.

170 and 164 subjects were randomized to the PBO and
PP1M arms.
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Case Study: SCA-3004

Research question: Are functional outcomes better in
patients with schizoaffective disorder better maintained if
they continue on treatment or are withdrawn from
treatment and given placebo instead?

An ideal study would follow all randomized subjects
through Visit 16 while maintaining them on their
randomized treatment and examine symptomatic and
functional outcomes at that time point.

Since clinical relapse can have a major negative impact,
the study design required that patients who had signs of
relapse were discontinued from the study.

In addition, some patients discontinued due to adverse
events, withdrew consent or were lost to follow-up.

38% and 60% of patients in the PBO and PP1M arms
were followed through Visit 16 (p=0.0001).
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Case Study: SCA-3004
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Case Study: SCA-3004

Focus: Patient function as measured by the Personal and
Social Performance (PSP) scale.

The PSP scale is scored from 1 to 100 with higher scores
indicating better functioning based on evaluation of 4
domains (socially useful activities, personal/social
relationships, self-care, and disturbing/aggressive
behaviors).

Estimate treatment-specific mean PSP at Visit 16 in the
counterfactual world in which all patients who are
followed to Visit 16.

The mean PSP score among completers was 76.05 and
76.96 in the PBO and PP1M arms; the estimated
difference is -0.91 (95%: -3.98:2.15).
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Case Study: SCA-3004 (PBO)
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Case Study: SCA-3004 (PP1M)
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Case Study: SCA-3004

0.00 0.02 0.04 0.06 0.08 0.10 0.12

Conditional Probability of Dropout (actual data)

0.000

0.025

0.050

0.075

0.100

0.125

C
on

di
tio

na
l P

ro
ba

bi
lit

y 
of

 D
ro

po
ut

 (
si

m
ul

at
ed

 d
at

a)

Active arm
Placebo arm

0 5 10 15

Visit

0.00

0.05

0.10

0.15

0.20

K
ol

m
og

or
ov

-S
m

irn
ov

 S
ta

tis
tic

Active arm
Placebo arm

96 / 164



Case Study: SCA-3004
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Case Study: SCA-3004
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Case Study: SCA-3004

Under MAR (i.e., α = 0), the estimated means of interest
are 69.60 and 74.37 for the PBO and PP1M arms.

The estimated treatment difference is −4.77 (95% CI:
-10.89 to 0.09).
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Case Study: SCA-3004
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Case Study: SCA-3004

yk+1 y ∗k+1 Log Odds Ratio
30 20 α× 0.01
40 30 α× 0.18
50 40 α× 0.40
60 50 α× 0.30
70 60 α× 0.09
80 700 α× 0.01
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Case Study: SCA-3004
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Case Study: SCA-3004
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Case Study: SCA-3004

PP1M
Placebo
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Simulation Study

PBO PP1M
α Estimator µ∗ Bias MSE µ∗ Bias MSE

-10 µ(P̂) 72.89 0.76 1.75 73.76 0.41 1.36
µ̂ 0.50 1.58 0.31 1.26

-5 µ(P̂) 73.38 0.52 1.42 74.25 0.26 1.14
µ̂ 0.31 1.32 0.16 1.05

-1 µ(P̂) 73.74 0.38 1.23 74.59 0.17 1.02
µ̂ 0.19 1.18 0.06 0.95

0 µ(P̂) 73.80 0.36 1.21 74.63 0.16 1.01
µ̂ 0.18 1.17 0.08 0.95

1 µ(P̂) 73.84 0.35 1.19 74.67 0.18 1.01
µ̂ 0.17 1.15 0.05 0.94

5 µ(P̂) 74.00 0.30 1.13 74.67 0.16 1.00
µ̂ 0.13 1.11 0.04 0.93

10 µ(P̂) 74.15 0.24 1.08 74.84 0.15 0.97
µ̂ 0.10 1.08 0.06 0.91
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Simulation Study

