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Aims

1 Develop and evaluate a sensitivity analysis methodology
for the analysis of randomized clinical trials with
repeatedly measured binary outcomes and non-monotone
missing data.

2 Develop open-source, user-friendly software.

3 Conduct sensitivity analysis of 29 CTN-sponsored trials
with public-use datasets available on the NIDA Data
Share website.

4 Link the results to study characteristics in order to
identify patterns.

5 Disseminate the methodology and software to researchers
interested in substance use disorder clinical trials.
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Sensitivity Analysis

Missing outcome data threaten the validity of randomized
clinical trials because inference about treatment effects
then necessarily relies on untestable assumptions, which
wrongly stated can lead to incorrect conclusions.

The National Research Council (NRC) in its report
entitled “The Prevention Treatment of Missing Data in
Clinical Trials” recommended that evaluating the
sensitivity of trial results to assumptions about the
missing data mechanism should be a mandatory
component of reporting.
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Sensitivity Analysis

Chapter 5 of the NRC Report presents an approach
whereby one posits a broad class of untestable missing
data assumptions that is

1 indexed by sensitivity analysis parameters,
2 anchored around a plausible benchmark assumption

(sensitivity parameters equal to a reference value), and
3 sensitivity analysis parameters further from the reference

value represent larger deviations from the benchmark
assumption.

The goal of this “global” sensitivity analysis approach is
to determine how much deviation from a benchmark
assumption is required in order for inferences to change.
If the deviation is judged to be sufficiently far from the
benchmark assumption, then greater credibility is lent to
the benchmark analysis; if not, the benchmark analysis
can be considered to be fragile.
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Non-Monotone Missing Data

Positing plausible assumptions and specifying flexible
models for studies with non-monotone missing data is
challenging because of the potentially large number of
missingness patterns (as many as 2K − 1 patterns, where
K is the number of post-baseline assessments).

Ibrahim and Molenberghs (2009) indicate that “[s]uch
data present a considerable modeling challenge for the
statistician”.

The NRC report highlighted the need for development
and application of “novel, appropriate methods of model
specification and sensitivity analyses to handle
non-monotone missing data patterns”.
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Notation

Y
(1)
k is outcome scheduled to be measured at time k

Rk is the indicator that Y
(1)
k is observed.

Yk is the observed outcome at time k

Yk = Y
(1)
k if Rk = 1

Yk =? if Rk = 0

For a time varying quantity Zk , let
←−
Z k = (Z1, . . . ,Zk)
−→
Z k = (Zk+1, . . . ,ZK )

Ok = (Rk ,Yk)

We observe n i.i.d. copies of
←−
O K

Learn about functionals of the joint distribution of
←−
Y

(1)
K , e.g.,

E [
∑K

k=1 Y
(1)
k ]

8 / 36



Missing at Random (MAR)

Robins and Gill (1997), Gill and Robins (1997) and Little
and Rubin (2014) have argued that MAR is implausible
for studies that have non-monotone missing data patterns.

R1 R2 R3 Y
(1)
1 Y

(1)
2 Y

(1)
3 P[

←−
R 3 =←−r 3|

←−
Y

(1)
3 =←−y (1)

3 ]

1 1 0 0 0 0 1.0
1 0 1 1 0 0 1.0
1 1 1 0 1 0 1.0
1 1 0 0 0 1 1.0
1 0 1 1 1 0 1.0
1 1 1 1 0 1 1.0
0 1 1 0 1 1 1.0
0 1 1 1 1 1 1.0

P[
←−
R 3 = (1, 1, 0)|

←−
Y

(1)
3 ] does not depend on Y

(1)
3

P[
←−
R 3 = (1, 0, 1)|

←−
Y

(1)
3 ] does not depend on Y

(1)
2

P[
←−
R 3 = (0, 1, 1)|

←−
Y

(1)
3 ] does not depend on Y

(1)
1
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Missing at Random (MAR)

Simulation of the MAR process:

Observe Y
(1)

3

If Y
(1)
3 = 1, observe Y

(1)
2

If Y
(1)
2 = 1, do not observe Y

(1)
1

If Y
(1)
2 = 0 observe Y

(1)
1 . If Y

(1)
1 = 0, hide Y

(1)
3

If Y
(1)
3 = 0, observe Y

(1)
1

If Y
(1)
1 = 1, do not observe Y

(1)
2

If Y
(1)
1 = 0 observe Y

(1)
2 . If Y

(1)
2 = 0, hide Y

(1)
3

Need information on potentially hidden value of Y
(1)

3 to
simulate data.