PBO PP1M
α Procedure Coverage Coverage
-10 Normal-IF 86.1% 88.6%

Normal-JK 92.1% 92.6%
Bootstrap-IF-ET 90.2% 91.9%
Bootstap-JK-ET 92.4% 93.7%
Bootstap-IF-S 92.3% 92.7%
Bootstap-JK-S 93.9% 94.3%

-5 Normal-IF 89.0% 91.7%
Normal-JK 94.1% 94.2%
Bootstrap-IF-ET 91.7% 92.6%
Bootstap-JK-ET 93.6% 94.9%
Bootstap-IF-S 94.1% 94.2%
Bootstap-JK-S 95.1% 95.1%

-1 Normal-IF 90.8% 93.4%
Normal-JK 94.9% 94.8%
Bootstrap-IF-ET 91.0% 94.0%
Bootstap-JK-ET 92.8% 94.9%
Bootstap-IF-S 94.4% 94.7%
Bootstap-JK-S 95.0% 95.3%

0 Normal-IF 90.7% 93.5%
Normal-JK 95.0% 94.9%
Bootstrap-IF-ET 92.8% 93.9%
Bootstap-JK-ET 94.3% 95.0%
Bootstap-IF-S 95.3% 94.7%
Bootstap-JK-S 96.0% 95.1%
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Simulation Study

PBO PP1M
α Procedure Coverage Coverage
1 Normal-IF 90.9% 93.5%

Normal-JK 94.9% 94.8%
Bootstrap-IF-ET 92.8% 93.5%
Bootstap-JK-ET 94.2% 95.0%
Bootstap-IF-S 95.3% 94.6%
Bootstap-JK-S 96.0% 95.2%

5 Normal-IF 91.5% 93.7%
Normal-JK 94.6% 95.1%
Bootstrap-IF-ET 92.6% 93.8%
Bootstap-JK-ET 93.8% 94.7%
Bootstap-IF-S 94.9% 95.1%
Bootstap-JK-S 96.0% 95.5%

10 Normal-IF 92.1% 93.4%
Normal-JK 94.8% 95.0%
Bootstrap-IF-ET 92.9% 93.8%
Bootstap-JK-ET 93.9% 94.8%
Bootstap-IF-S 94.7% 95.0%
Bootstap-JK-S 95.6% 95.4%
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Issues

Non-monotone missing data; partial imputation

Outliers
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Missing Data Matters

No substitute for better trial design and procedures to
minimize missing data.

Global sensitivity analysis should be a mandatory
component of trial reporting.

Visit us at www.missingdatamatters.org or email me at
dscharf@jhu.edu

109 / 164



Software

1. R

samon library
functions with pass to C code

2. SAS

procedures and macros
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Background

Randomized study with outcome measurements taken at
fixed time-points

Monotone missing data pattern

Interest is in a comparison of treatment arm means at the
last scheduled time-point

Outcomes are coded as positive integers

Missing values are coded as -1

Rows indicate individuals and columns indicate
time-points

Data at the first time-point (the baseline) is never missing

111 / 164



Background

time − point3

subjects



82 88 81 −1 −1 −1 −1 −1
71 75 69 66 62 58 51 48
62 63 −1 55 61 66 68 −1
72 63 −1 −1 62 44 55 −1
83 62 74 67 −1 −1 −1 −1
88 92 99 70 −1 −1 −1 −1
66 71 71 71 75 75 71 71
90 88 88 88 77 −1 −1 −1
88 91 92 91 95 90 88 −1
−1 52 33 99 87 88 −1 −1
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Case Study: Quetiapine Fumarate

Among Bipolar I subjects

Subjects scheduled for 3 assessments at days 1, 29 and
57.

Primary efficiacy variable: QLESSF score (Quality of Life
Enjoyment and Satisfaction – Short Form)

Two treatment groups considered here: placebo
(treatment 1) and quetiapine fumarate 600mg (treatment
2).
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QLESSF Analysis

Descriptive analysis for each treatment group.