“MAR is not want it seems” (Gill and Robins, 1997)

10 / 36



Complete-Case Missing Value

For each possible pattern with missing observations, the
conditional distribution of the missing outcomes given the
observed outcomes is equal to corresponding distribution
for the pattern with no missing observations.

Tchetgen-Tchetgen, Wang and Sun (2017) developed a
global sensitivity analysis procedure anchored at CCMV.

P[
←−
Y

(1)
K =←−y (1)

K |
←−
R K =←−r K ,

←−
Y K =←−y K ]

= P[
←−
Y

(1)
K =←−y (1)

K |
←−
R K =

←−
1 K ,
←−
Y K =←−y K ]

For example,

P[Y
(1)

1 = y
(1)
1 ,Y

(1)
2 = y

(1)
2 |R1 = R2 = 0,R3 = 1,Y3 = y3]

= P[Y
(1)

1 = y
(1)
1 ,Y

(1)
2 = y

(1)
2 |R1 = R2 = R3 = 1,Y3 = y3]
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Vansteelandt, Rotnitzky and Robins (2007)

For individuals who have the same observed data prior to
a scheduled visit, the distribution of the outcome for
those missing the visit is the same as the distribution of
the outcome for those who attend the visit.

They developed a global sensitivity analysis procedure
anchored at this assumption.

Linero and Daniels (2018) built a Bayesian synthesis
procedure.

P[Y
(1)
k = y

(1)
k |
←−
O k−1,Rk = 0] = P[Y

(1)
k = y

(1)
k |
←−
O k−1,Rk = 1]
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Zhou, Little, Kalbfleisch et al. (2010)

For individuals who share the same outcomes (observed or
not) and same missingness pattern prior to a scheduled
visit, the distribution of the outcome for those missing
the visit is the same as the distribution of the outcome
for those who attend the visit

No global sensitivity analysis procedure was developed.

P[Y
(1)
k = y

(1)
k |
←−
Y

(1)
k−1,
←−
R k−1,Rk = 0]

= P[Y
(1)
k = y

(1)
k |
←−
Y

(1)
k−1,
←−
R k−1,Rk = 1]
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Sadinle and Reiter (2017a); Shpitser (2016)

For individuals who have the same outcomes (observed or
not) and same missingness pattern prior to and after a
scheduled visit, the distribution of the outcome for those
missing the visit is the same as the distribution of the
outcome for those who attend the visit.

Cannot be represented as a directed acyclic graph.

Sadinle and Reiter (2017a) developed a Bayesian global
sensitivity analysis procedure anchored at this assumption.

P[Y
(1)
k = y

(1)
k |
←−
Y

(1)
k−1,
←−
R k−1,Rk = 0,

−→
Y

(1)
k ,
−→
R k ]

= P[Y
(1)
k = y

(1)
k |
←−
Y

(1)
k−1,
←−
R k−1,Rk = 1,

−→
Y

(1)
k ,
−→
R k ]
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Robins (1997); Sadinle and Reiter (2017b)

For individuals who share the same outcomes (observed or
not) prior to a scheduled visit and the same observed data
after the visit, the distribution of the outcome for those
missing the visit is the same as the distribution of the
outcome for those attending the visit.

No global sensitivity analysis procedure was developed.

P[Y
(1)
k = y

(1)
k |
←−
Y

(1)
k−1,Rk = 0,

−→
O k ] (1)

= P[Y
(1)
k = y

(1)
k |
←−
Y

(1)
k−1,Rk = 1,

−→
O k ] (2)
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In Other Words ...

Imagine the stratum of people who share the same
outcomes prior to visit k (observed or not) and who share
the same observed outcomes after visit k .

Sub-stratum A: people who show up at visit k
Sub-stratum B: people who do not show up at visit k

Probability of outcome at visit k is the same for those in
sub-stratum A and those in sub-stratum B .
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Sensitivity Analysis

P(Y
(1)
k = 1|

←−
Y

(1)
k−1,Rk = 0,

−→
O k︸ ︷︷ ︸

Stratum B

)

∝ P(Y
(1)
k = 1|

←−
Y

(1)
k−1,Rk = 1,

−→
O k︸ ︷︷ ︸

Stratum A

) exp(αk)

where αk is the sensitivity analysis parameter.

When αk > 0 (< 0), it is assumed that stratum B

individuals are more (less) likely to have Y
(1)
k = 1 than

stratum A individuals.

As αk →∞ (−∞), it is assumed that all individuals in

stratum B have Y
(1)
k = 1 (Y

(1)
k = 0).

Notice that when αk = 0 for all k , the benchmark
assumption is obtained.
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Directed Acyclic Graph (DAG)
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Theorem

The distribution of
←−
Y

(1)
K is identified for specified ←−α K .

Identification means that there is mathematical mapping

from the distribution of the observed data
←−
O K to the

distribution of
←−
Y

(1)
K .

The proof follows by induction.
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Identification
1

I

HB !! Mar1 17

Y0 Y1 Y2 Y3 Y4

II

YH Aug 19

Y0 Y1 Y2 Y3 Y4

Y0 Y1 Y2 Y3 Y4

α < 0 α = 0 α > 0

III

Y0 Y1 Y2 Y3 Y4

α < 0 α = 0 α > 0

IV

V

Y0 Y1 Y2 Y3 Y4
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Identification
1

V

YH Mar6 17

Y0 Y1 Y2 Y3 Y4

Y0 Y1 Y2 Y3 Y4

α < 0 α = 0 α > 0

V I

Y0 Y1 Y2 Y3 Y4

α < 0 α = 0 α > 0

V II

V III

Y0 Y1 Y2 Y3 Y4
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Identification
1

V III

YH Mar6 17

Y0 Y1 Y2 Y3 Y4

Y0 Y1 Y2 Y3 Y4

α < 0 α = 0 α > 0

IX

Y0 Y1 Y2 Y3 Y4

α < 0 α = 0 α > 0

X

Y0 Y1 Y2 Y3 Y4

α < 0 α = 0 α > 0

XI

Y0 Y1 Y2 Y3 Y4

α < 0 α = 0 α > 0

XII

XIII

Y0 Y1 Y2 Y3 Y4
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Identification
1

XIII

YH Mar6 17

Y0 Y1 Y2 Y3 Y4

Y0 Y1 Y2 Y3 Y4

α < 0 α = 0 α > 0

XIV

Y0 Y1 Y2 Y3 Y4

α < 0 α = 0 α > 0

XV

Y0 Y1 Y2 Y3 Y4

α < 0 α = 0 α > 0

XV I

Y0 Y1 Y2 Y3 Y4

α < 0 α = 0 α > 0

XV II

XV III

Y0 Y1 Y2 Y3 Y4
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Identification
1

XV III

YH Mar6 17

Y0 Y1 Y2 Y3 Y4

Y0 Y1 Y2 Y3 Y4

α < 0 α = 0 α > 0

XIX

Y0 Y1 Y2 Y3 Y4

α < 0 α = 0 α > 0

XX

Y0 Y1 Y2 Y3 Y4

α < 0 α = 0 α > 0

XXI

Y0 Y1 Y2 Y3 Y4

α < 0 α = 0 α > 0

XXII

XXIII

Y0 Y1 Y2 Y3 Y4
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Modeling the Distribution of
←−
O K

P[
←−
O K =←−o K ] = P[O1 = o1]

K∏
k=2

P[Ok = ok |
←−
O k−1 =←−o k−1]

Model P[Ok = ok |
←−
O k−1 =←−o k−1] using random forests.

We show that the resulting estimator of the joint
distribution of the observed data is consistent and
asymptotically normal.

Thus, the plug-in estimator of functional of interest will
be consistent and asymptotically normal.
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Random Forests

The random forest algorithm is built on top of the
classification and regression tree (CART) algorithm,
which creates a risk prediction model by recursively

partitioning the covariate space
←−
O k−1 using binary splits.

With ternary outcomes (Ok), the decision to split is made
by minimizing a measure of impurity (e.g., Gini impurity).

For fully grown trees, splitting is continued until each
terminal node has at most D observations, for a
pre-determined integer D.

To improve prediction accuracy, an ensemble algorithm,
referred to as bagging, averages fully grown CART trees
built using different bootstrap samples.