Check the monotone missing condition.

Decide on a sensitivity function.

In SAS use the samon procedure, or, in R use the samon

function to estimate means.

Examine the results.
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The Quet1/Quet2 Dataset

proc print data = quet1;

run;

Obs V1 V2 V3

1 36 56 57

2 32 32 31

3 25 42 27

4 48 52 54

5 27 40 40

6 38 43 -1

7 35 44 39

8 24 26 28

9 25 30 -1

10 25 28 -1

11 40 45 45

12 14 16 -1

13 34 37 -1

14 27 25 -1

15 26 25 -1

16 38 -1 -1

17 44 -1 -1

18 35 31 -1

19 25 45 49

20 45 53 56

21 32 38 48

22 46 45 -1

23 30 -1 -1

24 43 56 43

25 42 44 41

26 34 45 47

27 34 -1 -1
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SAS: samonDataCheck macro

samonDataCheck macro can be used to check data to
ensure it is in samon canonical form.

%samonDataCheck
(
data = input dataset
vars = variable list (in time order)
out = output data
stats = output statistics dataset
mpattern = missing pattern counts dataset
);
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SAS: samonDataCheck macro

%samonDataCheck(

data = quet1,

vars = v1 v2 v3,

out = check1,

stats = stats1t,

mpattern = pattern1);
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R: samonDataCheck function

In R, the samonDataCheck function can be used for the
same purpose:

samonDataCheck( quet1 )

> # R version of samonDataCheck is a

> # function of the same name

>

> # Check data

> chk1 <- samonDataCheck( quet1 )

>

> chk2 <- samonDataCheck( quet2 )
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samonDataCheck

Samon Data Check:

--------------------------------

Number of time-points: 3

Number of subjects: 116

Minimum value: 14

Maximum value: 63

No Samon problems found

Missing Patterns:

N proportion

*__ : 10 0.0862

**_ : 41 0.3534

*** : 65 0.5603
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samonDataCheck

Samon Data Check:

--------------------------------

Number of time-points: 3

Number of subjects: 118

Minimum value: 15

Maximum value: 67

No Samon problems found

Missing Patterns:

N proportion

*__ : 13 0.1102

**_ : 37 0.3136

*** : 68 0.5763
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Two natural questions

1. The probability of dropout or of staying on study

If an individual is on-study at time t − 1, what is the
probability of them staying on-study at time t? This
probability may depend on the value Yt−1. This leads to
our first model:

Prob[Rt = 1 | Rt−1 = 1,Yt−1 = y ] ∼ smooth(y ;σ)

The smooth function of y depends on a single smoothing
parameter σ.
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Two natural questions

2. The distribution of the outcome

If individuals are on-study at time t − 1 and remain
on-study at time t, what is the distribution of their
outcomes at time t? Again this distribution may depend
on the value Yt−1. This leads to our second model:

h[y ′ | Rt = 1,Yt−1 = y ] ∼ smooth(y ;σ)

The smooth function of y depends on a single smoothing
parameter σ.
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Estimating the smoothing parameters

In order to estimate the two smoothing parameters we do the
following:

a. Partition the data into Npart pieces.

b. Set aside a partition of the data and use the remainder to
“predict” a feature of the partition that has been set
aside. How badly this “prediction” goes is given a
numeric value – the loss associated with σ.

c. Repeat this dropping each partition in turn and
computing the total loss.

d. Choose the smoothing parameter that minimizes the loss.
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The loss function

We choose an optimal σP by minimizing the loss function LP ,
which up to a constant is

LP(σ) =
Nt∑
t=2

n∑
j=1

Rt−1,j (Rt,j − P−j(Rt,j = 1 | Yt−1,j))2

where P−j is the propability distribution derived from the data
after removing the partition to which j belongs.
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R: samoneval function

samoneval function can be used to compute the loss
function for a range of σ.