To de-correlate the trees in the ensemble, the random
forest algorithm modifies bagging by only considering a
random subset of the covariates at each splitting decision.
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Case Study: CTN -0044

Two-arm randomized trial designed to evaluate a new
approach to reducing substance use among patients
entering outpatient addiction treatment.

Treatment-as-usual (TAU) vs. treatment-as-usual plus a
computerized therapeutic education system and
contingent incentives (TAU+).

TAU: individual and group counseling.

TAU+: substituted 2 hours of usual care per week with
computer-interactive modules covering skills for achieving
and maintaining abstinence and prize-based motivational
incentives contingent on abstinence and treatment
adherence.

Urine samples scheduled to be collected twice weekly.

Outcome: number of negative urine samples during first 6
weeks.
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Case Study: CTN -0044

Among the 252 individuals randomized to TAU

42 (16.7%) had a complete record of urine samples
11 (4.4%) had no urine samples
28 (11.1%) had at least one urine sample and a
monotone missing data pattern
171 (67.9%) individuals had an intermittent missing
data pattern

Among the 255 individuals randomized to TAU+

81 (31.8%) had a complete record of urine samples,
3 (1.2%) had no urine samples
18 (7.1%) had at least one urine sample and a
monotone missing data pattern
153 (60.0%) individuals had an intermittent missing
data pattern
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Case Study: CTN -0044

We first used the random forest algorithm to estimate the
distribution of the observed data. We used 1000 trees.

To evaluate the model fit, we compared empirical and
model-based estimates of the joint distribution of the
observed data at all 66 pairs of time points.

For each pair, the joint distribution is represented by the
cell probabilities of a three by three table.

For each table, we computed the maximum of the
absolute differences between the empirical and
model-based estimates of the cell probabilities.

The largest of these maximums over the 66 tables was
1.82%.

In contrast, the largest of the maximums based on a
first-order Markov model was 12.98%.
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Case Study: CTN -0044

Assumption TAU TAU+ Difference
MCAR 7.86 ( 7.25, 8.47 ) 8.83 ( 8.28, 9.38 ) 0.97 ( 0.17, 1.76 ).
Missing=Non-Abstinent 5.14 ( 4.60, 5.69 ) 6.48 ( 5.90, 7.06 ) 1.34 ( 0.58, 2.10 )
Missing=Abstinent 9.27 ( 8.87, 9.67 ) 9.64 ( 9.24, 10.04 ) 0.37 ( -0.18, 0.92 )
Benchmark 7.17 ( 6.60, 7.75 ) 8.08 ( 7.61, 8.56 ) 0.91 ( 0.06, 1.76 )
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Case Study: CTN -0044
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Case Study: CTN -0044
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Case Study: CTN -0044
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Case Study: CTN -0044
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Simulation

TAU TAU+

α Truth Mean Std. Dev.
√

MSE Coverage Truth Mean Std. Dev.
√

MSE Coverage
-5 5.47 5.51 0.282 0.286 0.954 6.71 6.78 0.306 0.313 0.942
-4 5.62 5.67 0.285 0.289 0.952 6.82 6.90 0.307 0.316 0.936
-3 5.84 5.90 0.289 0.295 0.954 7.00 7.08 0.307 0.316 0.936
-2 6.18 6.24 0.297 0.302 0.952 7.27 7.34 0.306 0.314 0.940
-1 6.63 6.68 0.306 0.310 0.952 7.64 7.69 0.301 0.305 0.936
0 7.18 7.22 0.309 0.311 0.954 8.10 8.10 0.292 0.292 0.938
1 7.72 7.76 0.298 0.301 0.948 8.54 8.52 0.278 0.279 0.934
2 8.20 8.23 0.279 0.281 0.944 8.92 8.89 0.259 0.261 0.938
3 8.59 8.60 0.261 0.261 0.946 9.21 9.16 0.240 0.244 0.938
4 8.86 8.84 0.248 0.248 0.948 9.40 9.35 0.225 0.230 0.942
5 9.03 9.00 0.238 0.240 0.942 9.50 9.47 0.215 0.218 0.946
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Discussion

Software has been developed

Key computational limitation

Requires storage and operation on a 3K vector of
probabilities.
Computationally infeasible when K > 15.
Reduce dimension by introducing Markovian-type
conditional independence restrictions.

Extension to continuous outcomes.

Asymptotic theory for the random forest estimator is
substantially more complex .
Different strategy will be needed, e.g., using an influence
function-based approach.
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