Takes six arguments:

samoneval(

mat = MAT,

Npart = 10,

LowSigma = 0.1,

HighSigma = 100,

IncrementSigma = 0.1

type = “both”

)

Returns a matrix containing σP and its corresponding loss
function value and σQ and its corresponding loss function
value.
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R: samoneval function

> library(samon, lib.loc="Rver2.0/samlib")

>

> Results1 <- samoneval(

+ mat = quet1,

+ Npart = 10,

+

+ IncrementSigma = 0.1,

+ LowSigma = 0.2,

+ HighSigma = 30.0,

+

+ type = "both"

+ )

130 / 164



R: samoneval function

> Results2 <- samoneval(

+ mat = quet2,

+ Npart = 10,

+

+ IncrementSigma = 0.1,

+ LowSigma = 0.2,

+ HighSigma = 30.0,

+

+ type = "both"

+ )

> ResultsP <- cbind(Results1[,1:2],

+ Results2[,1:2])

> PQPlot(ResultsP, "P.pdf", 4.2, 4.2,

+ "Loss function (P)", c(0,30),

+ c( 2.5, 4.5), c(15,4.5) )
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samonev procedure

The samonev procedure computes the loss function for a
range of σ.
samonev

data = Input dataset

out = Output dataset

npart = Number of partitions

lowSigma = low value of sigma

highSigma = high value of sigma

incSigma = increment sigma

var varlist list of variables in time order
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samonev procedure

proc samonev

data = quet1

out = ev1

Npart = 10

incSigma = 0.1

lowSigma = 0.2

highSigma = 30;

var v1 - v3;

run;
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samon

The samon function and the samon procedure can be used to
find optimal values of σP and σQ . Like many optimization
techniques providing good initial estimates can improve the
efficiency of convergence of the optimization. Within samon

we also provide an upper bound for σP and σQ . Should the
algorithm converge to an optimal value greater than the upper
bound, then samon returns the upper bound itself rather than
search optimal value above this upper bound. This is to reflect
the fact that larger values of σP or σQ result in little change in
the smoothing.
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R: samon function

# Example1.R
# Finding optimal Sigma_p and Sigma_q.
# ----------------------------------------
library(samon, lib.loc="Rver2.0/samlib")

samonResults <- samon(
mat = quet1,
Npart = 10,

InitialSigmaP = 6.0,
HighSigmaP = 50.0,

InitialSigmaQ = 4.0,
HighSigmaQ = 50.0

)

# print the output
print(samonResults)
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SAS: samon procedure

* Finding optimal Sigma_p and Sigma_q.;
* ----------------------------------------;
proc samon data = quet1

out = samon1
Npart = 10
pinit = 6.0
phigh = 50.0
qinit = 4.0
qhigh = 50;

var v1 - v3;
run;

%split( data = samon1, tag = 1 );
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Treatment 1

proc print data = PM1 noobs;
run;

rc Niter Sigma loss
2 3 6.6918 2.7468

proc print data = QM1 noobs;
run;

rc Niter Sigma loss
2 6 3.6771 1.9057
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Treatment 2

proc print data = PM2 noobs;
run;

rc Niter Sigma loss
2 3 5.6938 2.9607

proc print data = QM2 noobs;
run;

rc Niter Sigma loss
2 3 4.6704 2.1872
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Sensitivity Analysis

Within samon the sensitivity bias function is the
cumulative function of the beta distribution, a flexible
function with bounded support.

This together with the sensitivity analysis parameter α
provides the mechanism by which we measure the
sensitivity of the results to informative drop-out.

α = 0 is missing at random

α quantifies the influence of Yt+1 on the decision to
drop-out between t and t + 1.
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Sensitivity Analysis

The cumulative beta function is defined on the interval
(0,1) and in order to use it as the sensitivity bias function
we need to map the range of our data into (0,1).

In the case of QLESSF scores the data are limited to the
range 13 and 71.

We take the parameters for the cumulative beta function
ζ1 and ζ2 to be 1.
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samon procedure
samon

data = Input dataset
out = Output dataset
npart = Number of partitions
pinit = initial value for smoothing parameter sigma p
phigh = Highest value for smoothing parameter sigma p
qinit = initial value for smoothing parameter sigma q
qhigh = Highest value for smoothing parameter sigma q
lb = lower bound of data
ub = upper bound of data
zeta1 = parameter for cumulative beta distribution
zeta2 = parameter for cumulative beta distribution
nsamples = Number of bootstrap samples
seed0 = Seed to pass to random number generator
sj compute jackknifes for each bootstrap sample
nomj suppress jackknife computation for the main dataset

var varlist list of variables in time order
sensp senslist list of sensitivity parameters
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models estimates 

M jackknife models estimates 

models estimates 

S jackknife models estimates 

IFM 

IFMjk 

IFS 

IFSjk 

nomj 

sj 

NSamples 
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proc samon data = quet1 out = samon1
Npart = 10
Pinit = 6.0 PHigh = 50.0
Qinit = 4.0 QHigh = 50.0

lb = 13 ub = 71
zeta1 = 1.0 zeta2 = 1.0
nomj nsamples = 0 ;

var v1 - v3;
sensp -10 to 10 by 1;

run;
%split( data = samon1, tag = 1 );
proc print data = IFM1 noobs;
var alpha AEst AVar IFEst IFVar;

run;
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# Produce one-step influence function estimates
# ----------------------------------------------
library(samon, lib.loc="Rver2.0/samlib")

Results1 <- samon(
mat = quet1,
Npart = 10,

# initial value and upper bound for sigmaP
InitialSigmaP = 6.0,
HighSigmaP = 50.0,

# initial value and upper bound for sigmaQ
InitialSigmaQ = 4.0,
HighSigmaQ = 50.0,

LowAlphaList = -10:10, # alphas

lb = 13, ub = 71,
zeta1 = 1.0, zeta2 = 1.0
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alpha AEst AVar IFEst IFVar

-10 36.6909 0.08754 36.9454 1.3374

-9 36.9556 0.09050 37.2108 1.3438

-8 37.2402 0.09354 37.4881 1.3497

-7 37.5435 0.09653 37.7740 1.3547

-6 37.8641 0.09934 38.0654 1.3585

-5 38.2007 0.10185 38.3611 1.3609

-4 38.5526 0.10395 38.6609 1.3625

-3 38.9189 0.10556 38.9660 1.3641

-2 39.2993 0.10660 39.2787 1.3668

-1 39.6935 0.10701 39.6020 1.3715

0 40.1010 0.10678 39.9386 1.3792

1 40.5210 0.10590 40.2911 1.3898

2 40.9517 0.10436 40.6609 1.4026

3 41.3907 0.10222 41.0484 1.4160

4 41.8343 0.09950 41.4525 1.4278

5 42.2785 0.09626 41.8710 1.4356

6 42.7186 0.09252 42.3006 1.4374

7 43.1501 0.08832 42.7372 1.4320

8 43.5690 0.08370 43.1760 1.4190

9 43.9724 0.07871 43.6127 1.3989

10 44.3586 0.07345 44.0435 1.3729 148 / 164
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Confidence intervals

Use bootstrap with jackknife to compute confidence
intervals.

The NSamples argument controls the number of
bootstraps to make.

The flags mj and sj control whether jackknifes are
performed on the main (input) data and the bootstrap
samples respectively.

For a small dataset with 100 individuals, 1,000 bootstraps
each with bootstrap estimates on 50 sensitivity
parameters gives rise to 50 x 100 x 1000 = 5 million
estimates.
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proc samon data = quet1 out = samon1

Npart = 10

Pinit = 6.0 PHigh = 50.0

QInit = 4.0 QHigh = 50.0

lb = 13 ub = 71

zeta1 = 1.0 zeta2 = 1.0

NSamples = 500 seed0 = 81881

sj;

var v1-v3;

sensp -10 to 10 by 1;

run;
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%samonSummary(

data = results.results1,

out = data.Summary1,

sampout = data.sampSummary1

);

proc print data=data.Summary1;

var alpha IFEst lb ub;

run;
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alpha IFEst lb ub

-10 36.9454 34.2645 39.6263

-9 37.2108 34.5635 39.8580

-8 37.4881 34.9005 40.0757

-7 37.7740 35.2496 40.2984

-6 38.0654 35.5840 40.5468

-5 38.3611 35.9267 40.7955

-4 38.6609 36.2627 41.0590

-3 38.9660 36.6038 41.3281

-2 39.2787 36.9218 41.6356

-1 39.6020 37.2546 41.9493

0 39.9386 37.5628 42.3144

1 40.2911 37.8957 42.6866

2 40.6609 38.2211 43.1007

3 41.0484 38.5820 43.5148

4 41.4525 38.9005 44.0045

5 41.8710 39.2378 44.5043

6 42.3006 39.5695 45.0318

7 42.7372 39.9254 45.5490

8 43.1760 40.2880 46.0641

9 43.6127 40.5862 46.6392

10 44.0435 40.8705 47.2165 153 / 164



Estimated QLESSF score at visit 3

Placebo Arm Active Arm
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Estimated QLESSF score at visit 3

Difference (active - placebo)
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Another useful plot is a surface plot of the difference in the
estimated mean value in the two treatment groups given as a
function of the two alpha parameters. We use the
samonCrossSummary function to compute the difference in
estimates for each pair of alpha. The plotting is done with the
filled.contour function.
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%samonCrossSummary(

IFM1 = data.Summary1,

sampIF1 = data.sampSummary1,

IFM2 = data.Summary2,

sampIF2 = data.sampSummary2,

out = data.Cross

);
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macro description

samonCombine Combines results from multiple runs of proc
samon

samonSummary Summarizes samon results. Combines boot-
strap and jackknife results to produce con-
fidence intervals

samonDifferenceSummary Computes treatment effect differences
and confidence intervals from a pair of
samonSummary objects.

samonCrossSummary Computes treatment effect differences and
confidence intervals for each pair of sensi-
tivity parameters α.

samonECompleterStatus Computes the difference in the expected
value of non-completers and completers
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samonCombine macro
samonCombine combines samon results into one dataset

(

inlib = input libref

stem = results file name stem

connect = name connector

partfrom = 1 parts start at 1

partto = 100 to 100

partform = z5 format to use on partno

outlib = output libref

)
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samonSummary macro
samonSummary computes summary of samon object

(

data = input dataset to summarize

out = summary of main data

sampSummary = summary of parametric bootstrap samples

)
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samonDifferenceSummary macro
samonDifferenceSummary Treatment-specific differences

(

IFM1 = main results from samonSummary for trt 1

sampIF1 = sample results from samonSummary for trt 1

IFM2 = main results from samonSummary for trt 2

sampIF2 = sample results from samonSummary for trt 2

out = summary of difference

)

162 / 164



samonCrossSummary macro
samonCrossSummary Treatment-specific differences for all pairs of

sensitivity parameter

(

IFM1 = main results from samonSummary for trt 1

sampIF1 = sample results from samonSummary for trt 1

IFM2 = main results from samonSummary for trt 2

sampIF2 = sample results from samonSummary for trt 2

out = summary of difference

)
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R: samon function

function description
samonCombine combines the outputs from samon into one

samonMat object. The results are stored as
.Rds files. samonCombine takes a list of such
files
and combines them.

samonDiff Takes two samonMat objects and produces a
samonMat object for the difference in
influence function estimates

samonBiasCorrection Takes a samonMat object and produces cor-
rected influence function estimates

samonXBiasCorrection Takes two samonMat objects (one from each
treatment groups) and for each pair of alphas
produces the difference in influence function es-
timates.
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